Nutrient Intake and Status of German Children and Adolescents Consuming Vegetarian, Vegan or Omnivore Diets: Results of the VeChi Youth Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Recruitment
2.3. Study Schedule
2.4. Anthropometric Measurements
2.5. Blood Samples
- Anaemia: haemoglobin <11.5 g/dL (6–<12 years), <12 g/dL (12–<15 years and girls >15 years), <13 g/dL (boys >15 years) [21]
- Depleted iron stores: ferritin < 12–15 µg/L [22]
- Vitamin B2: deficiency FAD < 199 µg/L [24]
- Folate: deficiency < 226.5 µg/L [25]
- Vitamin B12:
- deficiency unlikely: HoloTC > 50 pmol/L or holoTC 35–50 pmol/L and MMA < 271 nmol/L;
- negative vitamin B12 balance: holoTC < 35 pmol/L and MMA < 271 nmol/L;
- deficiency likely: holoTC < 35 pmol/L and MMA > 271 nmol/L [26]
- Blood lipids: acceptable: total cholesterol (TC) <170 mg/dL, HDL-cholesterol (HDL-C) >45 mg/dL, LDL-cholesterol (LDL-C): <110 mg/dL (optimal), triglycerides (TG): <74 mg/dL (6–9 years), <90 mg/dL (10–19 years), non-HDL-cholesterol (non-HDL-C): <123 mg/dL [27].
2.6. Dietary Assessment
2.7. Questionnaires
2.8. Diet Group Classification
- a vegetarian diet (no meat, sausage, fish, but dairy and/or eggs)
- a vegan diet (no meat, sausage, fish, dairy and eggs)
- an omnivore diet (including meat and/or fish)?
2.9. Statistics
3. Results
3.1. Sample Characteristics
3.2. Energy and Nutrient Intake
3.2.1. Energy Intake
3.2.2. Macronutrient Intake
3.2.3. Micronutrient Intake
3.3. Nutrient Status and Blood Lipids
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrara, P.; Corsello, G.; Quattrocchi, E.; Dell’Aquila, L.; Ehrich, J.; Giardino, I.; Pettoello-Mantovani, M. Caring for Infants and Children Following Alternative Dietary Patterns. J. Pediatr. 2017, 187, 339–340.e1. [Google Scholar] [CrossRef] [Green Version]
- Patelakis, E.; Barbosa, C.L.; Haftenberger, M.; Brettschneider, A.-K.; Lehmann, F.; Heide, K.; Frank, M.; Perlitz, H.; Richter, A.; Mensink, G.B.M. Häufigkeit einer vegetarischen Ernährungsweise bei Kindern und Jugendlichen in Deutschland: Ergebnisse aus ESKIMO II. Ernähr. Umsch. 2019, 66, M269–M275. [Google Scholar]
- SKOPOS Group. 1.3 Millionen Deutsche Leben Vegan. Available online: https://www.skopos-group.de/news/13-millionen-deutsche-leben-vegan.html (accessed on 1 June 2018).
