Daily Oral Supplementation with 60 mg of Elemental Iron for 12 Weeks Alters Blood Mitochondrial DNA Content, but Not Leukocyte Telomere Length in Cambodian Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Blood Collection and Processing
2.3. GSH/GSGG Determination
2.4. rLTL and mtDNA Content Determination
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. GSH/GSSG Ratio
3.3. Baseline and 12-Week rLTL and mtDNA Content
3.4. Unadjusted Change in rLTL and mtDNA Content after 12 Weeks
3.5. Adjusted Change in rLTL and mtDNA Content after 12 Weeks
3.6. The Interaction Effect of Baseline Iron Status or Presence of a Genetic Hemoglobinopathy and Change in rLTL or mtDNA Content
3.7. Prevalence of Anemia and Iron Deficiency at 12 Weeks
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Primary Outcome | Equation |
---|---|
Absolute change in rLTL | |
Percent change in rLTL | |
Absolute change in mtDNA Content | |
Percent change in mtDNA content |
References
- World Health Organization. The Global Prevalence of Anaemia in 2011; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Rahman, M.M.; Abe, S.K.; Rahman, M.S.; Kanda, M.; Narita, S.; Bilano, V.; Ota, E.; Gilmour, S.; Shibuya, K. Maternal anemia and risk of adverse birth and health outcomes in low- and middle-income countries: Systematic review and meta-analysis. Am. J. Clin. Nutr. 2016, 103, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Haas, J.D.; Brownlie, T., IV. Iron Deficiency and Reduced Work Capacity: A Critical Review of the Research to Determine a Causal Relationship. J. Nutr. 2001, 131, 676S–688S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Global Nutrition Targets 2025: Anaemia Policy Brief; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Kassebaum, N.J. The Global Burden of Anemia. Hematol. Oncol. Clin. N. Am. 2016, 30, 247–308. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guideline: Daily Iron Supplementation in Adult Women and Adolescent Girls; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Wieringa, F.T.; Dahl, M.; Chamnan, C.; Poirot, E.; Kuong, K.; Sophonneary, P.; Sinuon, M.; Greuffeille, V.; Hong, R.; Berger, J.; et al. The High Prevalence of Anemia in Cambodian Children and Women Cannot Be Satisfactorily Explained by Nutritional Deficiencies or Hemoglobin Disorders. Nutrients 2016, 8, 348. [Google Scholar] [CrossRef] [PubMed]
- Wieringa, F.T.; Sophonneary, P.; Whitney, S.; Mao, B.; Berger, J.; Conkle, J.; Dijkhuizen, M.A.; Laillou, A. Low Prevalence of Iron and Vitamin A Deficiency among Cambodian Women of Reproductive Age. Nutrients 2016, 8, 197. [Google Scholar] [CrossRef] [Green Version]
- Karakochuk, C.D.; Whitfield, K.C.; Barr, S.I.; Lamers, Y.; Devlin, A.M.; Vercauteren, S.M.; Kroeun, H.; Talukder, A.; McLean, J.; Green, T.J. Genetic Hemoglobin Disorders Rather Than Iron Deficiency Are a Major Predictor of Hemoglobin Concentration in Women of Reproductive Age in Rural Prey Veng, Cambodia. J. Nutr. 2015, 145, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Charles, C.V.; Dewey, C.E.; Np, A.H.; Hak, C.; Channary, S.; Summerlee, A.J. Anemia in Cambodia: A cross-sectional study of anemia, socioeconomic status and other associated risk factors in rural women. Asia Pac. J. Clin. Nutr. 2015, 24, 253–259. [Google Scholar] [CrossRef]
- World Health Organization. Nutritional Anaemias: Tools for Effective Prevention and Control; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Nemeth, E.; Ganz, T. Anemia of Inflammation. Hematol. Oncol. Clin. N. Am. 2014, 28, 671–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of inflammation. Blood 2019, 133, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Kohne, E. Hemoglobinopathies. Dtsch. Arztebl. Int. 2011, 108, 532–540. [Google Scholar] [CrossRef]
