The Breast Milk Immunoglobulinome
Abstract
:1. Introduction
1.1. Breast Milk: A Source of Immunomodulatory Components
1.2. The Mammary Gland as a Source of Protective Immunoglobulins for the Newborn
1.3. Do We Really Know the Immunoglobulin Concentration in Milk?
2. Materials and Methods
3. Results and Discussion: Immunoglobulins in Breast Milk
3.1. Evolution of Studies Quantifying Ig in Breast Milk
3.2. Techniques to Identify and Quantify Ig in Breast Milk
3.3. Evolution in the Immunoglobulin Profile during the Lactation Period: The Breast Milk Immunoglobulinome
3.4. IgA Concentration in Breast Milk
3.5. IgM Concenration in Breast Milk
3.6. IgG and IgG Subtypes’ Concentration in Breast Milk
3.7. IgE in Breast Milk
3.8. IgD in Breast Milk
3.9. Factors Influencing Breast Milk Immunoglobulinome
4. Conclusions
- Although IgA is the most studied Ig in breast milk, the other Igs are gaining attention.
- SIgA is the main form of IgA found in breast milk, but several articles are not precise enough in their determination.
- The technique used may have an influence on the outcome. ELISA and bead-based immunoassays (Luminex) are gaining importance and displacing other techniques, although the latter is not used for determining SIgA.
- The sampling period is critical for the quantification of Igs.
- There is a low number of studies addressing other Ig types in breast milk, both in the characterization of the BM immunoglobulinome and in the study of the influence of maternal factors, especially in the transition phase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andreas, N.J.; Kampmann, B.; Le-Doare, K.M. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef]
- World Health Organization. 10 Facts on Breastfeeding. Available online: https://www.who.int/features/factfiles/breastfeeding/facts/en/ (accessed on 1 January 2021).
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keikha, M.; Bahreynian, M.; Saleki, M.; Kelishadi, R. Macro- and Micronutrients of Human Milk Composition: Are They Related to Maternal Diet? A Comprehensive Systematic Review. Breastfeed. Med. 2017, 12, 0048. [Google Scholar] [CrossRef] [PubMed]
- Bravi, F.; Wiens, F.; Decarli, A.; Dal Pont, A.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef] [Green Version]
- De la Garza Puentes, A.; Martí Alemany, A.; Chisguano, A.M.; Montes Goyanes, R.; Castellote, A.I.; Torres-Espínola, F.J.; García-Valdés, L.; Escudero, M.; Segura, M.T.; Campoy, C.; et al. The Effect of Maternal Obesity on Breast Milk Fatty Acids and Its Association with Infant Growth and Cognition-The Preobe Study. Nutrients 2019, 11, 2154. [Google Scholar] [CrossRef] [Green Version]
- Sriraman, N.K. The Nuts and Bolts of Breastfeeding: Anatomy and Physiology of Lactation. Curr. Probl. Pediatr. Adolesc. Health Care 2017, 47, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Cacho, N.T.; Lawrence, R.M. Innate immunity and breast milk. Front. Immunol. 2017, 8, 584. [Google Scholar] [CrossRef] [Green Version]
- Picciano, M.F. Nutrient composition of human milk. Pediatr. Clin. N. Am. 2001, 48, 53–67. [Google Scholar] [CrossRef]
- Martin, C.R.; Ling, P.R.; Blackburn, G.L. Review of infant feeding: Key features of breast milk and infant formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Telemo, E.; Hanson, L.A. Antibodies in milk. J. Mammary Gland Biol. Neoplasia 1996, 1, 243–249. [Google Scholar] [CrossRef]
- Van De Perre, P. Transfer of antibody via mother’s milk. Vaccine 2003, 21, 3374–3376. [Google Scholar] [CrossRef]
- Weström, B.; Arévalo Sureda, E.; Pierzynowska, K.; Pierzynowski, S.G.; Pérez-Cano, F.J. The Immature Gut Barrier and Its Importance in Establishing Immunity in Newborn Mammals. Front. Immunol. 2020, 11, 1153. [Google Scholar] [CrossRef]
- Brandtzaeg, P. Human Secretory Immunoglobulins. 4. Quantitation of Free Secretory Piece. Acta Pathol. Microbiol. Scand. 1971, 79, 189–203. [Google Scholar]
- Larson, B.L.; Heary, H.L., Jr.; Devery, J.E. Immunoglobulin Production and Transport by the Mammary Gland. J. Dairy Sci. 1980, 63, 665–671. [Google Scholar] [CrossRef]
- Matson, A.P.; Thrall, R.S.; Rafti, E.; Lingenheld, E.G.; Puddington, L. IgG transmitted from allergic mothers decreases allergic sensitization in breastfed offspring. Clin. Mol. Allergy 2010, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Brandtzaeg, P. The Mucosal Immune System and Its Integration with the Mammary Glands. J. Pediatr. 2010, 156, S8. [Google Scholar] [CrossRef]
- Brandtzaeg, P. Secretory IgA: Designed for anti-microbial defense. Front. Immunol. 2013, 4, 222. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, A.; Rescigno, M. The biology of intestinal immunoglobulin A responses. Immunity 2008, 28, 740–750. [Google Scholar] [CrossRef] [Green Version]
- Boyaka, P.N. Inducing mucosal IgA: A challenge for vaccine adjuvants and delivery systems. J. Immunol. 2017, 199, 9–16. [Google Scholar] [CrossRef]
- McFadden, J.P.; Thyssen, J.P.; Basketter, D.A.; Puangpet, P.; Kimber, I. T helper cell 2 immune skewing in pregnancy/early life: Chemical exposure and the development of atopic disease and allergy. Br. J. Dermatol. 2015, 172, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Nakagawa, K.; Horikawa, T.; Moriyama, A.; Ojiro, Y.; Takamizawa, S.; Ochiai, A.; Matsumura, Y.; Ikemoto, Y.; Yamaguchi, K.; et al. Increasing number of implantation failures and pregnancy losses associated with elevated Th1/Th2 cell ratio. Am. J. Reprod. Immunol. 2021, e13429. [Google Scholar] [CrossRef]
- Rio-Aige, K.; Azagra-Boronat, I.; Massot-Cladera, M.; Selma-Royo, M.; Parra-Llorca, A.; González, S.; García-Mantrana, I.; Castell, M.; Rodríguez-Lagunas, M.J.; Collado, M.C.; et al. Association of maternal microbiota and diet in cord blood cytokine and immunoglobulin profiles. Int. J. Mol. Sci. 2021, 22, 1778. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.; Butcher, E.C. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J. Exp. Med. 2004, 200, 805–809. [Google Scholar] [CrossRef] [Green Version]
- Favre, L.; Spertini, F.; Corthésy, B. Secretory IgA Possesses Intrinsic Modulatory Properties Stimulating Mucosal and Systemic Immune Responses. J. Immunol. 2005, 175, 2793–2800. [Google Scholar] [CrossRef] [Green Version]
- Sletten, G.B.G.; Halvorsen, R.; Egaas, E.; Halstensen, T.S. Casein-specific immunoglobulins in cow’s milk allergic patient subgroups reveal a shift to IgA dominance in tolerant patients. Pediatr. Allergy Immunol. 2007, 18, 71–80. [Google Scholar] [CrossRef]
- Gloudemans, A.K.; Lambrecht, B.N.; Smits, H.H. Potential of Immunoglobulin A to Prevent Allergic Asthma. Clin. Dev. Immunol. 2013, 2013, 542091. [Google Scholar] [CrossRef] [Green Version]
- Verhasselt, V. Neonatal tolerance under breastfeeding influence. Curr. Opin. Immunol. 2010, 22, 623–630. [Google Scholar] [CrossRef]
- Mosconi, E.; Rekima, A.; Seitz-Polski, B.; Kanda, A.; Fleury, S.; Tissandie, E.; Monteiro, R.; Dombrowicz, D.D.; Julia, V.; Glaichenhaus, N.; et al. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development. Mucosal Immunol. 2010, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohsaki, A.; Venturelli, N.; Buccigrosso, T.M.; Osganian, S.K.; Lee, J.; Blumberg, R.S.; Oyoshi, M.K. Maternal IgG immune complexes induce food allergen- specific tolerance in offspring. J. Exp. Med. 2018, 215, 91–113. [Google Scholar] [CrossRef] [Green Version]
- Vidarsson, G.; Dekkers, G.; Rispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014, 5, 520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrenstein, M.R.; Notley, C.A. The importance of natural IgM: Scavenger, protector and regulator. Nat. Rev. Immunol. 2010, 10, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.A.; Reiner, G.L.; Lugo, K.A.; Kreuk, L.S.M.; Stanbery, A.G.; Ansaldo, E.; Seher, T.D.; Ludington, W.B.; Barton, G.M. Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Responses in Early Life. Cell 2016, 165, 827–841. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Karmaus, W.; Davis, S.; Gangur, V. Immune markers in breast milk and fetal and maternal body fluids: A systematic review of perinatal concentrations. J. Hum. Lact. 2011, 27, 171–186. [Google Scholar] [CrossRef]
- van der Zee, J.S.; van Swieten, P.; Aalberse, R.C. Inhibition of complement activation by IgG4 antibodies. Clin. Exp. Immunol. 1986, 64, 415–422. [Google Scholar] [PubMed]
- Hjelholt, A.; Christiansen, G.; Sørensen, U.S.; Birkelund, S. IgG subclass profiles in normal human sera of antibodies specific to five kinds of microbial antigens. Pathog. Dis. 2013, 67, 206–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holdsworth, S.R.; Kitching, A.R.; Tipping, P.G. Th1 and Th2T helper cell subsets affect patterns of injury and outcomes in glomerulonephritis. Kidney Int. 1999, 55, 1198–1216. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Magri, G.; Grasset, E.K.; Cerutti, A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat. Rev. Immunol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.L.; Sherrill, D.; Holberg, C.J.; Halonen, M.; Martinez, F.D. Breast-feeding, maternal IgE, and total serum IgE in childhood. J. Allergy Clin. Immunol. 1999, 104, 589–594. [Google Scholar] [CrossRef]