- Richter, M.; Boeing, H.; Grünewald-Funk, D.; Heseker, H.; Kroke, A.; Leschik-Bonnet, E.; Oberritter, H.; Strohm, D.; Watzl, B. Vegan diet. Position of the German Nutrition Society (DGE). Ernähr. Umsch. 2016, 63, 92–102. [Google Scholar]
- Rudloff, S.; Bührer, C.; Jochum, F.; Kauth, T.; Kersting, M.; Körner, A.; Koletzko, B.; Mihatsch, W.; Prell, C.; Reinehr, T.; et al. Vegetarian diets in childhood and adolescence: Position paper of the nutrition committee, German Society for Paediatric and Adolescent Medicine (DGKJ). Mol. Cell. Pediatr. 2019, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Kleinman, R.E. Pediatric Nutrition Handbook, 6th ed.; American Academy of Pediatrics: Elk Grove Village, IL, USA, 2009; ISBN 978-1581102987. [Google Scholar]
- Craig, W.J.; Mangels, A.R. Position of the American Dietetic Association: Vegetarian Diets. J. Am. Diet. Assoc. 2009, 109, 1266–1282. [Google Scholar] [CrossRef] [PubMed]
- Remer, T.; Fonteyn, N.; Alexy, U.; Berkemeyer, S. Longitudinal examination of 24-h urinary iodine excretion in schoolchildren as a sensitive, hydration status-independent research tool for studying iodine status. Am. J. Clin. Nutr. 2006, 83, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinehr, T.; Schnabel, D.; Wabitsch, M.; Bechtold-Dalla Pozza, S.; Bührer, C.; Heidtmann, B.; Jochum, F.; Kauth, T.; Körner, A.; Mihatsch, W.; et al. Vitamin D supplementation after the second year of life: Joint position of the Committee on Nutrition, German Society for Pediatric and Adolescent Medicine (DGKJ e.V.), and the German Society for Pediatric Endocrinology and Diabetology (DGKED e.V.). Mol. Cell. Pediatr. 2019, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Schürmann, S.; Kersting, M.; Alexy, U. Vegetarian diets in children: A systematic review. Eur. J. Nutr. 2017, 56, 1797–1817. [Google Scholar] [CrossRef]
- Keller, M.; Müller, S. Vegetarische und vegane Ernährung bei Kindern—Stand der Forschung und Forschungsbedarf. Forsch. Komplementmed. 2016, 23, 81–88. [Google Scholar] [CrossRef]
- Ambroszkiewicz, J.; Chełchowska, M.; Szamotulska, K.; Rowicka, G.; Klemarczyk, W.; Strucińska, M.; Gajewska, J. Bone status and adipokine levels in children on vegetarian and omnivorous diets. Clin. Nutr. 2019, 38, 730–737. [Google Scholar] [CrossRef]
- Ambroszkiewicz, J.; Chełchowska, M.; Rowicka, G.; Klemarczyk, W.; Strucińska, M.; Gajewska, J. Anti-Inflammatory and Pro-Inflammatory Adipokine Profiles in Children on Vegetarian and Omnivorous Diets. Nutrients 2018, 10, 1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desmond, M.A.; Sobiecki, J.G.; Jaworski, M.; Płudowski, P.; Antoniewicz, J.; Shirley, M.K.; Eaton, S.; Książyk, J.; Cortina-Borja, M.; Stavola, B.d.; et al. Growth, body composition, and cardiovascular and nutritional risk of 5- to 10-y-old children consuming vegetarian, vegan, or omnivore diets. Am. J. Clin. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Larsson, C.L.; Johansson, G.K. Young Swedish vegans have different sources of nutrients than young omnivores. J. Am. Diet. Assoc. 2005, 105, 1438–1441. [Google Scholar] [CrossRef]
- Larsson, C.L.; Johansson, G.K. Dietary intake and nutritional status of young vegans and omnivores in Sweden. Am. J. Clin. Nutr. 2002, 76, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Hovinen, T.; Korkalo, L.; Freese, R.; Skaffari, E.; Isohanni, P.; Niemi, M.; Nevalainen, J.; Gylling, H.; Zamboni, N.; Erkkola, M.; et al. Vegan diet in young children remodels metabolism and challenges the statuses of essential nutrients. EMBO Mol. Med. 2021, 13, e13492. [Google Scholar] [CrossRef] [PubMed]
- Weder, S.; Hoffmann, M.; Becker, K.; Alexy, U.; Keller, M. Energy, Macronutrient Intake, and Anthropometrics of Vegetarian, Vegan, and Omnivorous Children (1–3 Years) in Germany (VeChi Diet Study). Nutrients 2019, 11, 832. [Google Scholar] [CrossRef] [Green Version]
- Alexy, U.; Fischer, M.; Längler, A.; Michalsen, A.; Weder, S.; Keller, M. Vegetarische und vegane Ernährung bei Kindern und Jugendlichen in Deutschland. In Ernährungsbericht; DGE: Bonn, Germany, 2020. [Google Scholar]
- Koebnick, C.; Garcia, A.L.; Dagnelie, P.C.; Strassner, C.; Lindemans, J.; Katz, N.; Leitzmann, C.; Hoffmann, I. Long-term consumption of a raw food diet is associated with favorable serum LDL cholesterol and triglycerides but also with elevated plasma homocysteine and low serum HDL cholesterol in humans. J. Nutr. 2005, 135, 2372–2378. [Google Scholar] [CrossRef]
- World Health Organization. Hemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity: Vitamin and Mineral Nutrition Information System. Available online: http://www.who.int/vmnis/indicators/haemoglobin.pdf (accessed on 1 September 2019).