- Demographic and Health Survey. Cambodia Demographic and Health Survey 2014; National Institute of Statistics; Directorate General for Health; ICF International: Phnom Penh, Cambodia, 2015. [Google Scholar]
- Low, M.S.Y.; Speedy, J.; Styles, C.E.; De-Regil, L.M.; Pasricha, S.R. Daily iron supplementation for improving anaemia, iron status and health in menstruating women. Cochrane Database Syst. Rev. 2016, 4, CD009747. [Google Scholar] [CrossRef]
- Winterbourn, C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett. 1995, 82–83, 969–974. [Google Scholar] [CrossRef]
- Schümann, K.; Ettle, T.; Szegner, B.; Elsenhans, B.; Solomons, N.W. On risks and benefits of iron supplementation recommendations for iron intake revisited. J. Trace Elem. Med. Biol. 2007, 21, 147–168. [Google Scholar] [CrossRef] [PubMed]
- Brissot, P.; Ropert, M.; Le Lan, C.; Loréal, O. Non-transferrin bound iron: A key role in iron overload and iron toxicity. Biochim. Biophys. Acta 2012, 1820, 403–410. [Google Scholar] [CrossRef]
- Koskenkorva-Frank, T.S.; Weiss, G.; Koppenol, W.H.; Burckhardt, S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: Insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free. Radic. Biol. Med. 2013, 65, 1174–1194. [Google Scholar] [CrossRef]
- Prá, D.; Franke, S.I.R.; Henriques, J.A.P.; Fenech, M. Iron and genome stability: An update. Mutat. Res. 2012, 733, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Fucharoen, S.; Winichagoon, P.; Sirankapracha, P.; Zeder, C.; Gowachirapant, S.; Judprasong, K.; Tanno, T.; Miller, J.L.; Hurrell, R.F. Iron metabolism in heterozygotes for hemoglobin E (HbE), α-thalassemia 1, or β-thalassemia and in compound heterozygotes for HbE/β-thalassemia. Am. J. Clin. Nutr. 2008, 88, 1026–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forman, H.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Monostori, P.; Wittmann, G.; Karg, E.; Túri, S. Determination of glutathione and glutathione disulfide in biological samples: An in-depth review. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 3331–3346. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Tiwari, M.; Ali, A.; Chandyan, S.; Zahra, F. Oral iron supplementation leads to oxidative imbalance in anemic women: A prospective study. Clin. Nutr. 2011, 30, 188–193. [Google Scholar] [CrossRef]
- Reichert, S.; Stier, A. Does oxidative stress shorten telomeres in vivo? A review. Biol. Lett. 2017, 13, 20170463. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Wei, Y. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int. J. Biochem. Cell Biol. 2005, 37, 822–834. [Google Scholar] [CrossRef]
- Liu, C.S.; Tsai, C.S.; Kuo, C.L.; Chen, H.W.; Lii, C.K.; Ma, Y.S.; Wei, Y.H. Oxidative Stress-related Alteration of the Copy Number of Mitochondrial DNA in Human Leukocytes. Free. Radic. Res. 2003, 37, 1307–1317. [Google Scholar] [CrossRef]
- Haycock, P.C.; Heydon, E.; Kaptoge, S.; Butterworth, A.S.; Thompson, A.; Willeit, P. Leucocyte telomere length and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2014, 349, g4227. [Google Scholar] [CrossRef] [Green Version]