- Hochwallner, H.; Alm, J.; Lupinek, C.; Johansson, C.; Mie, A.; Scheynius, A.; Valenta, R. Transmission of allergen-specific IgG and IgE from maternal blood into breast milk visualized with microarray technology. J. Allergy Clin. Immunol. 2014, 134, 1213–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moles, L.; Manzano, S.; Fernández, L.; Montilla, A.; Corzo, N.; Ares, S.; Rodríguez, J.M.; Espinosa-Martos, I. Bacteriological, biochemical, and immunological properties of colostrum and mature milk from mothers of extremely preterm infants. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 120–126. [Google Scholar] [CrossRef]
- Striker, G.A.J.; Casanova, L.D.; Nagao, A.T. Influence of type of delivery on A, G and M immunoglobulin concentration in maternal colostrum. J. Pediatr. 2004, 80, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Chantry, C.J.; Israel-Ballard, K.; Moldoveanu, Z.; Peerson, J.; Coutsoudis, A.; Sibeko, L.; Abrams, B. Effect of flash-heat treatment on immunoglobulins in breast milk. J. Acquir. Immune Defic. Syndr. 2009, 51, 264–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathavitharana, K.A.; Catty, D.; McNeish, A.S. IgA antibodies in human milk: Epidemiological markers of previous infections? Arch. Dis. Child. 1994, 71, 192–197. [Google Scholar] [CrossRef]
- Mickleson, K.N.P.; Moriarty, K.M. Immunoglobulin levels in human colostrum and milk. J. Pediatr. Gastroenterol. Nutr. 1982, 1, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whyatt, R.G.; Garcia, B.; Cáceres, A.; Mata, L.J. Immunoglobulins and antibodies in colostrum and milk of Guatemalan mayan women. Arch. Latinoam. Nutr. 1972, 22, 4. [Google Scholar]
- Reddy, V.; Bhaskaram, C.; Raghuramulu, N.; Jagadeesan, V. Antimicrobial Factors in Human Milk. Acta Pædiatrica 1977, 66, 229–232. [Google Scholar] [CrossRef]
- Ford, J.E.; Law, B.A.; Marshall, V.M.E.; Reiter, B. Influence of the heat treatment of human milk on some of its protective constituents. J. Pediatr. 1977, 90, 29–35. [Google Scholar] [CrossRef]
- Önes, S.U. Immunoglobulins of human colostrum and milk. J. Pediatr. 1978, 94, 497–498. [Google Scholar] [CrossRef]
- Duchén, K.; Björkstén, B. Total IgE levels in human colostrum. Pediatr. Allergy Immunol. 1996, 7, 44–47. [Google Scholar] [CrossRef]
- Espinosa-Martos, I.; Montilla, A.; De Segura, A.G.; Escuder, D.; Bustos, G.; Pallás, C.; Rodríguez, J.M.; Corzo, N.; Fernández, L. Bacteriological, biochemical, and immunological modifications in human colostrum after holder pasteurisation. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 560–568. [Google Scholar] [CrossRef]
- Meng, X.; Dunsmore, G.; Koleva, P.; Elloumi, Y.; Wu, R.Y.; Sutton, R.T.; Ambrosio, L.; Hotte, N.; Nguyen, V.; Madsen, K.L.; et al. The Profile of Human Milk Metabolome, Cytokines, and Antibodies in Inflammatory Bowel Diseases Versus Healthy Mothers, and Potential Impact on the Newborn. J. Crohn’s Colitis 2018, 13, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Bahna, S.L.; Keller, M.A.; Heiner, D.C. IgE and IgD in human colostrum and plasma. Pediatr. Res. 1982, 16, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.A.; Heiner, D.C.; Myers, A.S.; Reisinger, D.M. IgD in human colostrum. Pediatr. Res. 1985, 19, 122–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, P.D.; Mehta, S.P.; Isaacs, C.E. Distribution of IgG subclasses in human colostrum and milk. Immunol. Lett. 1989, 22, 235–238. [Google Scholar] [CrossRef]
- Dunn, A.; Duffy, C.; Gordon, A.; Morrison, S.; Argűello, A.; Welsh, M.; Earley, B. Comparison of single radial immunodiffusion and ELISA for the quantification of immunoglobulin G in bovine colostrum, milk and calf sera. J. Appl. Anim. Res. 2018, 46, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Klein, L.D.; Huang, J.; Quinn, E.; Martin, M.A.; Breakey, A.A.; Gurven, M.; Kaplan, H.; Valeggia, C.; Jasienska, G.; Scelza, B.; et al. Variation among populations in the immune protein composition of mother’s milk reflects subsistence pattern. Evol. Med. Public Health 2018, 230–245. [Google Scholar] [CrossRef] [Green Version]
- Gross, S.J.; Buckley, R.H.; Wakil, S.S.; McAllister, D.C.; David, R.J.; Faix, R.G. Elevated IgA concentration in milk produced by mothers delivered of preterm infants. J. Pediatr. 1981, 99, 389–393. [Google Scholar] [CrossRef]
- Castellote, C.; Casillas, R.; Ramírez-Santana, C.; Pérez-Cano, F.J.; Castell, M.; Moretones, M.G.; López-Sabater, M.C.; Franch, À. Premature Delivery Influences the Immunological Composition of Colostrum and Transitional and Mature Human Milk. J. Nutr. 2011, 141, 1181–1187. [Google Scholar] [CrossRef]
- Ronayne de Ferrer, P.A.; Slobodianik, N.H.; Lopez, N.; Sambucetti, M.E.; Sanahuja, J.C. Immunoglobulin A level in human milk from mothers delivering preterm. Am. J. Clin. Nutr. 1984, 40, 465–467. [Google Scholar] [CrossRef] [PubMed]
- Jatsyk, G.V.; Kuvaeva, I.B.; Gribakin, S.G. Immunological Protection of the Neonatal Gastrointestinal Tract: The Importance of Breast Feeding. Acta Pædiatrica 1985, 74, 246–249. [Google Scholar] [CrossRef]
- Weaver, L.T.; Arthur, H.M.L.; Bunn, J.E.G.; Thomas, J.E. Human milk IgA concentrations during the first year of lactation. Arch. Dis. Child. 1998, 78, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Trégoat, V.; Montagne, P.; Béné, M.C.; Faure, G. Increases of Iga milk concentrations correlate with IgA2 increment. J. Clin. Lab. Anal. 2001, 15, 55–58. [Google Scholar] [CrossRef]
- Palmeira, P.; Costa-Carvalho, B.T.; Arslanian, C.; Pontes, G.N.; Nagao, A.T.; Carneiro-Sampaio, M.M.S. Transfer of antibodies across the placenta and in breast milk from mothers on intravenous immunoglobulin. Pediatr. Allergy Immunol. 2009, 20, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Koenig, Á.; de Albuquerque Diniz, E.M.; Correia Barbosa, S.F.; Costa Vaz, F.A. Immunologic factors in human milk: The effects of gestational age and pasteurization. J. Hum. Lact. 2005, 21, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.; Espinosa-Martos, I.; García-Carral, C.; Manzano, S.; McGuire, M.K.; Meehan, C.L.; McGuire, M.A.; Williams, J.E.; Foster, J.; Sellen, D.W.; et al. What’s normal? Immune profiling of human milk from healthy women living in different geographical and socioeconomic settings. Front. Immunol. 2017, 8, 696. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.A.; Heiner, C.; Kidd, R.M.; Myers, A.S. Local production of IgG4 in human colostrum. J. Immunol. 1983, 130, 1654–1657. [Google Scholar]
- Walker, W.A.; Iyengar, R.S. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr. Res. 2015, 77, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Petrechen, L.N.; Zago, F.H.; Sesso, M.L.T.; Bertoldo, B.B.; Silva, C.B.; Azevedo, K.P.; de Lima Pereira, S.A.; Geraldo-Martins, V.R.; Ferriani, V.P.L.; Nogueira, R.D. Levels and complexity of IgA antibody against oral bacteria in samples of human colostrum. Immunobiology 2015, 220, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Ballabio, C.; Bertino, E.; Coscia, A.; Fabris, C.; Fuggetta, D.; Molfino, S.; Testa, T.; Sgarrella, M.C.; Sabatino, G.; Restani, P. Immunoglobulin-A profile in breast milk from mothers delivering full term and preterm infants. Int. J. Immunopathol. Pharmacol. 2007, 20, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.S.R.; Ribeiro, P.P.C.; Medeiros, J.M.S.; Silva, I.F.; Medeiros, A.C.P.; Dimenstein, R. Influence of postpartum supplementation with vitamin A on the levels of immunoglobulin A in human colostrum. J. Pediatr. 2012, 88, 115–118. [Google Scholar] [CrossRef]
- Nikolov, P.K.; Baleva, M.P. Alteration of secretory IgA in human breast milk and stool samples after the intake of a probiotic–Report of 2 cases. Cent. Eur. J. Med. 2012, 7, 25–29. [Google Scholar] [CrossRef]
- Kaplan, D.S.; Bağci, C.; Örkmez, M.; Kömurcü Karuserci, Ö.; Sucu, S.; Çelik, H.; Taysi, S. Colostrum immunoglobulins and oxidative capacity may be affected by infant sex anmaternal age and parity. Turk. J. Med. Sci. 2019, 49, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Ovono Abessolo, F.; Megne-Mbo, M.E.O.; Ategbo, S.; N’negue, M.A.; Lendoye, E.; Mvé Abaga, R.; Békale, S.; Ngou-Milama, E. Profil des immunoglobulines A, G et M au cours de la maturation du lait maternel en milieu tropical (Gabon). Sante 2011, 21, 15–19. [Google Scholar] [CrossRef]