- WHO. Technical Consultation on the Assessment of Iron Status at the Population Level; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. [Google Scholar] [CrossRef]
- Speek, A.J.; van Schaik, F.; Schrijver, J.; Schreurs, W.H. Determination of the B2 vitamer flavin—Adenine dinucleotide in whole blood by high-performance liquid chromatography with fluorometric detection. J. Chromatogr. 1982, 228, 311–316. [Google Scholar] [CrossRef]
- WHO. Serum and Red Blood Cell Folate Concentrations for Assessing Folate Status in Populations: Vitamin and Mineral Nutrition Information System. Available online: https://www.who.int/nutrition/publications/micronutrients/indicators_serum_RBC_folate/en/ (accessed on 1 June 2020).
- Herrmann, W.; Obeid, R. Causes and early diagnosis of vitamin B12 deficiency. Dtsch. Arztebl. Int. 2008, 105, 680–685. [Google Scholar] [CrossRef]
- Chourdakis, M.; Buderus, M.; Dokoupil, K.; Oberhoffer, R.; Schwab, K.O.; Wolf, M.; Zimmer, K.P.; Koletzko, B. S2k-Leitlinie zur Diagnostik und Therapie von Hyperlipidämien bei Kindern und Jugendlichen: [Guideline for the Diagnosis and Treatment of Hyperlipidemia in Children and Adolescents]. Available online: https://docplayer.org/17908238-S2k-leitlinien-zur-diagnostik-und-therapie-von-hyperlipidaemien-bei-kindern-und-jugendlichen.html (accessed on 17 May 2021).
- Kroke, A.; Manz, F.; Kersting, M.; Remer, T.; Sichert-Hellert, W.; Alexy, U.; Lentze, M.J. The DONALD Study. History, current status and future perspectives. Eur. J. Nutr. 2004, 43, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Sichert-Hellert, W.; Kersting, M.; Chahda, C.; Schäfer, R.; Kroke, A. German food composition database for dietary evaluations in children and adolescents. J. Food Compost. Anal. 2007, 20, 63–70. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. 1), 5–41. [Google Scholar] [PubMed]
- Sichert-Hellert, W.; Kersting, M.; Schöch, G. Underreporting of energy intake in 1 to 18 year old German children and adolescents. Z. Ernahrungswiss. 1998, 37, 242–251. [Google Scholar] [CrossRef]
- Booth, M.L.; Okely, A.D.; Chey, T.N.; Bauman, A. The reliability and validity of the Adolescent Physical Activity Recall Questionnaire. Med. Sci. Sports Exerc. 2002, 34, 1986–1995. [Google Scholar] [CrossRef] [Green Version]
- Kahl, H.; Schaffrath Rosario, A.; Schlaud, M. Sexuelle Reifung von Kindern und Jugendlichen in Deutschland. Ergebnisse des Kinder- und Jugendgesundheitssurveys (KiGGS). Bundesgesundheitsblatt Gesundh. Gesundh. 2007, 50, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Tanner, J.M.; Whitehouse, R.H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.-E.; Yen, C.-H.; Huang, M.-C.; Cheng, C.-H.; Huang, Y.-C. Dietary intake and nutritional status of vegetarian and omnivorous preschool children and their parents in Taiwan. Nutr. Res. 2008, 28, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Kromeyer-Hauschild, K.; Moss, A.; Wabitsch, M. Referenzwerte für den Body-Mass-Index für Kinder, Jugendliche und Erwachsene in Deutschland: Anpassung der AGA-BMI-Referenz im Altersbereich von 15 bis 18 Jahren. Adipositas 2015, 9, 123–127. [Google Scholar]