- Willeit, P.; Willeit, J.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Brandstätter, A.; Kronenberg, F.; Kiechl, S. Telomere Length and Risk of Incident Cancer and Cancer Mortality. JAMA 2010, 304, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Müezzinler, A.; Karina, A.; Brenner, H. A systematic review of leukocyte telomere length and age in adults. Ageing Res. Rev. 2013, 12, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Brandao, C.F.C.; Nonino, C.B.; Carvalho, D.; Nicoletti, C.F.; Noronha, N.Y.; Martin, R.S.; De Freitas, E.C.; Junqueira-Franco, M.V.M.; Marchini, J.S. The effects of short-term combined exercise training on telomere length in obese women: A prospective, interventional study. Sports Med. Open 2020, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Callaghan, N.J.; Clifton, P.M.; Noakes, M.; Fenech, M. Weight Loss in Obese Men Is Associated with Increased Telomere Length and Decreased Abasic Sites in Rectal Mucosa. Rejuvenation Res. 2009, 12, 169–176. [Google Scholar] [CrossRef]
- Conklin, Q.A.; King, B.G.; Zanesco, A.P.; Lin, J.; Hamidi, A.B.; Pokorny, J.J.; Álvarez-López, M.J.; Cosín-Tomás, M.; Huang, C.; Kaliman, P.; et al. Insight meditation and telomere biology: The effects of intensive retreat and the moderating role of personality. Brain Behav. Immun. 2018, 70, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Saberi, S.; Kalloger, S.E.; Zhu, M.M.T.; Sattha, B.; Maan, E.J.; Van Schalkwyk, J.; Money, D.M.; Côté, H.C.F. Dynamics of leukocyte telomere length in pregnant women living with HIV, and HIV-negative pregnant women: A longitudinal observational study. PLoS ONE 2019, 14, e0212273. [Google Scholar] [CrossRef] [PubMed]
- Palikaras, K.; Tavernarakis, N. Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 2014, 56, 182–188. [Google Scholar] [CrossRef]
- Min, K.H.; Lee, W. Alteration of mitochondrial DNA content modulates antioxidant enzyme expressions and oxidative stress in myoblasts. Korean J. Physiol. Pharmacol. 2019, 23, 519–528. [Google Scholar] [CrossRef]
- Castellani, C.A.; Longchamps, R.J.; Sun, J.; Guallar, E.; Arking, D.E. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion 2020, 53, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Priliani, L.; Prado, E.L.; Restuadi, R.; Waturangi, D.E.; Shankar, A.H.; Malik, S.G. Maternal Multiple Micronutrient Supplementation Stabilizes Mitochondrial DNA Copy Number in Pregnant Women in Lombok, Indonesia. J. Nutr. 2019, 149, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Karakochuk, C.D.; Barker, M.K.; Whitfield, K.C.; Barr, S.I.; Vercauteren, S.M.; Devlin, A.M.; Hutcheon, J.A.; Houghton, L.A.; Prak, S.; Hou, K.; et al. The effect of oral iron with or without multiple micronutrients on hemoglobin concentration and hemoglobin response among nonpregnant Cambodian women of reproductive age: A 2 x 2 factorial, double-blind, randomized controlled supplementation trial. Am. J. Clin. Nutr. 2017, 106, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, C.; Lennartz, K.; Ibrahim, H.; Coz, A.; Kasper, Y.; Lenz, C.; Mathur, D.; Polidori, M. Stable 16-Year Storage of DNA Purified with the QIAamp® DNA Blood Mini Kit; QIAGEN GmbH: Hilden, Germany, 2016. [Google Scholar]
- Hsieh, A.Y.Y.; Saberi, S.; Ajaykumar, A.; Hukezalie, K.; Gadawski, I.; Sattha, B.; Côté, H.C.F. Optimization of a Relative Telomere Length Assay by Monochromatic Multiplex Real-Time Quantitative PCR on the LightCycler 480: Sources of variability and quality control considerations. J. Mol. Diagn. 2016, 18, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, A.Y.Y.; Budd, M.; Deng, D.; Gadawska, I.; Côté, H.C.F. A Monochrome Multiplex Real-Time Quantitative PCR Assay for the Measurement of Mitochondrial DNA Content. J. Mol. Diagn. 2018, 20, 612–620. [Google Scholar] [CrossRef]