- Araújo, E.D.; Gonçalves, A.K.; Cornetta, M.D.C.; Cunha, H.; Cardoso, M.L.; Morais, S.S.; Giraldo, P.C. Evaluation of the secretory immunoglobulin A levels in the colostrum and milk of mothers of term and pre-term newborns. Braz. J. Infect. Dis. 2005, 9, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Urwin, H.J.; Miles, E.A.; Noakes, P.S.; Kremmyda, L.-S.; Vlachava, M.; Diaper, N.D.; Pérez-Cano, F.J.; Godfrey, K.M.; Calder, P.C.; Yaqoob, P. Salmon Consumption during Pregnancy Alters Fatty Acid Composition and Secretory IgA Concentration in Human Breast Milk. J. Nutr. 2012, 142, 1603–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, S.N.; Ahmed, L.; Khan, M.N.I.; Huque, S.; Begum, A.; Yunus, A.B.M. Immune components (IgA, IgM, IgG, immune cells) of colostrum of Bangladeshi mothers. Pediatr. Int. 2006, 48, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Jêvinen, K.M.; Laine, S.T.; Jêvenpêê, A.L.; Suomalainen, H.K. Does low IgA in human milk predispose the infant to development of cow’s milk allergy? Pediatr. Res. 2000, 48, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Kawano, A.; Emori, Y. Changes in maternal secretory immunoglobulin a levels in human milk during 12 weeks after parturition. Am. J. Hum. Biol. 2013, 25, 399–403. [Google Scholar] [CrossRef]
- Cruz, J.R.; Carlsson, B.; García, B.; Gebre-Medhin, M.; Hofvander, Y.; Urrutia, J.J.; Hanson, L. Studies on human milk III. Secretory IgA quantity and antibody levels against Escherichia coli in colostrum and milk from underprivileged and privileged mothers. Pediatr. Res. 1982, 16, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Sousa, S.G.; Santos, M.D.; Fidalgo, L.G.; Delgadillo, I.; Saraiva, J.A. Effect of thermal pasteurisation and high-pressure processing on immunoglobulin content and lysozyme and lactoperoxidase activity in human colostrum. Food Chem. 2013, 151, 79–85. [Google Scholar] [CrossRef]
- Pesonen, M.; Kallio, M.J.T.; Siimes, M.A.; Savilahti, E.; Ranki, A. Serum immunoglobulin A concentration in infancy, but not human milk immunoglobulin A, is associated with subsequent atopic manifestations in children and adolescents: A 20-year prospective follow-up study. Clin. Exp. Allergy 2011, 41, 688–696. [Google Scholar] [CrossRef]
- Munblit, D.; Abrol, P.; Sheth, S.; Chow, L.Y.; Khaleva, E.; Asmanov, A.; Lauriola, S.; Padovani, E.M.; Comberiati, P.; Boner, A.L.; et al. Levels of growth factors and iga in the colostrum of women from Burundi and Italy. Nutrients 2018, 10, 1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savilahti, E.; Tainio, V.M.; Salmenpera, L.; Arjomaa, P.; Kallio, M.; Perheentupa, J.; Siimes, M.A. Low colostral IgA associated with cow’s milk allergy. Acta Paediatr. Scand. 1991, 80, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.; Petrova, A. Biologically active breast milk proteins in association with very preterm delivery and stage of lactation. J. Perinatol. 2011, 31, 58–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhisivam, B.; Vishnu Bhat, B.; Rao, K.; Kingsley, S.M.; Plakkal, N.; Palanivel, C. Effect of Holder pasteurization on macronutrients and immunoglobulin profile of pooled donor human milk. J. Matern. Fetal Neonatal Med. 2019, 32, 3016–3019. [Google Scholar] [CrossRef]
- Affolter, M.; Garcia-Rodenas, C.L.; Vinyes-Pares, G.; Jenni, R.; Roggero, I.; Avanti-Nigro, O.; de Castro, C.A.; Zhao, A.; Zhang, Y.; Wang, P.; et al. Temporal changes of protein composition in breast milk of Chinese urban mothers and impact of caesarean section delivery. Nutrients 2016, 8, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, F.E.; Davidson, A.G.F.; Anderson, J.D.; Nakai, S.; Desai, I.D.; Radcliffe, A. Effects of ultrasonic homogenization of human milk on lipolysis, IgA, IgG, lactoferrin and bacterial content. Nutr. Res. 1992, 12, 561–568. [Google Scholar] [CrossRef]
- Smilowitz, J.T.; Totten, S.M.; Huang, J.; Grapov, D.; Durham, H.A.; Lammi-Keefe, C.J.; Lebrilla, C.; German, J.B. Human milk secretory immunoglobulin A and lactoferrin N-glycans are altered in women with gestational diabetes mellitus. J. Nutr. 2013, 143, 1906–1912. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, M.; Browne, P.D.; Hechler, C.; Beijers, R.; Rodríguez, J.M.; de Weerth, C.; Fernández, L. Human milk cortisol and immune factors over the first three postnatal months: Relations to maternal psychosocial distress. PLoS ONE 2020, 15, e0233554. [Google Scholar] [CrossRef]
- Ongprasert, K.; Ruangsuriya, J.; Malasao, R.; Sapbamrer, R.; Suppansan, P.; Ayood, P.; Kittisakmontri, K.; Siviroj, P. Macronutrient, immunoglobulin a and total antioxidant capacity profiles of human milk from 1 to 24 months: A cross-sectional study in Thailand. Int. Breastfeed. J. 2020, 15, 90. [Google Scholar] [CrossRef]
- Czosnykowska-Łukacka, M.; Lis-Kuberka, J.; Królak-Olejnik, B.; Orczyk-Pawiłowicz, M. Changes in Human Milk Immunoglobulin Profile During Prolonged Lactation. Front. Pediatr. 2020, 8, 428. [Google Scholar] [CrossRef]
- Contador, R.; Delgado-Adámez, J.; Delgado, F.J.; Cava, R.; Ramírez, R. Effect of thermal pasteurisation or high pressure processing on immunoglobulin and leukocyte contents of human milk. Int. Dairy J. 2013, 32, 1–5. [Google Scholar] [CrossRef]
- Demers-Mathieu, V.; Huston, R.K.; Markell, A.M.; McCulley, E.A.; Martin, R.L.; Spooner, M.; Dallas, D.C. Differences in maternal immunoglobulins within mother’s own breast milk and donor breast milk and across digestion in preterm infants. Nutrients 2019, 11, 920. [Google Scholar] [CrossRef] [Green Version]
- Castro-Albarrán, J.; Navarro-Hernández, R.E.; Solís-Pacheco, J.R.; Salazar-Quiñones, I.C.; Macías-López, G.G.; Barrera-De León, J.C.; Aguilar-Uscanga, B.R. Impact of pasteurization/freeze-drying on available immunoglobulin content of the mature human milk. Use in human milk banking of hospitals. Nutr. Hosp. 2017, 34, 899–906. [Google Scholar]
- Goldman, A.S.; Garza, C.; Nichols, B.L.; Goldblum, R.M. Immunologic factors in human milk during the first year of lactation. J. Pediatr. 1982, 100, 563–567. [Google Scholar] [CrossRef]
- Brüssow, H.; Barclay, D.; Sidoti, J.; Rey, S.; Blondel, A.; Dirren, H.; Verwilghen, A.M.; Van Geert, C. Effect of malnutrition on serum and milk antibodies in Zairian women. Clin. Diagn. Lab. Immunol. 1996, 3, 37–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demers-Mathieu, V.; Underwood, M.A.; Beverly, R.L.; Nielsen, S.D.; Dallas, D.C. Comparison of human milk immunoglobulin survival during gastric digestion between preterm and term infants. Nutrients 2018, 10, 631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Albarrán, J.; Aguilar-Uscanga, B.R.; Calon, F.; St-Amour, I.; Solís-Pacheco, J.; Saucier, L.; Ratti, C. Spray and freeze drying of human milk on the retention of immunoglobulins (IgA, IgG, IgM). Dry. Technol. 2016, 34, 1801–1809. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Stoll, B.J.; Ljungström, I.; Biswas, J.; Nazrul, H.; Huldt, G. Giardia lamblia infections in a cohort of Bangladeshi mothers and infants followed for one year. J. Pediatr. 1983, 103, 996–1000. [Google Scholar] [CrossRef]
- Hogendorf, A.; Stańczyk-Przyłuska, A.; Sieniwicz-Luzeńczyk, K.; Wiszniewska, M.; Arendarczyk, J.; Banasik, M.; Fendler, W.; Kowalski, M.; Zeman, K. Is there any association between secretory IgA and lactoferrin concentration in mature human milk and food allergy in breastfed children? Med. Wieku Rozwoj. 2013, 17, 47–52. [Google Scholar]
- Bachour, P.; Yafawi, R.; Jaber, F.; Choueiri, E.; Abdel-Razzak, Z. Effects of smoking, mother’s age, body mass index, and parity number on lipid, protein, and secretory immunoglobulin a concentrations of human milk. Breastfeed. Med. 2012, 7, 179–188. [Google Scholar] [CrossRef]
- Hassiotou, F.; Hepworth, A.R.; Metzger, P.; Tat Lai, C.; Trengove, N.; Hartmann, P.E.; Filgueira, L. Maternal and infant infections stimulate a rapid leukocyte response in breastmilk. Clin. Transl. Immunol. 2013, 2, e3. [Google Scholar] [CrossRef]
- Abuidhail, J.; Al-Shudiefat, A.A.R.; Darwish, M. Alterations of immunoglobulin G and immunoglobulin M levels in the breast milk of mothers with exclusive breastfeeding compared to mothers with non-exclusive breastfeeding during 6 months postpartum: The Jordanian cohort study. Am. J. Hum. Biol. 2018, 31, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroyo, G.; Ortiz Barrientos, K.A.; Lange, K.; Nave, F.; Miss Mas, G.; Lam Aguilar, P.; Soto Galindo, M.A. Effect of the Various Steps in the Processing of Human Milk in the Concentrations of IgA, IgM, and Lactoferrin. Breastfeed. Med. 2017, 12, 443–445. [Google Scholar] [CrossRef]
- Escuder-Vieco, D.; Espinosa-Martos, I.; Rodríguez, J.M.; Fernández, L.; Pallás-Alonso, C.R. Effect of HTST and Holder Pasteurization on the Concentration of Immunoglobulins, Growth Factors, and Hormones in Donor Human Milk. Front. Immunol. 2018, 9, 2222. [Google Scholar] [CrossRef] [Green Version]