- Winkler, J.; Stolzenberg, H. Adjustierung des Sozialen-Schicht-Index für die Anwendung im Kinder- und Jugendgesundheitssurvey (KiGGS); Hochsch. Fachbereich Wirtschaft: Wismar, Germany, 2009; ISBN 978-3-939159-76-6. [Google Scholar]
- Deutsche Gesellschaft für Ernährung (Ed.) Referenzwerte für die Nährstoffzufuhr, 2nd ed.; Umschau: Frankfurt, Germany, 2018; ISBN 978-3-88749-242-7. [Google Scholar]
- SAS Institute Inc. SAS/STAT 14.3 User’s Guide; Sas Institute Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Allen, L.H.; Miller, J.W.; De Groot, L.; Rosenberg, I.H.; Smith, A.D.; Refsum, H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND): Vitamin B-12 Review. J. Nutr. 2018, 148, 1995S–2027S. [Google Scholar] [CrossRef] [Green Version]
- Marczykowski, F.J.; Breidenassel, C. Vegan diet: Reaching the reference values for nutrient intake of critical nutrients. Assortment and necessity of fortified foods. Ernähr. Umsch. 2017, 64, 2–10. [Google Scholar] [CrossRef]
- Pawlak, R.; Lester, S.E.; Babatunde, T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: A review of literature. Eur. J. Clin. Nutr. 2014, 68, 541–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schüpbach, R.; Wegmüller, R.; Berguerand, C.; Bui, M.; Herter-Aeberli, I. Micronutrient status and intake in omnivores, vegetarians and vegans in Switzerland. Eur. J. Nutr. 2015. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, D.; Singer, I.; Männer, M.; Rust, P.; Genser, D.; Wagner, K.-H.; Elmadfa, I. B-vitamin status and concentrations of homocysteine in Austrian omnivores, vegetarians and vegans. Ann. Nutr. Metab. 2006, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Weikert, C.; Trefflich, I.; Menzel, J.; Obeid, R.; Longree, A.; Dierkes, J.; Meyer, K.; Herter-Aeberli, I.; Mai, K.; Stangl, G.I.; et al. Vitamin and Mineral Status in a Vegan Diet. Dtsch. Arztebl. Int. 2020, 117, 575–582. [Google Scholar] [CrossRef]
- Powers, H.J. Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr. 2003, 77, 1352–1360. [Google Scholar] [CrossRef]
- Rabenberg, M.; Scheidt-Nave, C.; Busch, M.A.; Thamm, M.; Rieckmann, N.; Durazo-Arvizu, R.A.; Dowling, K.G.; Škrabáková, Z.; Cashman, K.D.; Sempos, C.T.; et al. Implications of standardization of serum 25-hydroxyvitamin D data for the evaluation of vitamin D status in Germany, including a temporal analysis. BMC Public Health 2018, 18, 845. [Google Scholar] [CrossRef]
- Lehmann, F.; Haftenberger, M.; Mensink, G.B.M. Nährstoffversorgung und Rahmenbedingungen des Ernährungsverhaltens bei Kindern und Jugendlichen: Ergebnisse aus der Ernährungsstudie ESKIMO II. [Nutrient supply and general conditions of nutritional behavior in children and adolescents: Results from the ESKIMO II Nutrition Study]. In Ernährungsbericht; DGE: Bonn, Germany, 2020; pp. 114–141. [Google Scholar]