- Nordfjäll, K.; Svenson, U.; Norrback, K.; Adolfsson, R.; Lenner, P.; Roos, G. The Individual Blood Cell Telomere Attrition Rate Is Telomere Length Dependent. PLoS Genet. 2009, 5, e1000375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, Y.; Ye, K.; Picard, M.; Gu, Z. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genom. 2017, 18, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thurnham, D.I.; Northrop-Clewes, C.A.; Knowles, J. The Use of Adjustment Factors to Address the Impact of Inflammation on Vitamin A and Iron Status in Humans. J. Nutr. 2015, 145, 1137S–1143S. [Google Scholar] [CrossRef]
- Ehrlenbach, S.; Willeit, P.; Kiechl, S.; Willeit, J.; Reindl, M.; Schanda, K.; Kronenberg, F.; Brandstätter, A. Influences on the reduction of relative telomere length over 10 years in the population-based Bruneck Study: Introduction of a well-controlled high-throughput assay. Int. J. Epidemiol. 2009, 38, 1725–1734. [Google Scholar] [CrossRef] [Green Version]
- Samavat, H.; Xun, X.; Jin, A.; Wang, R.; Koh, W.-P.; Yuan, J.-M. Association between prediagnostic leukocyte telomere length and breast cancer risk: The Singapore Chinese Health Study. Breast Cancer Res. 2019, 21, 50. [Google Scholar] [CrossRef] [PubMed]
- Zanet, D.A.L.; Thorne, A.; Singer, J.; Maan, E.J.; Sattha, B.; Le Campion, A.; Soudeyns, H.; Pick, N.; Murray, M.; Money, D.M.; et al. Association Between Short Leukocyte Telomere Length and HIV Infection in a Cohort Study: No Evidence of a Relationship With Antiretroviral Therapy. Clin. Infect. Dis. 2014, 58, 1322–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanet, D.A.L.; Saberi, S.; Oliveira, L.; Sattha, B.; Gadawski, I.; Côté, H.C.F. Blood and Dried Blood Spot Telomere Length Measurement by qPCR: Assay Considerations. PLoS ONE 2013, 8, e57787. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.Y.; Liu, Y.; Yang, H.R.; Yang, H.Y.; Liu, J.X.; Ma, Y.N.; Qi, Y. Reference Intervals of Mitochondrial DNA Copy Number in Peripheral Blood for Chinese Minors and Adults. Chin. Med. J. 2017, 130, 2435–2440. [Google Scholar] [CrossRef] [PubMed]
- Lal, A.; Gomez, E.; Calloway, C. Increased mitochondrial DNA deletions and copy number in transfusion-dependent thalassemia. JCI Insight 2016, 1, e88150. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, H.K.; Ko, J.H.; Bang, H.; Lee, D.C. The Relationship between Leukocyte Mitochondrial DNA Copy Number and Telomere Length in Community-Dwelling Elderly Women. PLoS ONE 2013, 8, e67227. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Liu, H.; He, S.; Li, P.; Ma, C.; Ma, M.; Liu, Y.; Lv, L.; Ping, F.; Zhang, H.; et al. Sex-Specific Negative Association between Iron Intake and Cellular Aging Markers: Mediation Models Involving TNFα. Oxidative Med. Cell. Longev. 2019, 2019, 4935237. [Google Scholar] [CrossRef] [Green Version]
- Friedman, A.J.; Chen, Z.; Ford, P.; Johnson, C.A.; Lopez, A.M.; Shander, A.; Waters, J.H.; Van Wyck, D. Iron Deficiency Anemia in Women Across the Life Span. J. Women’s Health 2012, 21, 1282–1289. [Google Scholar] [CrossRef]
- Shin, C.; Baik, I. Transferrin saturation concentrations associated with telomeric ageing: A population-based study. Br. J. Nutr. 2017, 117, 1693–1701. [Google Scholar] [CrossRef] [Green Version]
- Mainous, A.G.I.; Wright, R.U.; Hulihan, M.M.; Twal, W.O.; Christine, E.; Diaz, V.A.; Mclaren, G.D.; Argraves, W.S.; Althea, M. Telomere length and elevated iron: The influence of phenotype and HFE genotype. Am. J. Hematol. 2013, 88, 492–496. [Google Scholar] [CrossRef] [Green Version]