- Magri, G.; Comerma, L.; Pybus, M.; Sintes, J.; Lligé, D.; Segura-Garzón, D.; Bascones, S.; Yeste, A.; Grasset, E.K.; Gutzeit, C.; et al. Human Secretory IgM Emerges from Plasma Cells Clonally Related to Gut Memory B Cells and Targets Highly Diverse Commensals. Immunity 2017, 47, 118–134. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Keller, M.A.; Heiner, D.C. Immunoglobulin G subclasses in human colostrum, milk and saliva. Acta Pædiatrica 1992, 81, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Nocerino, R.; Bedogni, G.; Carucci, L.; Cosenza, L.; Cozzolino, T.; Paparo, L.; Palazzo, S.; Riva, L.; Verduci, E.; Berni Canani, R. The Impact of Formula Choice for the Management of Pediatric Cow’s Milk Allergy on the Occurrence of other Allergic Manifestations: The Atopic March Cohort Study. J. Pediatr. 2021, 232, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Rowe, D.S.; Fahey, J.L. A new class of human immunoglobulins: I. A unique myeloma protein. J. Exp. Med. 1964, 121, 171–184. [Google Scholar] [CrossRef]
- Nguyen, T.G. The therapeutic implications of activated immune responses via the enigmatic immunoglobulin D. Int. Rev. Immunol. 2021, 7, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Litwin, S.D.; Zehr, B.D.; Insel, R.A. Selective concentration of IgD class-specific antibodies in human milk. Clin. Exp. Immunol. 1990, 80, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Frost, B.L.; Jilling, T.; Lapin, B.; Maheshwari, A.; Caplan, M.S. Maternal breast milk transforming growth factor-beta and feeding intolerance in preterm infants. Pediatr. Res. 2014, 76, 386–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, S.H.; Wilkinson, A.L.; Andreasen, A.; Kinung’hi, S.M.; Urassa, M.; Michael, D.; Todd, J.; Changalucha, J.; McDermid, J.M. Longitudinal analysis of mature breastmilk and serum immune composition among mixed HIV-status mothers and their infants. Clin. Nutr. 2016, 35, 871–879. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.J. Antimicrobial proteins of maternal and cord sera and human milk in relation to maternal nutritional status. Am. J. Clin. Nutr. 1990, 51, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Miranda, R.; Saravia, N.G.; Ackerman, R.; Murphy, N.; Berman, S.; McMurray, D.N. Effect of maternal nutritional status on immunological substances in human colostrum and milk. Am. J. Clin. Nutr. 1983, 37, 632–640. [Google Scholar] [CrossRef] [Green Version]
- Galante, L.; Milan, A.M.; Reynolds, C.M.; Cameron-Smith, D.; Vickers, M.H.; Pundir, S. Sex-specific human milk composition: The role of infant sex in determining early life nutrition. Nutrients 2018, 10, 1194. [Google Scholar] [CrossRef] [Green Version]
- Fujita, M.; Wander, K.; Paredes Ruvalcaba, N.; Brindle, E. Human milk sIgA antibody in relation to maternal nutrition and infant vulnerability in northern Kenya. Evol. Med. Public Health 2019, 2019, 201–211. [Google Scholar] [CrossRef]
- Demers-Mathieu, V.; Mathijssen, G.; Dapra, C.; Do, D.M.; Medo, E. Active free secretory component and secretory IgA in human milk: Do maternal vaccination, allergy, infection, mode of delivery, nutrition and active lifestyle change their concentrations? Pediatr. Res. 2020, 89, 795–802. [Google Scholar] [CrossRef]
- Järvinen, K.M.; Westfall, J.E.; Seppo, M.S.; James, A.K.; Tsuang, A.J. Role of maternal elimination diets and human milk IgA in development of cow’s milk allergy in the infants. Clin. Exp. Allergy 2014, 44, 69–78. [Google Scholar] [CrossRef]
- Thomason, E.; Volling, B.L.; Flynn, H.A.; McDonough, S.C.; Marcus, S.M.; Lopez, J.F.; Vazquez, D.M. Parenting stress and depressive symptoms in postpartum mothers: Bidirectional or unidirectional effects? Infant Behav. Dev. 2014, 37, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Mulder, E.J.H.; De Medina, P.G.R.; Huizink, A.C.; Van Den Bergh, B.R.H.; Buitelaar, J.K.; Visser, G.H.A. Prenatal maternal stress: Effects on pregnancy and the (unborn) child. Early Hum. Dev. 2002, 70, 3–14. [Google Scholar] [CrossRef]
- Essex, M.J.; Klein, M.H.; Cho, E.; Kalin, N.H. Maternal stress beginning in infancy may sensitize children to later stress exposure: Effects on cortisol and behavior. Biol. Psychiatry 2002, 52, 776–784. [Google Scholar] [CrossRef]
- Moirasgenti, M.; Doulougeri, K.; Panagopoulou, E.; Theodoridis, T. Psychological stress reduces the immunological benefits of breast milk. Stress Health 2019, 35, 681–685. [Google Scholar] [CrossRef]
- Riskin, A.; Almog, M.; Peri, R.; Halasz, K.; Srugo, I.; Kessel, A. Changes in immunomodulatory constituents of human milk in response to active infection in the nursing infant. Pediatr. Res. 2012, 71, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Maertens, K.; De Schutter, S.; Braeckman, T.; Baerts, L.; Van Damme, P.; De Meester, I.; Leuridan, E. Breastfeeding after maternal immunisation during pregnancy: Providing immunological protection to the newborn: A review. Vaccine 2014, 32, 1786–1792. [Google Scholar] [CrossRef]
- Abu Raya, B.; Srugo, I.; Kessel, A.; Peterman, M.; Bader, D.; Peri, R.; Ashtamker, N.; Gonen, R.; Bamberger, E. The induction of breast milk pertussis specific antibodies following gestational tetanus-diphtheria-acellular pertussis vaccination. Vaccine 2014, 32, 5632–5637. [Google Scholar] [CrossRef] [PubMed]
- Schlaudecker, E.P.; Steinhoff, M.C.; Omer, S.B.; McNeal, M.M.; Roy, E.; Arifeen, S.E.; Dodd, C.N.; Raqib, R.; Breiman, R.F.; Zaman, K. IgA and Neutralizing Antibodies to Influenza A Virus in Human Milk: A Randomized Trial of Antenatal Influenza Immunization. PLoS ONE 2013, 8, e70867. [Google Scholar] [CrossRef] [PubMed]
- Demers-Mathieu, V.; Huston, R.K.; Markell, A.M.; Mcculley, E.A.; Martin, R.L.; Dallas, D.C. Antenatal Influenza A-Specific IgA, IgM, and IgG Antibodies in Mother’s Own Breast Milk and Donor Breast Milk, and Gastric Contents and Stools from Preterm Infants. Nutrients 2019, 11, 1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maertens, K.; Orije, M.R.P.; Van Damme, P.; Leuridan, E. Vaccination during pregnancy: Current and possible future recommendations. Eur. J. Pediatr. 2020, 179, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Chi, X.; Hai, H.; Sun, L.; Zhang, M.; Xie, W.F.; Chen, W. Antibodies in the breast milk of a maternal woman with COVID-19. Emerg. Microbes Infect. 2020, 9, 1467–1469. [Google Scholar] [CrossRef] [PubMed]
- Fox, A.; Marino, J.; Amanat, F.; Krammer, F.; Hahn-Holbrook, J.; Zolla-Pazner, S.; Powell, R.L. Robust and Specific Secretory IgA Against SARS-CoV-2 Detected in Human Milk. iScience 2020, 23, 101735. [Google Scholar] [CrossRef] [PubMed]
Breastfeeding Phase and Time | Study | Year | Population Characteristics N, Location, Particular Characteristics (Age) | Measure of Centrality and Spread | Concentration and Distribution (mg/L) | Analysis Method |
---|---|---|---|---|---|---|
Colostrum | ||||||
h24 | [70] | 2015 | 77, Brazil, Healthy | Mean (SD) | 28,502 (25,672) | ELISA |
d0 | [71] | 2006 | 14, Turin, Term delivery | ~Mean | 20,000 | # |
d0 | [71] | 2006 | 16, Turin, Preterm delivery | ~Mean | 40000 | # |
d0 | [45] | 1982 | 11, New Zealand, Healthy | Mean (Range) | 32,000 (1500–83,700) | RI ** |
d0 | [72] | 2012 | 44, Brazil, Healthy | Mean ± SD | 8291 ± 3376 | T ** |
d0 | [73] | 2011 | 1, Bulgaria, Healthy (34) | Value | 137.4 | EIA ** |
d0 | [73] | 2011 | 1, Bulgaria, Mother with UC (29) | Value | 408.5 | EIA ** |
d1 | [74] | 2018 | 90, Turkey, Healthy | Mean ± SD | 29,370 ± 15,000 | N |
d1 | [75] | 2011 | 60, Gabon, Healthy | Mean ± SEM | 13,400 ± 5900 | N |
d1 | [76] | 2005 | 10, Brazil, Term delivery | Median (Range) | 28,310 (11,900–41,400) | IDQR ** |
d1 | [76] | 2005 | 10, Brazil, Preterm delivery | Median (Range) | 213,890 (88,550–468,080) | IDQR ** |
d1 | [77] | 2012 | 9, Southampton, Control group | Median (25th–75th) | 3130 (1760–7040) | ELISA ** |
d1 | [77] | 2012 | 9, Southampton, Salmon supplementation | Median (25th–75th) | 1130 (770–3240) | ELISA ** |
d0–d3 | [47] | 1972 | 133, Guatemala | Mean | 3330 | RI |
d1–d2 | [62] | 1985 | 20, Moscow, Healthy (17–41) | Mean (SD) | 6190 (1100) | SRI |
d2 | [78] | 2006 | 31, Healthy, Bangladesh | Mean ± SD | 5630 ± 1640 | ELISA |
d2 | [72] | 2012 | 44, Brazil, Healthy, Non-supplemented | Mean ± SD | 3439 ± 1772 | T ** |
d2 | [72] | 2012 | 52, Brazil, Healthy, Vit A supplementation | Mean ± SD | 5012 ± 545 | T ** |
d3 | [79] | 2000 | 48, Helsinki, infants with CMA | Mean (95%CI) | 380 (240–280) | RI |
d3 | [79] | 2000 | 39, Helsinki, infants without CMA | Mean (95%CI) | 820 (990–1510) | RI |
d3 | [65] | 2009 | 1, Brazil, mother with CVID | Value | 26 | ELISA |
d3 | [65] | 2009 | 1, Brazil, mother with CVID | Value | 0.7 | ELISA |
d3 | [45] | 1982 | 11, New Zealand, Healthy | Mean (Range) | 9000 (630–32,800) | RI ** |