- Iguacel, I.; Miguel-Berges, M.L.; Gómez-Bruton, A.; Moreno, L.A.; Julián, C. Veganism, vegetarianism, bone mineral density, and fracture risk: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 1–18. [Google Scholar] [CrossRef]
- Tong, T.Y.N.; Appleby, P.N.; Armstrong, M.E.G.; Fensom, G.K.; Knuppel, A.; Papier, K.; Perez-Cornago, A.; Travis, R.C.; Key, T.J. Vegetarian and vegan diets and risks of total and site-specific fractures: Results from the prospective EPIC-Oxford study. BMC Med. 2020, 18, 353. [Google Scholar] [CrossRef]
- Hsu, E. Plant-based diets and bone health: Sorting through the evidence. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 248–252. [Google Scholar] [CrossRef]
- Messina, V.; Mangels, A.R. Considerations in planning vegan diets: Children. J. Am. Diet. Assoc. 2001, 101, 661–669. [Google Scholar] [CrossRef]
- Mariotti, F.; Gardner, C.D. Dietary Protein and Amino Acids in Vegetarian Diets-A Review. Nutrients 2019, 11, 2661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jen, V.; Karagounis, L.G.; Jaddoe, V.W.V.; Franco, O.H.; Voortman, T. Dietary protein intake in school-age children and detailed measures of body composition: The Generation R Study. Int. J. Obes. 2018, 42, 1715–1723. [Google Scholar] [CrossRef] [PubMed]
- Madrigal, C.; Soto-Méndez, M.J.; Hernández-Ruiz, Á.; Valero, T.; Ávila, J.M.; Ruiz, E.; Villoslada, F.L.; Leis, R.; Martínez de Victoria, E.; Moreno, J.M.; et al. Energy Intake, Macronutrient Profile and Food Sources of Spanish Children Aged One to <10 Years-Results from the EsNuPI Study. Nutrients 2020, 12, 893. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef]
- Lönnerdal, B. Soybean ferritin: Implications for iron status of vegetarians. Am. J. Clin. Nutr. 2009, 1680S–1685S. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, R.; Bell, K. Iron Status of Vegetarian Children: A Review of Literature. Ann. Nutr. Metab. 2017, 70, 88–99. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Sugars Intake for Adults and Children; WHO: Geneva, Switzerland, 2015; ISBN 9789241549028. [Google Scholar]
- Perrar, I.; Schmitting, S.; Della Corte, K.W.; Buyken, A.E.; Alexy, U. Age and time trends in sugar intake among children and adolescents: Results from the DONALD study. Eur. J. Nutr. 2019. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Protein, and Amino Acids; National Academies: Washington, DC, USA; Oxford Publicity Partnership: Oxford, UK, 2005; ISBN 978-0-309-08525-0. [Google Scholar]
- Segovia-Siapco, G.; Sabaté, J. Health and sustainability outcomes of vegetarian dietary patterns: A revisit of the EPIC-Oxford and the Adventist Health Study-2 cohorts. Eur. J. Clin. Nutr. 2019, 72, 60–70. [Google Scholar] [CrossRef]