- Mainous, A.G.I.; Wright, R.U.; Hulihan, M.M.; Twal, W.O.T.; McLaren, C.E.; Diaz, V.A.; McLaren, G.D.; Argraves, W.S.; Grant, A.M. Elevated transferrin saturation, health-related quality of life and telomere length. BioMetals 2014, 27, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Sun, Y.; Xu, G.; Snetselaar, L.G.; Ludewig, G. Association between Body Iron Status and Leukocyte Telomere Length, a Biomarker of Biological Aging, in a Nationally Representative Sample of US Adults. J. Acad. Nutr. Diet. 2019, 119, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Parks, C.G.; DeRoo, L.A.; Cawthon, R.M.; Sandler, D.P.; Chen, H. Multivitamin use and telomere length in women. Am. J. Clin. Nutr. 2009, 89, 1857–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brittenham, G.M.; Andersson, M.; Egli, I.; Foman, J.T.; Zeder, C.; Westerman, M.E.; Hurrell, R.F. Circulating non–transferrin-bound iron after oral administration of supplemental and fortification doses of iron to healthy women: A randomized study. Am. J. Clin. Nutr. 2014, 100, 813–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchinson, C.; Al-Ashgar, W.; Liu, D.Y.; Hider, R.C.; Powell, J.J.; Geissler, C.A. Oral ferrous sulphate leads to a marked increase in pro-oxidant nontransferrin-bound iron. Eur. J. Clin. Investig. 2004, 34, 782–784. [Google Scholar] [CrossRef]
- King, S.M.; Donangelo, C.M.; Knutson, M.D.; Walter, P.B.; Ames, B.N.; Viteri, F.E.; King, J.C. Daily Supplementation with Iron Increases Lipid Peroxidation in Young Women with Low Iron Stores. Exp. Biol. Med. 2008, 233, 701–707. [Google Scholar] [CrossRef]
- Steele, S.L.; Kroeun, H.; Karakochuk, C.D. The Effect of Daily Iron Supplementation with 60 mg Ferrous Sulfate for 12 Weeks on Non-Transferrin Bound Iron Concentrations in Women with a High Prevalence of Hemoglobinopathies. J. Clin. Med. 2019, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Bettermann, E.L.; Hartman, T.J.; Easley, K.A.; Ferranti, E.P.; Jones, D.P.; Quyyumi, A.A.; Vaccarino, V.; Ziegler, T.R.; Alvarez, J.A. Higher Mediterranean Diet Quality Scores and Lower Body Mass Index Are Associated with a Less-Oxidized Plasma Glutathione and Cysteine Redox Status in Adults. J. Nutr. 2018, 148, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Lucesoli, F.; Caligiuri, M.; Roberti, M.F.; Perazzo, J.C.; Fraga, C.G. Dose-Dependent Increase of Oxidative Damage in the Testes of Rats Subjected to Acute Iron Overload. Arch. Biochem. Biophys. 1999, 372, 37–43. [Google Scholar] [CrossRef]
- Rrier, J.C.A.; Ghdassi, E.A.; Platt, I.; Llen, J.C.U.; Allard, J.P. Effect of oral iron supplementation on oxidative stress and colonic inflammation in rats with induced colitis. Aliment. Pharmacol. Ther. 2001, 15, 1989–1999. [Google Scholar] [CrossRef]
- Schümann, K.; Solomons, N.W.; Orozco, M.; Romero-Abal, M.E.; Weiss, G. Differences in Circulating Non-Transferrin-Bound Iron after Oral Administration of Ferrous Sulfate, Sodium Iron EDTA, or Iron Polymaltose in Women with Marginal Iron Stores. Food Nutr. Bull. 2013, 34, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-H.; Su, S.-L.; Hsieh, M.-C.; Cheng, W.-L.; Chang, C.-C.; Wu, H.-L.; Kuo, C.-L.; Lin, T.-T.; Liu, C.-S. Depleted Leukocyte Mitochondrial DNA Copy Number in Metabolic Syndrome. J. Atheroscler. Thromb. 2011, 18, 867–873. [Google Scholar] [CrossRef] [Green Version]
- Mazidi, M.; Kengne, A.P.; Banach, M. Mineral and vitamin consumption and telomere length among adults in the United States. Pol. Arch. Intern. Med. 2017, 127, 87–90. [Google Scholar] [CrossRef]
- Furumoto, K.; Inoue, E.; Nagao, N.; Hiyama, E.; Miwa, N. Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress. Life Sci. 1998, 63, 935–948. [Google Scholar] [CrossRef]
- Imam, M.U.; Zhang, S.; Ma, J.; Wang, H.; Wang, F. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients 2017, 9, 671. [Google Scholar] [CrossRef]
Iron | Placebo | |
---|---|---|
Women included in analysis | 190 (51%) | 186 (49%) |
Age, years | 31 ± 8 | 30 ± 8 |
Indicators | ||
Hb, g/L | 116 ± 14 | 117 ± 13 |