d3 | [80] | 2013 | 41, Tokyo, Healthy, Primipara | Mean | 2241 | EIA ** |
d3 | [81] | 1982 | 7, Ethiopia, Underprivileged | Mean ± SD | 1690 ± 480 | ELISA ** |
d3 | [81] | 1982 | 5, Ethiopia, Privileged | Mean ± SD | 5600 ± 6540 | ELISA ** |
d3 ± d1 | [60] | 2011 | 22, Spain, Term delivery | ~Mean | 6500 | ELISA |
d3 ± d1 | [60] | 2011 | 10, Spain, Preterm delivery | ~Mean | 9100 | ELISA |
d3 ± d1 | [60] | 2011 | 10, Spain, Very preterm delivery | ~Mean | 2500 | ELISA |
d2–d3 | [42] | 2004 | 82, Brazil, Healthy (21–41) | Median (range) | 7500 (920–55,000) | ELISA |
d4 | [59] | 1981 | 8, Durham, Preterm delivery | ~Mean | 4500 | RI |
d4 | [59] | 1981 | 5, Durham, Term delivery | ~Mean | 3400 | RI |
d4 | [76] | 2005 | 10, Brazil, Term delivery | Median (Range) | 1290 (680–1790) | IDQR ** |
d4 | [76] | 2005 | 10, Brazil, Preterm delivery | Median (Range) | 8130 (4730–118,890) | IDQR ** |
h96 | [41] | 2015 | 15, Spain, Preterm delivery | Median (IQR) | 8980 (560–17,400) | Luminex |
d1–d4 | [82] | 2013 | 11, Portugal, Healthy, Unprocessed milk | Mean ± SD | 1728 ± 34 | ELISA |
d2–d4 | [66] | 2005 | 36, Brazil, <32 w of g.a., Non-pasteurized milk | Mean ± SD | 3102 ± 1360 | RI |
d2–d4 | [66] | 2005 | 36, Brazil, <32 w of g.a., Pasteurized milk | Mean ± SD | 2032 ± 1115 | RI |
d2–d4 | [66] | 2005 | 32, Brazil, 32–36 w of g.a., Non-pasteurized milk | Mean ± SD | 3004 ± 1303 | RI |
d2–d4 | [66] | 2005 | 32, Brazil, 32–36 w of g.a., Pasteurized milk | Mean ± SD | 1331 ± 0878 | RI |
d2–d4 | [66] | 2005 | 33, Brazil, >37 w of g.a., Non-pasteurized milk | Mean ± SD | 2250 ± 1267 | RI |
d2–d4 | [66] | 2005 | 33, Brazil, >37 w of g.a., Pasteurized milk | Mean ± SD | 858 ± 521 | RI |
d3–d4 | [62] | 1985 | 20, Moscow, Healthy (17–41) | Mean (SD) | 2390 (558) | SRI |
d1-d5 | [64] | 2001 | 42 | Mean (SEM) | 19,020 (3110) | IN |
d5 | [83] | 2011 | Helsinki, Non-atopic mothers | Mean (SD) | 1367 (1062) | SRI |
d5 | [83] | 2011 | Helsinki, Atopic mothers | Mean (SD) | 1252 (1090) | SRI |
d5 | [81] | 1982 | 7, Ethiopia, Underprivileged | Mean ± SD | 720 ± 270 | ELISA ** |
d5 | [81] | 1982 | 5, Ethiopia, Privileged | Mean ± SD | 790 ± 330 | ELISA ** |
d5 | [77] | 2012 | 26, Southampton, Control group | Median (25th–75th) | 690 (510–1070) | ELISA ** |
d5 | [77] | 2012 | 28, Southampton, Salmon supplementation | Median (25th–75th) | 550 (410–680) | ELISA ** |
d1–d5 | [48] | 1977 | 17, India, Well-nourished women | Mean ± SEM | 3359 ± 373.9 | RI |
d1–d5 | [48] | 1977 | 10, India, Under-nourished women | Mean ± SEM | 3743 ± 421.3 | RI |
d1–d6 | [84] | 2018 | 22, Burundi, Healthy (24.30) | Mean (IQR) | 2780 (1450–22,200) | IT |
d1–d6 | [84] | 2018 | 48, Italy, Healthy (37.39) | Mean (IQR) | 1480 (890–2670) | IT |
* | [52] | 2013 | 10, Spain, Healthy, Untreated milk | Median (IQR) | 7180 (6530–7640) | Luminex |
* | [52] | 2013 | 7, Spain, Healthy, Pasteurized milk | Median (IQR) | 3620 (2450–4780) | Luminex |
* | [14] | 1971 | 15, Oslo, Healthy | Mean | 13,180 | SRI |
* | [50] | 1978 | 24, Caucasian and Turkish women, Healthy (16–40) | Mean ± SD | 3542 ± 992 | RI |
* | [85] | 1991 | 102, Helsinki, Healthy infants | ~Mean | 1500 | SRI ** |
* | [85] | 1991 | 7, Helsinki, CMA infants | ~Mean | 500 | SRI ** |
Breastfeeding Phase and Time | Study | Year | Population Characteristics N, Location, Particular Characteristics (Age) | Measure of Centrality and Spread | Concentration and Distribution (mg/L) | Analysis Method |
---|---|---|---|---|---|---|
Transition milk | ||||||
d5–d6 | [62] | 1985 | 20, Moscow, Healthy (17–41) | Mean (SD) | 782 (312) | SRI |
d6 | [45] | 1982 | 11, New Zealand, Healthy | Mean (Range) | 1450 (400–3140) | RI ** |
d7 | [65] | 2009 | 1, Brazil, mother with CVID | Value | 0.9 | ELISA |
d7 | [65] | 2009 | 1, Brazil, mother with CVID | Value | 0.7 | ELISA |
d7 | [75] | 2011 | 60, Gabon, Healthy | Mean ± SEM | 2300 ± 2000 | N |
d7 | [59] | 1981 | 10, Durham, Preterm delivery | ~Mean | 3000 | RI |
d7 | [59] | 1981 | 8, Durham, Term delivery | ~Mean | 1500 | RI |
d7 | [80] | 2013 | 41, Tokyo, Healthy, Primipara | Mean | 2241 | EIA ** |
d6–d8 | [86] | 2011 | 5, USA, Term delivery | ~Mean | 600 | ELISA ** |
d6–d8 | [86] | 2011 | 15, USA, Preterm delivery | ~Mean | 690 | ELISA ** |
d7–d8 | [62] | 1985 | 20, Moscow, Healthy (17–41) | Mean (SD) | 575 (139) | SRI |
d10 | [76] | 2005 | 10, Brazil, Term delivery | Median (Range) | 890 (630–1140) | IDQR ** |
d10 | [76] | 2005 | 10, Brazil, Preterm delivery | Median (Range) | 5455 (2000–17,640) | IDQR ** |
d10 ± d2 | [60] | 2011 | 22, Spain, Term delivery | ~Mean | 800 | ELISA |
d10 ± d2 | [60] | 2011 | 10, Spain, Preterm delivery | ~Mean | 1100 | ELISA |
d10 ± d2 | [60] | 2011 | 10, Spain, Very preterm delivery | ~Mean | 900 | ELISA |
d0–d10 | [61] | 1984 | 18, Finland, Preterm delivery | Mean ± SEM | 2510 ± 148 | RI |
d0–d10 | [61] | 1984 | 15, Finland, Term delivery | Mean ± SEM | 2128 ± 199 | RI |
d5–d10 | [87] | 2018 | 30, India, Term delivery, Pre-pasteurization | Mean (SD) | 0.623 (0.084) | ELISA |
d5–d10 | [87] | 2018 | 30, India, Term delivery, Post-pasteurization | Mean (SD) | 0.436 (0.058) | ELISA |
d5–d11 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 1148 (1022) | ELISA |
d6–d14 | [64] | 2001 | 18 | Mean (SEM) | 3970 (1450) | IN |
Less w2 | [89] | 1992 | 16, Canada, Non-ultrasonic homogenized milk | Mean ± SD | 414 ± 344 | I |
Less w2 | [89] | 1992 | 16, Canada, Ultrasonic homogenized milk (<45°) | Mean ± SD | 367 ± 350 | I |
Less w2 | [89] | 1992 | 16, Canada, Ultrasonic homogenized milk (>55°) | Mean ± SD | 186 ± 205 | I |
d14 | [59] | 1981 | 11, Durham, Preterm delivery | ~Mean | 3000 | RI |
d14 | [59] | 1981 | 8, Durham, Term delivery | ~Mean | 1100 | RI |
d14 | [45] | 1982 | 11, New Zealand, Healthy | Mean (Range) | 750 (500–1100) | RI ** |
d14 | [90] | 2013 | 8, California, Mothers with GDM | ~Mean | 300 | ## ** |
d14 | [90] | 2013 | 16, California, Mothers with GDM | ~Mean | 540 | ## ** |
d14 | [80] | 2013 | 40, Tokyo, Healthy, Primipara | Mean | 1772.8 | EIA ** |
d14 | [77] | 2012 | 28, Southampton, Control group | Median (25th–75th) | 520 (330–630) | ELISA ** |
d14 | [77] | 2012 | 27, Southampton, Salmon supplementation | Median (25th–75th) | 390 (270–510) | ELISA ** |
w2 | [91] | 2020 | 51, Netherlands, Healthy, Term delivery | Median (IQR) | 1680 (1080–2090) | Luminex |
d13–d15 | [86] | 2011 | 5, USA, Term delivery | ~Mean | 600 | ELISA ** |
d13–d15 | [86] | 2011 | 15, USA, Preterm delivery | ~Mean | 640 | ELISA ** |
d15 | [76] | 2005 | 10, Brazil, Term delivery | Median (Range) | 755 (530–1300) | IDQR ** |
d15 | [76] | 2005 | 10, Brazil, Preterm delivery | Median (Range) | 5765 (1430–20,650) | IDQR ** |
d10–d20 | [61] | 1984 | 12, Finland, Preterm delivery | Mean ± SEM | 2552 ± 153 | RI |
d10–d20 | [61] | 1984 | 8, Finland, Term delivery | Mean ± SEM | 1740 ± 173 | RI |
Breastfeeding Phase and Time | Study | Year | Population Characteristics N, Location, Particular Characteristics (Age) | Measure of Centrality and Spread | Concentration and Distribution (mg/L) | Analysis Method |
---|---|---|---|---|---|---|
Mature milk | ||||||
d21 | [75] | 2011 | 60, Gabon, Healthy | Mean ± SEM | 4000 ± 2300 | N |
d8–d22 | [95] | 2019 | 36, Oregon, Preterm delivery | ~Mean | 750 | ELISA |
d8–d22 | [95] | 2019 | 36, Oregon, Term delivery | ~Mean | 600 | ELISA ** |
d21 | [59] | 1981 | 10, Durham, Preterm delivery | ~Mean | 2400 | RI |
d21 | [59] | 1981 | 7, Durham, Term delivery | ~Mean | 900 | RI |
d21 | [80] | 2013 | 40, Tokyo, Healthy, Primipara | Mean | 1673.8 | EIA ** |
d20–d22 | [86] | 2011 | 5, USA, Term delivery | ~Mean | 600 | ELISA ** |
d20–d22 | [86] | 2011 | 15, USA, Preterm delivery | ~Mean | 610 | ELISA ** |
d28 | [59] | 1981 | 10, Durham, Preterm delivery | ~Mean | 2900 | RI |
d28 | [59] | 1981 | 5, Durham, Term delivery | ~Mean | 1000 | RI |
d28 | [80] | 2013 | 40, Tokyo, Healthy, Primipara | Mean | 1285.5 | EIA ** |
d28 | [77] | 2012 | 23, Southampton, Control group | Median (25th–75th) | 380 (310–530) | ELISA ** |
d28 | [77] | 2012 | 23, Southampton, Salmon supplementation | Median (25th–75th) | 310 (220–430) | ELISA ** |
d12–d30 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 6150 (4940) | ELISA |
d15–d30 | [96] | 2017 | 4, Mexico, Healthy, Unprocessed milk | ~Mean | 1400 | N |
d15–d30 | [96] | 2017 | 4, Mexico, Healthy, Pasteurized milk (85°) | ~Mean | 800 | N |
d30 ± d2 | [60] | 2011 | 22, Spain, Term delivery | ~Mean | 500 | ELISA |
d30 ± d2 | [60] | 2011 | 10, Spain, Preterm delivery | ~Mean | 500 | ELISA |
d30 ± d2 | [60] | 2011 | 10, Spain, Very preterm delivery | ~Mean | 500 | ELISA |
d27–d29 | [86] | 2011 | 5, USA, Term delivery | ~Mean | 600 | ELISA ** |
d27–d29 | [86] | 2011 | 15, USA, Preterm delivery | ~Mean | 650 | ELISA ** |
d20–d30 | [61] | 1984 | 8, Finland, Preterm delivery | Mean ± SEM | 2518 ± 145 | RI |