- Appleby, P.N.; Key, T.J. The long-term health of vegetarians and vegans. Proc. Nutr. Soc. 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Haddad, E.H.; Tanzman, J.S. What do vegetarians in the United States eat? Am. J. Clin. Nutr. 2003, 78, 626–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livingstone, M.B.E.; Robson, P.J.; Wallace, J.M.W. Issues in dietary intake assessment of children and adolescents. Br. J. Nutr. 2004, 92, S213–S222. [Google Scholar] [CrossRef] [PubMed]
- Buyken, A.E.; Alexy, U.; Kersting, M.; Remer, T. Die DONALD Kohorte. Bundesgesundheitsblatt Gesundh. Gesundh. 2012, 55, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Kamtsiuris, P.; Lange, M.; Schaffrath Rosario, A. Der Kinder- und Jugendgesundheitssurvey (KiGGS): Stichprobendesign, Response und Nonresponse-Analyse. Bundesgesundheitsblatt Gesundh. Gesundh. 2007, 50, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Amit, M. Vegetarian diets in children andadolescents. Position statement of the Canadian Pediatric Society. Paediatr. Child. Health 2010, 15, 303–314. [Google Scholar]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef]
- Agnoli, C.; Baroni, L.; Bertini, I.; Ciappellano, S.; Fabbri, A.; Papa, M.; Pellegrini, N.; Sbarbati, R.; Scarino, M.L.; Siani, V.; et al. Position paper on vegetarian diets from the working group of the Italian Society of Human Nutrition. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 1037–1052. [Google Scholar] [CrossRef] [Green Version]
- American Academy of Pediatrics Committee on Nutrition (Ed.) Pediatric Nutrition: Nutritional Aspects of Vegetarian Diets, 8th ed.; American Academy of Pediatrics Committee on Nutrition: Itasca, IL, USA, 2020. [Google Scholar]
- Baldassarre, M.E.; Panza, R.; Farella, I.; Posa, D.; Capozza, M.; Mauro, A.D.; Laforgia, N. Vegetarian and Vegan Weaning of the Infant: How Common and How Evidence-Based? A Population-Based Survey and Narrative Review. Int. J. Environ. Res. Public Health 2020, 17, 4835. [Google Scholar] [CrossRef]
Vegetarian (n = 150) | Vegan (n = 114) | Omnivore (n = 137) | p 1 | |
---|---|---|---|---|
Boys | 59 (34.3) | 38 (22.1) | 75 (43.6) | |
Girls | 91 (39.7) | 76 (33.2) | 62 (27.1) | |
Age (years) | 12.6 ± 3.9 | 12.9 ± 4.2 | 12.6 ± 3.7 | 0.7766 |
Height (cm) | 154 ± 20 | 152 ± 19 | 156 ± 20 | 0.4902 |
Weight (kg) | 45 ± 18 | 43 ± 16 | 46 ± 17 | 0.4902 |
BMI-SDS | −0.3 ± 0.9 | −0.6 ± 0.9 | −0.3 ± 1.0 | 0.1506 |
Dietary variables | ||||
Exposure to diet (years) 2 | 5.0 ± 3.9 | 4.2 ± 3.4 | n.a. | 0.1506 |
Use of dietary supplements 3 | 74 (52.1) | 105 (95.5) | 22 (16.8) | 0.0012 |
Underreporting 4 | 31 (21.4) | 18 (16.4) | 23 (17.0) | 0.5159 |
Consuming caloric food or drink before blood withdrawal 5 | 15 (10.0) | 9 (8.1) | 7 (5.2) | 0.4297 |
Sociodemographic variables | ||||
Socioeconomic status 6 | ||||
High | 106 (74.1) | 68 (62.4) | 106 (80.9) | |
Middle | 34 (23.8) | 37 (33.9) | 25 (19.1) | |
Low | 3 (2.1) | 4 (3.7) | 0 (0) | 0.0456 |
Urbanicity 7 | ||||
Large city | 71 (51.8) | 59 (54.1) | 59 (46.1) | |
Medium sized | 48 (35.0) | 32 (29.4) | 48 (37.5) | |