Storage iron, ferritin 2, μg/L | 39.1 (18.0, 81.4) | 37.1 (15.1, 61.0) |
Tissue iron, sTfR, mg/L | 6.0 (4.8, 8.3) | 5.9 (4.7, 7.7) |
TSAT, % | 22.5 (14.0, 29.3) | 21.3 (12.3, 28.9) |
CRP, mg/L | 0.37 (0.18, 0.87) | 0.43 (0.23, 1.03) |
AGP, mg/L | 0.55 (0.45, 0.72) | 0.56 (0.46, 0.70) |
Anemia prevalence | ||
Anemia, Hb < 120 g/L | 114 (60%) | 96 (52%) |
IDA, ferritin 2 < 15 μg/L and Hb < 120 g/L | 33/189 (17%) | 38 (20%) |
IDA, sTfR > 8.3 mg/L and Hb < 120 g/L | 44/189 (23%) | 36 (19%) |
Iron deficiency prevalence | ||
Ferritin 2 < 15 μg/L | 38/189 (20%) | 46 (25%) |
sTfR > 8.3 mg/L | 48/189 (25%) | 42 (23%) |
Genetic hemoglobin disorder prevalence | ||
Any (Hb variant or α-thalassemia) | 150 (79%) | 130 (70%) |
Hb variant (E, CS, H, Bart, or F) | 115 (61%) | 98 (53%) |
α-thalassemia mutation | 83/189 (44%) | 76/185 (41%) |
Inflammation prevalence | ||
Acute inflammation, CRP > 5 mg/L | 9/189 (5%) | 4 (2%) |
Chronic inflammation, AGP > 1 g/L | 15/189 (8%) | 14 (8%) |
Iron | Placebo | |
---|---|---|
Women included in rLTL analysis | 190 (51%) | 186 (49%) |
Baseline rLTL | 7.1 (6.5, 7.7) | 7.1 (6.5, 7.8) |
12-week rLTL | 7.0 (6.4, 7.7) | 7.1 (6.1, 7.8) |
Women included in mtDNA analysis | 186 (50%) | 184 (50%) |
Baseline mtDNA | 95 (73, 120) | 90 (65, 115) |
12-week mtDNA | 103 (83, 122) | 105 (78, 135) |
Iron rLTL: n = 190 mtDNA: n = 186 | Placebo rLTL: n = 186 mtDNA: n = 184 | p | |
---|---|---|---|
Change in rLTL after 12 weeks | |||
Absolute | −0.2 (−0.4, 0.2) | −0.1 (−0.5, 0.3) | 0.34 |
Percent | −2.1% (−6.1%, 3.3%) | −1.4% (−5.9%, 4.8%) | 0.29 |
Change in mtDNA after 12 weeks | |||
Absolute | 3 (−18, 28) | 11 (−7, 37) | 0.03 |
Percent | 6% (−18%, 35%) | 12% (−11%, 47%) | 0.07 |
All Women rLTL: n = 376 mtDNA: n = 370 | Adherent Women rLTL: n = 325 mtDNA: n = 321 | |||
---|---|---|---|---|
ß (95% CI) | p | ß (95% CI) | p | |
Change in rLTL after 12 weeks 2 | ||||
Absolute | −0.04 (−0.16, 0.08) | 0.50 | −0.01 (−0.14, 0.12) | 0.86 |
Percent | −0.96 (−2.69, 0.77) | 0.28 | −0.53 (−2.41, 1.34) | 0.58 |
Change in mtDNA after 12 weeks 3 | ||||
Absolute | −11 (−12, −2) | 0.02 | −12 (−22, −3) | 0.01 |
Percent | −11 (−20, −1) | 0.02 | −12 (−22, −2) | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steele, S.L.; Hsieh, A.Y.Y.; Gadawski, I.; Kroeun, H.; Barr, S.I.; Devlin, A.M.; Côté, H.C.F.; Karakochuk, C.D. Daily Oral Supplementation with 60 mg of Elemental Iron for 12 Weeks Alters Blood Mitochondrial DNA Content, but Not Leukocyte Telomere Length in Cambodian Women. Nutrients 2021, 13, 1877. https://doi.org/10.3390/nu13061877
Steele SL, Hsieh AYY, Gadawski I, Kroeun H, Barr SI, Devlin AM, Côté HCF, Karakochuk CD. Daily Oral Supplementation with 60 mg of Elemental Iron for 12 Weeks Alters Blood Mitochondrial DNA Content, but Not Leukocyte Telomere Length in Cambodian Women. Nutrients. 2021; 13(6):1877. https://doi.org/10.3390/nu13061877
Chicago/Turabian StyleSteele, Shannon L., Anthony Y. Y. Hsieh, Izabella Gadawski, Hou Kroeun, Susan I. Barr, Angela M. Devlin, Hélène C. F. Côté, and Crystal D. Karakochuk. 2021. "Daily Oral Supplementation with 60 mg of Elemental Iron for 12 Weeks Alters Blood Mitochondrial DNA Content, but Not Leukocyte Telomere Length in Cambodian Women" Nutrients 13, no. 6: 1877. https://doi.org/10.3390/nu13061877
APA StyleSteele, S. L., Hsieh, A. Y. Y., Gadawski, I., Kroeun, H., Barr, S. I., Devlin, A. M., Côté, H. C. F., & Karakochuk, C. D. (2021). Daily Oral Supplementation with 60 mg of Elemental Iron for 12 Weeks Alters Blood Mitochondrial DNA Content, but Not Leukocyte Telomere Length in Cambodian Women. Nutrients, 13(6), 1877. https://doi.org/10.3390/nu13061877