d20–d30 | [61] | 1984 | 11, Finland, Term delivery | Mean ± SEM | 1716 ± 128 | RI |
d2–d47 | [99] | 2018 | 15, California, Preterm delivery | ~Mean | 600 | ELISA ** |
d2–d47 | [99] | 2018 | 8, California, Term delivery | ~Mean | 500 | ELISA ** |
d14–d150 | [67] | 2017 | 41, Spain, Healthy (>18) | Mean (IQR) | 4188.3 (2567.8–5392.4) | Luminex |
d14–d150 | [67] | 2017 | 40, Ethiopia, Healthy (>18) | Mean (IQR) | 3232.2 (2233.7–4695.2) | Luminex |
d14–d150 | [67] | 2017 | 41, USA/Washington, Healthy (>18) | Mean (IQR) | 13,556.0 (8494.1–21124.5) | Luminex |
d14–d56 | [41] | 2015 | 15, Spain, Preterm delivery | Median (IQR) | 6800 (−6300 to 39,900) | Luminex |
d15–d75 | [64] | 2001 | 21 | Mean (SEM) | 11,300 (1900) | IN |
m1 | [81] | 1982 | 7, Ethiopia, Underprivileged | Mean ± SD | 430 ± 180 | ELISA ** |
m1 | [81] | 1982 | 3, Ethiopia, Privileged | Mean ± SD | 610 ± 700 | ELISA ** |
m1 | [81] | 1982 | 15, Sweden, Healthy | Mean ± SD | 830 ± 310 | ELISA ** |
m1 | [81] | 1982 | 10, Guatemala, Rural women | Mean ± SD | 630 ± 210 | ELISA ** |
m1 | [81] | 1982 | 10, Guatemala, Urban poor women | Mean ± SD | 840 ± 550 | ELISA ** |
m1 | [81] | 1982 | 10, Guatemala, Urban privileged | Mean ± SD | 1020 ± 650 | ELISA ** |
m1 | [98] | 1995 | 14, Zaire, Well–nourished women | mean ± SD | 3360 ± 1690 | RI ** |
m1 | [98] | 1995 | 17, Zaire, Malnourished women | mean ± SD | 4720 ± 5000 | RI ** |
d42 | [45] | 1982 | 11, New Zealand, Healthy | Mean (Range) | 830 (450–1500) | RI ** |
d56 | [80] | 2013 | 19, Tokyo, Healthy, Primipara | Mean | 1084.7 | EIA ** |
m1–m2 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 553 (232) | ELISA |
m2 | [83] | 2011 | Helsinki, Non-atopic mothers | Mean (SD) | 344 (208) | SRI |
m2 | [83] | 2011 | Helsinki, Atopic mothers | Mean (SD) | 324 (192) | SRI |
m2 | [85] | 1991 | 100, Helsinki, Healthy infants | ~Mean | 400 | SRI ** |
m2 | [85] | 1991 | 7, Helsinki, CMA infants | ~Mean | 250 | SRI ** |
w6 | [91] | 2020 | 51, Netherlands, Healthy, Term delivery | Median (IQR) | 1680 (1080–2090) | Luminex |
d70 | [45] | 1982 | 11, New Zealand, Healthy | Mean (Range) | 710 (350–1150) | RI ** |
d84 | [80] | 2013 | 19, Tokyo, Healthy, Primipara | Mean | 973.7 | EIA ** |
w8–w9 | [63] | 1998 | 65, Gambia, Healthy | Median (IQR) | 625 (376–959) | ELISA |
m2–m4 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 557 (312) | ELISA |
m4–m8 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 564 (337) | ELISA |
m3 | [53] | 2018 | 7, Alberta, Healthy | ~Mean | 250 | ELISA |
m3 | [53] | 2018 | 5, Alberta, Mothers with CD | ~Mean | 100 | ELISA |
m3 | [53] | 2018 | 11, Alberta, Mothers with UC | ~Mean | 50 | ELISA |
m3 | [81] | 1982 | 15, Sweden, Healthy | Mean ± SD | 510 ± 180 | ELISA ** |
m3 | [81] | 1982 | 9, Guatemala, Rural women | Mean ± SD | 410 ± 130 | ELISA ** |
m3 | [81] | 1982 | 11, Guatemala, Urban poor women | Mean ± SD | 600 ± 210 | ELISA ** |
m3 | [81] | 1982 | 10, Guatemala, Urban privileged | Mean ± SD | 580 ± 240 | ELISA ** |
w12 | [91] | 2020 | 51, Netherlands, Healthy, Term delivery | Median (IQR) | 1260 (830–1680) | Luminex |
w16–w17 | [63] | 1998 | 65, Gambia, Healthy | Median (IQR) | 666 (399–1125) | ELISA |
m4 | [98] | 1995 | 14, Zaire, Well-nourished women | mean ± SD | 2240 ± 520 | RI ** |
m4 | [98] | 1995 | 17, Zaire, Malnourished women | mean ± SD | 1670 ± 600 | RI ** |
m6 | [81] | 1982 | 16, Sweden, Healthy | Mean ± SD | 770 ± 940 | ELISA ** |
m6 | [81] | 1982 | 10, Guatemala, Rural women | Mean ± SD | 400 ± 220 | ELISA ** |
m6 | [85] | 1991 | 65, Helsinki, Healthy infants | ~Mean | 250 | SRI ** |
m6 | [85] | 1991 | 7, Helsinki, CMA infants | ~Mean | 200 | SRI** |
m1–m6 | [92] | 2020 | 43, Thailand, Healthy (18–40) | Mean ± SD | 1108.2 ± 140.6 | ELISA |
m1–m6 | [48] | 1977 | 12, India, Well-nourished women | Mean ± SEM | 1196 ± 785 | RI |
m1–m6 | [48] | 1977 | 10, India, Under-nourished women | Mean ± SEM | 1181 ± 162 | RI |
m6 | [83] | 2011 | Helsinki, Non-atopic mothers | Mean (SD) | 208 (73) | SRI |
m6 | [83] | 2011 | Helsinki, Atopic mothers | Mean (SD) | 205 (078) | SRI |
m6 | [53] | 2018 | 7, Alberta, Healthy | ~Mean | 350 | ELISA |
m6 | [53] | 2018 | 6, Alberta, Mothers with CD | ~Mean | 50 | ELISA |
m6 | [53] | 2018 | 7, Alberta, Mothers with UC | ~Mean | 50 | ELISA |
w27–w28 | [63] | 1998 | 65, Gambia, Healthy | Median (IQR) | 680 (451–1008) | ELISA |
w39–w40 | [63] | 1998 | 65, Gambia, Healthy | Median (IQR) | 715 (359–1063) | ELISA |
m4–m8 | [100] | 2016 | 2, Canada, Milk before spray drying | Mean ± SD | 215.80 ± 6.84 | ELISA |
m4–m8 | [100] | 2016 | 2, Canada, Milk before freeze drying | Mean ± SD | 262.68 ± 56.40 | ELISA |
m9 | [81] | 1982 | 16, Sweden, Healthy | Mean ± SD | 900 ± 730 | ELISA ** |
m9 | [81] | 1982 | 10, Guatemala, Rural women | Mean ± SD | 430 ± 150 | ELISA ** |
m9 | [85] | 1991 | 39, Helsinki, Healthy infants | ~Mean | 300 | SRI ** |
m9 | [85] | 1991 | 7, Helsinki, CMA infants | ~Mean | 200 | SRI ** |
m1–m12 | [93] | 2020 | 26, Wroclaw, Healthy | Mean ± SD | 2120 ± 620 | ELISA ** |
m6–m12 | [92] | 2020 | 47, Thailand, Healthy (18–40) | Mean ± SD | 1295.9 ± 166.7 | ELISA |
w17–w52 | [47] | 1972 | 133, Guatemala | Mean | 500 | RI |
w51–w52 | [63] | 1998 | 65, Gambia, Healthy | Median (IQR) | 746 (408–1067) | ELISA |
>w53 | [47] | 1972 | 133, Guatemala | Mean | 2420 | RI |
m10–m15 | [101] | 1983 | 269, Bangladesh, Peri-urban mothers with GI | Range | 10–1700 | ELISA ** |
m12–m18 | [92] | 2020 | 50, Thailand, Healthy (18–40) | Mean ± SD | 1242.9 ± 108.0 | ELISA |
m13–m18 | [93] | 2020 | 35, Wroclaw, Healthy | Mean ± SD | 2950 ± 1300 | ELISA ** |
m19–m24 | [93] | 2020 | 32, Wroclaw, Healthy | Mean ± SD | 3350 ± 2220 | ELISA ** |
>m24 | [93] | 2020 | 23, Wroclaw, Healthy | Mean ± SD | 7550 ± 7160 | ELISA ** |
m18–m24 | [92] | 2020 | 44, Thailand, Healthy (18–40) | Mean ± SD | 1271.6 ± 145.9 | ELISA |
m3–m26 | [94] | 2013 | 5, Spain, Healthy, Unprocessed milk | Mean ± SD | 433.9 ± 17.6 | ELISA |
m3–m26 | [94] | 2013 | 6, Spain, Healthy, Unprocessed milk | Mean ± SD | 1646.0 ± 153.4 | ELISA |
d1–d249 | [44] | 1994 | 64, Sri Lanka, (25) | Median (Range) | 2340 (300–19100) | ELISA |
d1–d205 | [44] | 1994 | 29, Asia, Immigrant women (26) | Median (Range) | 3100 (200–16400) | ELISA |
d1–d310 | [44] | 1994 | 75, UK, White women (29.5) | Median (Range) | 2500 (200–18200) | ELISA |
* | [52] | 2013 | 8, Spain, Healthy, Untreated milk | Median (IQR) | 5960 (2810–6790) | Luminex |
* | [52] | 2013 | 8, Spain, Healthy, Pasteurized milk | Median (IQR) | 2220 (1280–3430) | Luminex |
* | [49] | 1977 | >25, Cardiff, Untreated milk | Mean | 50 | RI |
* | [49] | 1977 | >25, Cardiff, Heat-treated milk (56° 30 min) | Mean | 480 | RI |
* | [49] | 1977 | >25, Cardiff, Heat-treated milk (62.5° 30 min) | Mean | 390 | RI |
* | [49] | 1977 | >25, Cardiff, Heat-treated milk (70° 15 min) | Mean | 240 | RI |
* | [49] | 1977 | >25, Cardiff, Heat-treated milk (80° 15 min) | Mean | 100 | RI |
* | [50] | 1978 | 19, Caucasian and Turkish women, Healthy (16–40) | Mean ± SD | 2163 ± 797 | RI |
* | [102] | 2013 | 9, Poland, Atopic mothers | Median (IQR) | 476.836 (209.2–678.53) | ELISA ** |
* | [102] | 2013 | 61, Poland, Non-atopic mothers | Median (IQR) | 782.47 (614.04–916.69) | ELISA ** |
* | [103] | 2012 | 40, Beirut, Non-smokers | Mean ± SD | 1070 ± 260 | IN * |
* | [103] | 2012 | 23, Beirut, Smokers | Mean ± SD | 780 ± 320 | IN * |
Breastfeeding Phase and Time | Study | Year | Population Characteristics N, Location, Particular Characteristics (Age) | Measure of Centrality and Spread | Concentration and Distribution (mg/L) | Analysis Method |
---|---|---|---|---|---|---|
Colostrum | ||||||
d0 | [45] | 1982 | 11, New Zealand, Healthy | Mean (range) | 1130 (230–1700) | RI |
h24 | [70] | 2015 | 77, Brazil, Healthy | Mean (SD) | 3218 (883) | ELISA |
d1 | [74] | 2018 | 90, Turkey, Healthy, Vaginal delivery | Mean ± SD | 1740 ± 1200 | N |
d1 | [75] | 2011 | 60, Gabon, Health, Term delivery | Mean ± SEM | 1000 ± 1600 | N |
d1–d2 | [62] | 1985 | 20, Moscow, Healthy (25.5) | Mean (SD) | 383 (78) | SRI |
d2 | [78] | 2006 | 31, Bangladesh, Healthy (18–35) | Mean ± SD | 470 ± 90 | ELISA |
d0–d3 | [47] | 1972 | 34, Guatemala | Mean | 360 | RI |
d3 | [65] | 2009 | 1, Brazil, mother with CVID | Value | 500 | ELISA |
d3 | [65] | 2009 | 1, Brazil, mother with CVID | Value | 5.1 | ELISA |
d3 | [45] | 1982 | 11, New Zealand, Healthy | Mean (range) | 580 (80–1560) | RI |
d2–d3 | [42] | 2004 | 82, Brazil, Healthy (21–41) | Median (range) | 1125.0 (110.0–31,840.0) | ELISA |
d4 | [41] | 2015 | 15, Spain, Preterm delivery | Mean (IQR) | 780 (−200 to 1770) | Luminex |
d1–d4 | [104] | 2013 | 5, Australia, Healthy | Range | 16.2–56.1 | ELISA |
d1–d4 | [82] | 2013 | 11, Portugal, Healthy, Unprocessed milk | Mean ± SD | 280 ± 11 | ELISA |