Small city | 6 (4.4) | 11 (10.1) | 13 (10.2) | |
Rural community | 12 (8.8) | 7 (6.4) | 8 (6.3) | 0.5216 |
Smoking in the household (never) 8 | 136 (95.1) | 103 (93.6) | 128 (97.7) | 0.4902 |
Puberty 9 | ||||
Pre-pubertal | 57 (39.0) | 44 (38.6) | 55 (40.2) | |
Pubertal | 64 (43.8) | 43 (37.7) | 60 (43.8) | |
Post-pubertal | 25 (17.1) | 27 (23.7) | 22 (16.1) | 0.6110 |
Physical Activity 10 | ||||
Activity hours | 3.1 (1.7) | 3.2 (2.0) | 3.3 (1.8) | 0.4902 |
MET-minutes | 1212 (724) | 1188 (815) | 1315 (775) | 0.5830 |
VG | VN | OM | Total Model | Pairwise Comparison | |||
---|---|---|---|---|---|---|---|
P50 (P25; P75) | P50 (P25; P75) | P50 (P25; P75) | p 2 [η2] | VG-VN p 2 | VG-OM p 2 | VN-OM p 2 | |
Energy (kcal/day) | 1708 (1367; 1975) | 1634 (1358; 1903) | 1737 (1431; 2150) | ||||
(MJ/day) | 7.2 (5.7; 8.3) | 6.8 (5.7; 8.0) | 7.3 (6.0; 9.0 | 0.9922 [0.0001] | 0.9366 | 0.9922 | 0.9922 |
ED (kJ/g) 3 | 5.94 (5.11; 7.08) | 5.39 (4.68; 6.14) | 6.16 (5.26; 7.19) | 0.0152 [0.0238] | 0.0039 | 0.6110 | 0.0512 |
Macronutrients | |||||||
Protein (g/kg BW/day) | 1.14 (0.88; 1.53) | 1.16 (0.89; 1.67) | 1.36 (1.07; 1.74) | 0.0011 [0.0386] | 0.0180 | 0.0011 | 0.5918 |
Carbohydrates (%E) | 54.7 (50.2; 59.3) | 56.5 (50.6; 61.2) | 49.1 (45.0; 54.6) | 0.0002 [0.0679] | 0.2994 | 0.0002 | 0.0002 |
Free sugars (%E) 4 | 11.6 (8.1; 15.4) | 6.6 (4.0; 9.5) | 10.5 (7.3; 15.5) | 0.0002 [0.0929] | 0.0002 | 0.1789 | 0.0002 |
Dietary fibre (g/1000 kcal) | 14.7 (12.0; 17.7) | 21.9 (18.0; 25.5) | 12.0 (10.1; 14.2) | 0.0002 [0.2082] | 0.0002 | 0.0006 | 0.0002 |
Fat (%E) | 32.3 (28.0; 37.8) | 29.4 (25.3; 36.6) | 36.4 (30.7; 40.6) | 0.0037 [0.0316] | 0.0368 | 0.0376 | 0.0010 |
SFA (%E) | 12.5 (9.9; 15.6) | 7.8 (5.9; 10.3) | 15.9 (12.9; 18.8) | 0.0002 [0.1888] | 0.0002 | 0.0002 | 0.0002 |
MUFA (%E) | 10.3 (8.7; 12.3) | 9.5 (7.6; 13.0) | 11.8 (10.2; 14.0) | 0.0008 [0.0282] | 0.1370 | 0.0178 | 0.0022 |
PUFA (%E) | 6.1 (4.7; 7.9) | 8.6 (7.0; 10.8) | 4.8 (3.9; 6.0) | 0.0002 [0.1556] | 0.0002 | 0.0002 | 0.0002 |
Vitamins | |||||||
Retinol-Equivalents (µg/1000 kcal) | 435 (317; 641) | 465 (330; 698) | 453 (337; 650) | 0.2719 [0.0076] | 0.9175 | 0.1116 | 0.2759 |
Tocopherol-Equivalents (mg/1000 kcal) | 7.2 (5.7; 9.4) | 9.6 (7.9; 11.6) | 6.0 (4.8; 7.6) | 0.0002 [0.0978] | 0.0002 | 0.0015 | 0.0002 |
Vitamin C (mg/1000 kcal) | 45 (31; 64) | 67 (43; 91) | 44 (30; 66) | 0.0015 [0.0361] | 0.0004 | 0.2731 | 0.0398 |
Folate-Equivalents (µg/1000 kcal) | 191 (101; 147) | 152 (126; 185) | 109 (83; 131) | 0.0002 [0.0623] | 0.0002 | 0.0768 | 0.0002 |
Vitamin B1 (µg/1000 kcal) | 440 (360; 558) | 605 (497; 700) | 465 (413; 560) | 0.0002 [0.0927] | 0.0002 | 0.0413 | 0.0012 |
Vitamin B2 (µg/1000 kcal) | 476 (382; 588) | 381 (304; 483) | 544 (458; 645) | 0.0002 [0.0754] | 0.0002 | 0.0149 | 0.0002 |
Vitamin B12 (µg/1000 kcal) | 0.6 (0.4; 1.1) | 0.1 (0.0; 0.2) | 1.6 (1.2; 2.0) | 0.0002 [0.2057] | 0.0002 | ||
Minerals | |||||||