d2–d4 | [66] | 2005 | 36, Brazil, <32 w of g.a., Non-pasteurized milk | Mean ± SD | 17 ± 38 | RI |
d2–d4 | [66] | 2005 | 36, Brazil, <32 w of g.a., Pasteurized milk | Mean ± SD | 0.0 ± 0.0 | RI |
d2–d4 | [66] | 2005 | 32, Brazil, 32–36 w of g.a., Non-pasteurized milk | Mean ± SD | 5 ± 15 | RI |
d2–d4 | [66] | 2005 | 32, Brazil, 32–36 w of g.a., Pasteurized milk | Mean ± SD | 0.0 ± 0.0 | RI |
d2–d4 | [66] | 2005 | 33, Brazil, >37 w of g.a., Non-pasteurized milk | Mean ± SD | 14 ± 34 | RI |
d2–d4 | [66] | 2005 | 33, Brazil, >37 w of g.a., Pasteurized milk | Mean ± SD | 0.0 ± 0.0 | RI |
d3–d4 | [62] | 1985 | 20, Moscow, Healthy (25.5) | Mean (SD) | 53 (16) | SRI |
d1–d5 | [48] | 1977 | 17, India, Well-nourished women | Mean ± SEM | 59 ± 15.8 | RI |
d1–d5 | [48] | 1977 | 10, India, Under-nourished women | Mean ± SEM | 53 ± 23.0 | RI |
* | [52] | 2013 | 10, Spain, Healthy, Untreated milk | Median (IQR) | 93.94 (38.79–201.30) | Luminex |
* | [52] | 2013 | 10, Spain, Healthy, Pasteurized milk | Median (IQR) | 59.36 (14.95–173.92) | Luminex |
* | [50] | 1978 | 24, Caucasian and Turkish women, Healthy (16–40) | Mean ± SD | 4047 ± 1170 | RI |
Transition milk | ||||||
d5–d6 | [62] | 1895 | 20, Moscow, Healthy (25.5) | Mean (SD) | 135 (40) | SRI |
d6 | [45] | 1982 | 11, New Zealand, Healthy | Mean (range) | 250 (30–1050) | RI |
d7 | [75] | 2011 | 60, Gabon, Health, Term delivery | Mean ± SEM | 1300 ± 800 | N |
d7 | [65] | 2009 | 1, Brazil, mother with CVID | Value | 13.7 | ELISA |
d7 | [65] | 2009 | 1, Brazil, mother with CVID | Value | 91 | ELISA |
d7–d8 | [62] | 1895 | 20, Moscow, Healthy (25.5) | Mean (SD) | 39 (21) | SRI |
d5–d11 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 117 (168) | ELISA |
d14 | [45] | 1982 | 11, New Zealand, Healthy | Mean (range) | 150 (30–800) | RI |
w2 | [91] | 2020 | 51, Netherlands, Healthy, Term delivery | Median (IQR) | 64.73 (47.84–97.12) | Luminex |
d5–d21 | [104] | 2013 | 5, Australia, Healthy | Range | 8.2–29.8 | ELISA |
d5–d21 | [104] | 2013 | 1, Australia, Maternal infection | Value | 10.2 | ELISA |
d8–d22 | [95] | 2019 | 36, Oregon, Preterm delivery | ~Mean | 175 | ELISA |
Mature milk | ||||||
d21 | [75] | 2011 | 60, Gabon, Health, Term delivery | Mean ± SEM | 1500 ± 1700 | N |
d15–d30 | [96] | 2017 | 4, Mexico, Healthy (30), Unprocessed milk | ~Mean | 1600 | N |
d15–d30 | [96] | 2017 | 4, Mexico, Healthy (30), Pasteurized milk (85°) | ~Mean | 800 | N |
d12–d30 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 47 (47) | ELISA |
m1 | [105] | 2018 | 36, Jordan, Healthy, Term delivery | Mean (SD) | 103 (31.0) | ELISA |
m1–m2 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 35 (31) | ELISA |
w6 | [91] | 2020 | 51, Netherlands, Healthy, Term delivery | Median (IQR) | 38.19 (21.73–61.92) | Luminex |
d42 | [45] | 1982 | 11, New Zealand, Healthy | Mean (range) | 50 (10–160) | RI |
d14–d56 | [41] | 2015 | 15, Spain, Preterm delivery | Mean (IQR) | 21,550 (870–42,220) | Luminex |
d70 | [45] | 1982 | 11, New Zealand, Healthy | Mean (range) | 30 (0–120) | RI |
d21–m3 | [104] | 2013 | 2, Australia, Healthy | Range | 10.6–14.9 | ELISA |
d21–m3 | [104] | 2013 | 7, Australia, Maternal infection | Range | 4.5–19.8 | ELISA |
m4 | [105] | 2018 | 36, Jordan, Healthy, Term delivery | Mean (SD) | 64 (25.7) | ELISA |
m2–m4 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 35 (29) | ELISA |
d14–d150 | [67] | 2017 | 41, Spain, Healthy (>18) | Mean (IQR) | 38.80 (19.92–62.45) | Luminex |
d14–d150 | [67] | 2017 | 40, Ethiopia, Healthy (>18) | Mean (IQR) | 83.93 (45.36–120.48) | Luminex |
d14–d150 | [67] | 2017 | 41, USA/Washington, Healthy (>18) | Mean (IQR) | 18.95 (7.78–36.60) | Luminex |
m1–m6 | [48] | 1977 | 12, India, Well-nourished women | Mean ± SEM | 29 ± 9.2 | RI |
m1–m6 | [48] | 1977 | 10, India, Under-nourished women | Mean ± SEM | 58 ± 34.1 | RI |
m6 | [105] | 2018 | 36, Jordan, Healthy, Term delivery | Mean (SD) | 48 (18.1) | ELISA |
m4–m8 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 25 (25) | ELISA |
m4–m8 | [100] | 2016 | 2, Canada, Milk before spray drying | Mean ± SD | 21.95 ± 5.15 | ELISA |
m4–m8 | [100] | 2016 | 2, Canada, Milk before freeze drying | Mean ± SD | 22.48 ± 5.84 | ELISA |
m1–m12 | [93] | 2020 | 26, Poland, Healthy | Mean ± SD | 3.0 ± 2.89 | ELISA |
m13–m18 | [93] | 2020 | 35, Poland, Healthy | Mean ± SD | 2.81 ± 2.74 | ELISA |
m19–m24 | [93] | 2020 | 32, Poland, Healthy | Mean ± SD | 2.79 ± 2.41 | ELISA |
>m24 | [93] | 2020 | 23, Poland, Healthy | Mean ± SD | 3.82 ± 3.05 | ELISA |
m3–m26 | [94] | 2013 | 5, Spain, Healthy, Unprocessed milk | Mean ± SD | 22.9 ± 0.2 | ELISA |
m3–m26 | [94] | 2013 | 6, Spain, Healthy, Unprocessed milk | Mean ± SD | 9.3 ± 0.5 | ELISA |
* | [52] | 2013 | 8, Spain, Healthy, Untreated milk | Median (IQR) | 10.67 (5.91–12.74) | Luminex |
* | [52] | 2013 | 8, Spain, Healthy, Pasteurized milk | Median (IQR) | 6.37 (4.43–7.91) | Luminex |
* | [49] | 1977 | >25, Cardiff, Untreated milk | Mean | 100 | RI |
* | [49] | 1977 | >25, Cardiff, Heat-treated milk (56° 30 min) | Mean | 100 | RI |
* | [50] | 1978 | 19, Caucasian and Turkish women, Healthy (16–40) | Mean ± SD | 4047 ± 1170 | RI |
Breastfeeding Phase and Time | Study | Year | Population Characteristics N, Location, Particular Characteristics (Age) | Measure of Centrality and Spread | Concentration and Distribution (mg/L) | Analysis Method |
---|---|---|---|---|---|---|
Colostrum | ||||||
d0 | [45] | 1982 | 11, New Zealand, Healthy | Mean (range) | 530 (150–1910) | RI |
h24 | [70] | 2015 | 77, Brazil, Healthy | Mean (SD) | 883 (515) | ELISA |
d1 | [75] | 2011 | 60, Gabon, Healthy | Mean ± SEM | 2000 ± 1000 | N |
d1–d2 | [62] | 1985 | 20, Moscow, Healthy (25.5) | Mean (SD) | 314 (123) | SRI |
d2 | [78] | 2006 | 31, Bangladesh, Healthy (18–35) | Mean ± SD | 95 ± 24 | ELISA |
d3 | [65] | 2009 | 1, Brazil, mother with CVID | Value | 19.5 | ELISA |
d3 | [65] | 2009 | 1, Brazil, mother with CVID | Value | 1121 | ELISA |
d3 | [45] | 1982 | 11, New Zealand, Apparently healthy | Mean (range) | 190 (80–460) | RI |
d2–d3 | [42] | 2004 | 82, Brazil, Healthy (21–41) | Median (range) | 28.0 (9–530.0) | ELISA |
d1–d4 | [82] | 2013 | 11, Portugal, Healthy, Unprocessed milk | Mean ± SD | 199 ± 10 | ELISA |
d2–d4 | [66] | 2005 | 36, Brazil, <32 w of g.a., Non-pasteurized milk | Mean ± SD | 76 ± 38 | RI |
d2–d4 | [66] | 2005 | 36, Brazil, <32 w of g.a., Pasteurized milk | Mean ± SD | 18 ± 26 | RI |
d2–d4 | [66] | 2005 | 32, Brazil, 32–36 w of g.a., Non-pasteurized milk | Mean ± SD | 47 ± 42 | RI |
d2–d4 | [66] | 2005 | 32, Brazil, 32–36 w of g.a., Pasteurized milk | Mean ± SD | 10 ± 20 | RI |
d2–d4 | [66] | 2005 | 33, Brazil, >37 w of g.a., Non-pasteurized milk | Mean ± SD | 54 ± 37 | RI |
d2–d4 | [66] | 2005 | 33, Brazil, >37 w of g.a., Pasteurized milk | Mean ± SD | 15 ± 23 | RI |
d3–d4 | [62] | 1985 | 20, Moscow, Healthy (25.5) | Mean (SD) | 141 (50) | SRI |
d1–d5 | [109] | 1992 | 14 | Mean | 80.4 | RI |
* | [50] | 1978 | 24, Caucasian and Turkish women (16–40) | Mean ± SD | 473 ± 238 | RI |
Transition milk | ||||||
d5–d6 | [62] | 1985 | 20, Moscow, Healthy (25.5) | Mean (SD) | 56 (18) | SRI |
d6 | [45] | 1982 | 11, New Zealand, Healthy | Mean (range) | 30 (20–40) | RI |
d7 | [75] | 2011 | 60, Gabon, Health, Term delivery | Mean ± SEM | 1400 ± 600 | N |
d7 | [65] | 2009 | 1, Brazil, mother with CVID | Value | 13.7 | ELISA |
d7 | [65] | 2009 | 1, Brazil, mother with CVID | Value | 91 | ELISA |
d5–d10 | [87] | 2008 | 30, India, Term delivery, Pre-pasteurization milk | Mean (SD) | 0.0055 (0.0013) | ELISA |
d5–d10 | [87] | 2008 | 30, India, Term delivery, Post-pasteurization milk | Mean (SD) | 0.0022 (0.0006) | ELISA |
d7–d8 | [62] | 1985 | 20, Moscow, Healthy (25.5) | Mean (SD) | 141 (50) | SRI |
d5–d11 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 22 (13) | ELISA |
d14 | [45] | 1982 | 11, New Zealand, Healthy | Mean (range) | 40 (20–200) | RI |
w2 | [91] | 2020 | 51, Netherlands, Healthy, Term delivery | Median (IQR) | 52.10 (39.10–76.42) | Luminex |
Less w2 | [89] | 1992 | 16, Canada, Non-ultrasonic homogenized milk | Mean ± SD | 6.6 ± 4.7 | I |
Less w2 | [89] | 1992 | 16, Canada, Ultrasonic homogenized milk (<45°) | Mean ± SD | 5.7 ± 4.8 | I |
Less w2 | [89] | 1992 | 16, Canada, Ultrasonic homogenized milk (>55°) | Mean ± SD | 2.8 ± 4.5 | I |
d8–d22 | [95] | 2019 | 36, Oregon, Preterm delivery | ~Mean | 22 | ELISA |
Mature milk | ||||||
d12–d30 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 23 (12) | ELISA |
d21 | [75] | 2011 | 60, Gabon, Health, Term delivery | Mean ± SEM | 700 ± 300 | N |
d15–d30 | [96] | 2017 | 4, Mexico, Healthy (30), Unprocessed milk | ~Mean | 500 | N |
d15–d30 | [96] | 2017 | 4, Mexico, Healthy (30), Pasteurized milk (85°) | ~Mean | 400 | N |
m1 | [105] | 2018 | 36, Jordan, Healthy, Term delivery | Mean (SD) | 103 (41.0) | ELISA |
d22–d36 | [109] | 1992 | 14 | Mean | 46.9 | RI |
d42 | [45] | 1982 | 11, New Zealand, Healthy | Mean (range) | 30 (20–50) | RI |
m1–m2 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 20 (14) | ELISA |
w6 | [91] | 2020 | 51, Netherlands, Healthy, Term delivery | Median (IQR) | 43.60 (32.64–57.71) | Luminex |
d70 | [45] | 1982 | 11, New Zealand, Healthy | Mean (range) | 20 (10–40) | RI |
m3 | [53] | 2018 | 7, Alberta, Healthy | ~Mean | 12 | ELISA |
m3 | [53] | 2018 | 5, Alberta, Mothers with CD | ~Mean | 30 | ELISA |
m3 | [53] | 2018 | 11, Alberta, Mothers with UC | ~Mean | 20 | ELISA |
w12 | [91] | 2020 | 51, Netherlands, Healthy, Term delivery | Median (IQR) | 43.60 (32.64–57.71) | Luminex |
m4 | [105] | 2018 | 36, Jordan, Healthy, Term delivery | Mean (SD) | 133 (48.9) | ELISA |
m2–m4 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 24 (15) | ELISA |
m1–m6 | [48] | 1977 | 12, India, Well-nourished women | Mean ± SEM | 29 ± 9.2 | RI |
m1–m6 | [48] | 1977 | 10, India, Under-nourished women | Mean ± SEM | 58 ± 34.1 | RI |
d14–d150 | [67] | 2017 | 41, Spain, Healthy (>18) | Mean (IQR) | 59.95 (48.73–90.51) | Luminex |
d14–d150 | [67] | 2017 | 40, Ethiopia, Healthy (>18) | Mean (IQR) | 96.09 (72.22–127.69) | Luminex |
d14–d150 | [67] | 2017 | 41, USA/Washington, Healthy (>18) | Mean (IQR) | 32.67 (19.35–44.60) | Luminex |
m6 | [105] | 2018 | 36, Jordan, Healthy, Term delivery | Mean (SD) | 145 (54.0) | ELISA |
m6 | [53] | 2018 | 7, Alberta, Healthy | ~Mean | 350 | ELISA |
m6 | [53] | 2018 | 6, Alberta, Mothers with CD | ~Mean | 50 | ELISA |
m6 | [53] | 2018 | 7, Alberta, Mothers with UC | ~Mean | 50 | ELISA |
m4–m8 | [100] | 2016 | 2, Canada, Milk before spray drying | Mean ± SD | 13.92 ± 0.80 | ELISA |
m4–m8 | [100] | 2016 | 2, Canada, Milk before freeze drying | Mean ± SD | 19.59 ± 0.17 | ELISA |
m4–m8 | [88] | 2016 | 90, China, Healthy urban mothers | Median (IQR) | 23 (14) | ELISA |
m1–m12 | [93] | 2020 | 26, Poland, Healthy | Mean ± SD | 14.71 ± 6.18 | ELISA |
m13–m18 | [93] | 2020 | 35, Poland, Healthy | Mean ± SD | 14.82 ± 9.11 | ELISA |
m19–m24 | [93] | 2020 | 32, Poland, Healthy | Mean ± SD | 15.60 ± 4.33 | ELISA |
>m24 | [93] | 2020 | 23, Poland, Healthy | Mean ± SD | 18.95 ± 6.76 | ELISA |
m3–m26 | [94] | 2013 | 5, Spain, Healthy, Unprocessed milk | Mean ± SD | 54.4 ± 2.2 | ELISA |
m3–m26 | [94] | 2013 | 6, Spain, Healthy, Unprocessed milk | Mean ± SD | 13.5 ± 1.6 | ELISA |
* | [50] | 1978 | 24, Caucasian and Turkish women (16–40) | Mean ± SD | 234 ± 129 | RI |
Breastfeeding Phase and Time | Study | Year | Population Characteristics N, Location, Particular Characteristics | Measure of Centrality and Spread | Concentration and Distribution (mg/L) | Analysis Method |
---|---|---|---|---|---|---|
IgG1 | ||||||
Colostrum | ||||||
d2 | [56] | 1989 | 7, Colorado and Reykhavik | Mean ± SEM | 2248.4 ± 531.8 | ELISA |
d3 | [56] | 1989 | 7, Colorado and Reykhavik | Mean ± SEM | 539.8 ± 123.6 | ELISA |
d4 | [56] | 1989 | 7, Colorado and Reykhavik | Mean ± SEM | 195.0 ± 83.2 | ELISA |
h96 | [41] | 2015 | 15, Spain, Preterm delivery | Mean (IQR) | 87.80 (11.63–163.97) | Luminex |
d1–d5 | [109] | 1992 | 14, California | Mean | 37.2 | RI |
* | [52] | 2013 | 6, Spain, Healthy, Untreated milk | Median (IQR) | 102.61 (45.28–242.07) | Luminex |
* | [52] | 2013 | 3, Spain, Healthy, Pasteurized milk | Median (IQR) | 157.85 (25.63–270.73) | Luminex |
Mature milk | ||||||
d22–d36 | [109] | 1992 | 14, California | Mean | 25.1 | RI |
d14–d56 | [41] | 2015 | 11, Spain, Preterm delivery | Mean (IQR) | 10.36 (5.05–15.65) | Luminex |
d49–d266 | [56] | 1989 | 11, Colorado and Reykhavik | Mean ± SEM | 35.72 ± 4.40 | ELISA |
* | [52] | 2013 | 3, Spain, Healthy, Untreated milk | Median (IQR) | 36.70 (1.25–70.65) | Luminex |
* | [52] | 2013 | 2, Spain, Healthy, Pasteurized milk | Median (IQR) | 16.20 (15.84–16.56) | Luminex |
IgG2 | ||||||
Colostrum | ||||||
d2 | [56] | 1989 | 7, Colorado and Reykhavik | Mean ± SEM | 162.2 ± 59.6 | ELISA |
d3 | [56] | 1989 | 7, Colorado and Reykhavik | Mean ± SEM | 38.0 ± 11.2 | ELISA |
d4 | [56] | 1989 | 7, Colorado and Reykhavik | Mean ± SEM | 12.3 ± 0.4 | ELISA |
h96 | [41] | 2015 | 15, Spain, Preterm delivery | Mean (IQR) | 68.04 (−2.92 to 139.00) | Luminex |
d1–d5 | [109] | 1992 | 14, California | Mean | 34.9 | RI |
Mature milk | ||||||
d22–d36 | [109] | 1992 | 14, California | Mean | 19.6 | RI |
d14–d56 | [41] | 2015 | 11, Spain, Preterm delivery | Mean (IQR) | - | Luminex |
d49–d266 | [56] | 1989 | 11, Colorado and Reykhavik | Mean ± SEM | 4.18 ± 0.69 | ELISA |
IgG3 | ||||||
Colostrum | ||||||
d2 | [56] | 1989 | 7, Colorado and Reykhavik | Mean ± SEM | 113.9 ± 47.0 | ELISA |
d3 | [56] | 1989 | 7, Colorado and Reykhavik | Mean ± SEM | 36.5 ± 10.1 | ELISA |
d4 | [56] | 1989 | 7, Colorado and Reykhavik | Mean ± SEM | 14.7 ± 2.5 | ELISA |
h96 | [41] | 2015 | 15, Spain, Preterm delivery | Mean (IQR) | 2.82 (0.98–4.65) | Luminex |
d1–d5 | [109] | 1992 | 14, California | Mean | <3.4 | RI |
* | [52] | 2013 | 4, Spain, Healthy, Untreated milk | Median (IQR) | 16.45 (15.30–38.90) | Luminex |
Mature milk | ||||||
d22–d36 | [109] | 1992 | 14, California | Mean | <1.6 | RI |
d14–d56 | [41] | 2015 | 11, Spain, Preterm delivery | Mean (IQR) | 0.24 (0.11–0.37) | Luminex |
d49–d266 | [56] | 1989 | 11, Colorado and Reykhavik | Mean ± SEM | 1.31 ± 0.15 | ELISA |
IgG4 | ||||||
Colostrum | ||||||
d2 | [56] | 1989 | 7, Colorado and Reykhavik | Mean ± SEM | 14.7 ± 5.7 | ELISA |
d3 | [56] | 1989 | 7, Colorado and Reykhavik | Mean ± SEM | 4.7 ± 1.0 | ELISA |
d2–d4 | [68] | 1983 | 27, Torrance | Mean (range) | 4.6 (0.6–19) | RIA |
d4 | [56] | 1989 | 7, Colorado and Reykhavik | Mean ± SEM | 2.4 ± 0.4 | ELISA |
h96 | [41] | 2015 | 15, Spain, Preterm delivery | Mean (IQR) | 0.98 (0.45–1.52) | Luminex |
d1–d5 | [109] | 1992 | 14, California | Mean | 4.9 | RI |
* | [52] | 2013 | 10, Spain, Healthy, Untreated milk | Median (IQR) | 649.80 (474.63–984.41) | Luminex |
* | [52] | 2013 | 9, Spain, Healthy, Pasteurized milk | Median (IQR) | 530.67 (410.95–902.78) | Luminex |
Mature milk | ||||||
d22–d36 | [109] | 1992 | 14, California | Mean | 4.2 | RI |
d14–d56 | [41] | 2015 | 11, Spain, Preterm delivery | Mean (IQR) | 0.29 (0.12–0.46) | Luminex |
d49–d266 | [56] | 1989 | 11, Colorado and Reykhavik | Mean ± SEM | 0.516 ± 0.109 | ELISA |
* | [52] | 2013 | 8, Spain, Healthy, Untreated milk | Median (IQR) | 517.23 (236.18–701.76) | Luminex |
* | [52] | 2013 | 8, Spain, Healthy, Pasteurized milk | Median (IQR) | 365.50 (324.55–410.95) | Luminex |
Breastfeeding Phase and Time | Study | Year | Population Characteristics N, Location, Particular Characteristics (Age) | Measure of Centrality and Spread | Concentration and Distribution (mg/L) | Analysis Method |
---|---|---|---|---|---|---|
IgE | ||||||
Colostrum | ||||||
d0–d4 | [54] | 1982 | 15, California (16–41) | Range | 0.0012–0.014 | RIA |
d2–d4 | [51] | 1996 | 39, Sweden, Atopic and non-atopic mothers | Mean | 0.0003 | PRIST |
* | [52] | 2013 | 10, Spain, Healthy, Untreated milk | Median (IQR) | 0.67 (0.44–1.12) | Luminex |
* | [52] | 2013 | 7, Spain, Healthy, Pasteurized milk | Median (IQR) | 1.17 (0.87–1.48) | Luminex |
Mature milk | ||||||
m3 | [53] | 2018 | 7, Alberta, Healthy | ~Mean | 0.0011 | ELISA |
m3 | [53] | 2018 | 5, Alberta, Mothers with CD | ~Mean | 0.0011 | ELISA |
m3 | [53] | 2018 | 11, Alberta, Mothers with UC | ~Mean | 0.0018 | ELISA |
m6 | [53] | 2018 | 7, Alberta, Healthy | ~Mean | 0.001 | ELISA |
m6 | [53] | 2018 | 6, Alberta, Mothers with CD | ~Mean | 0.0011 | ELISA |
m6 | [53] | 2018 | 7, Alberta, Mothers with UC | ~Mean | 0.0012 | ELISA |
* | [52] | 2013 | 3, Spain, Healthy, Untreated milk | Median (IQR) | 0.43 (0.21–0.85) | Luminex |
* | [52] | 2013 | 7, Spain, Healthy, Pasteurized milk | Median (IQR) | 0.43 (0.20–0.81) | Luminex |
IgD | ||||||
Colostrum | ||||||
d1–d5 | [55] | 1985 | 31, California | Mean | 0.358 | PDSP |
d0–d4 | [54] | 1982 | 39, California (16–41) | Mean (range) | 0.413 (0.02–20) | RIA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rio-Aige, K.; Azagra-Boronat, I.; Castell, M.; Selma-Royo, M.; Collado, M.C.; Rodríguez-Lagunas, M.J.; Pérez-Cano, F.J. The Breast Milk Immunoglobulinome. Nutrients 2021, 13, 1810. https://doi.org/10.3390/nu13061810
Rio-Aige K, Azagra-Boronat I, Castell M, Selma-Royo M, Collado MC, Rodríguez-Lagunas MJ, Pérez-Cano FJ. The Breast Milk Immunoglobulinome. Nutrients. 2021; 13(6):1810. https://doi.org/10.3390/nu13061810
Chicago/Turabian StyleRio-Aige, Karla, Ignasi Azagra-Boronat, Margarida Castell, Marta Selma-Royo, María Carmen Collado, María J. Rodríguez-Lagunas, and Francisco J. Pérez-Cano. 2021. "The Breast Milk Immunoglobulinome" Nutrients 13, no. 6: 1810. https://doi.org/10.3390/nu13061810