Calcium (mg/1000 kcal) | 390 (300; 494) | 305 (236; 424) | 400 (330; 474) | 0.0011 [0.0266] | 0.0026 | 0.9247 | 0.0182 |
Magnesium (mg/1000 kcal) | 176 (153; 210) | 251 (206; 305) | 153 (135; 179) | 0.0002 [0.2220] | 0.0002 | 0.0216 | 0.0002 |
Iron (mg/1000 kcal) | 6.8 (5.6; 7.8) | 9.2 (7.6; 10.8) | 5.7 (5.2; 6.6) | 0.0002 [0.1922] | 0.0002 | 0.0099 | 0.0002 |
Zinc (mg/1000 kcal) | 4.7 (3.9; 5.3) | 5.1 (4.3; 6.0) | 5.0 (4.4; 5.6) | 0.0002 [0.531] | 0.0002 | 0.0137 | 0.1680 |
VG | VN | OM | Total Model | Pairwise Comparison | |||
---|---|---|---|---|---|---|---|
P50 (P25; P75) | P50 (P25; P75) | P50 (P25; P75) | p 2 [η2] | VG-VN p 2 | VG-OM p 2 | VN-OM p 2 | |
Nutrient biomarkers | |||||||
Haemoglobin (g/dL) | 13.3 (12.4; 14.1) | 13.2 (12.5; 14.0) | 13.5 (12.8; 14.2) | 0.6520 [0.0029] | 0.9879 | 0.4143 | 0.5144 |
Ferritin (µg/L) | 29 (20; 39) | 29 (22; 42) | 38 (26; 52) | 0.0312 [0.0235] | 0.8081 | 0.0134 | 0.0404 |
25-OH Vitamin D3 (ng/mL) | 23 (17; 31) | 26 (20; 33) | 24 (18; 31) | 0.3519 [0.0074] | 0.7702 | 0.1704 | 0.4143 |
Vitamin B2 (FAD) (µg/L) | 199 (175; 223) | 197 (169; 215) | 206 (190; 225) | 0.2648 [0.0094] | 0.4518 | 0.2423 | 0.1284 |
Folate (µg/L) | 279 (251; 320) | 319 (287; 363) | 284 (252; 327) | 0.0134 [0.0286] | 0.0053 | 0.3366 | 0.1561 |
HoloTC (pmol/L) | 56 (41; 83) | 70 (44; 111) | 67 (50; 86) | 0.0120 [0.0304] | 0.3519 | 0.0042 | 0.1788 |
MMA (nmol/L) | 153 (127; 203) | 144 (110; 178) | 153 (119; 195) | 0.0701 [0.0183] | 0.6716 | 0.0253 | 0.1733 |
Blood lipids | |||||||
TC (mg/dL) | 144 (131; 162) | 133 (120; 150) | 153 (134; 173) | 0.0016 [0.0429] | 0.0065 | 0.1200 | 0.0010 |
HDL-C (mg/dL) | 54 (46; 68) | 53 (47; 64) | 57 (48; 66) | 0.6716 [0.0024] | 0.6538 | 0.5950 | 0.4288 |
Non-HDL-C (mg/dL) | 89 (74; 100) | 78 (63; 94) | 96 (73; 113) | 0.0010 [0.0458] | 0.0053 | 0.1003 | 0.0010 |
LDL-C (mg/dL) | 79 (69; 93) | 68 (57; 84) | 90 (70; 106) | 0.0010 [0.0514] | 0.0041 | 0.0701 | 0.0010 |
TG (mg/dL) | 70 (55; 91) | 69 (53; 85) | 61 (51; 80) | 0.1283 [0.0144] | 0.4185 | 0.0573 | 0.4288 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexy, U.; Fischer, M.; Weder, S.; Längler, A.; Michalsen, A.; Sputtek, A.; Keller, M. Nutrient Intake and Status of German Children and Adolescents Consuming Vegetarian, Vegan or Omnivore Diets: Results of the VeChi Youth Study. Nutrients 2021, 13, 1707. https://doi.org/10.3390/nu13051707
Alexy U, Fischer M, Weder S, Längler A, Michalsen A, Sputtek A, Keller M. Nutrient Intake and Status of German Children and Adolescents Consuming Vegetarian, Vegan or Omnivore Diets: Results of the VeChi Youth Study. Nutrients. 2021; 13(5):1707. https://doi.org/10.3390/nu13051707
Chicago/Turabian StyleAlexy, Ute, Morwenna Fischer, Stine Weder, Alfred Längler, Andreas Michalsen, Andreas Sputtek, and Markus Keller. 2021. "Nutrient Intake and Status of German Children and Adolescents Consuming Vegetarian, Vegan or Omnivore Diets: Results of the VeChi Youth Study" Nutrients 13, no. 5: 1707. https://doi.org/10.3390/nu13051707