Time-Restricted Feeding and Metabolic Outcomes in a Cohort of Italian Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Metabolic Outcomes
2.4. Dietary Assessment
2.5. Time Feeding Assessment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- NCD Risk Factor Collaboration (NCD-RisC). Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature 2019, 569, 260–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2020, 395, 65–74. [Google Scholar] [CrossRef]
- Wells, J.C.; Sawaya, A.L.; Wibaek, R.; Mwangome, M.; Poullas, M.S.; Yajnik, C.S.; Demaio, A. The double burden of malnutrition: Aetiological pathways and consequences for health. Lancet 2020, 395, 75–88. [Google Scholar] [CrossRef]
- GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar] [CrossRef] [Green Version]
- Cagampang, F.R.; Bruce, K.D. The role of the circadian clock system in nutrition and metabolism. Br. J. Nutr. 2012, 108, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, J. Circadian clocks: Setting time by food. J. Neuroendocrinol. 2007, 19, 127–137. [Google Scholar] [CrossRef]
- Bass, J.; Takahashi, J.S. Circadian integration of metabolism and energetics. Science 2010, 330, 1349–1354. [Google Scholar] [CrossRef] [Green Version]
- Almoosawi, S.; Winter, J.; Prynne, C.J.; Hardy, R.; Stephen, A.M. Daily profiles of energy and nutrient intakes: Are eating profiles changing over time? Eur. J. Clin. Nutr. 2012, 66, 678–686. [Google Scholar] [CrossRef] [Green Version]
- Sunderram, J.; Sofou, S.; Kamisoglu, K.; Karantza, V.; Androulakis, I.P. Time-restricted feeding and the realignment of biological rhythms: Translational opportunities and challenges. J. Transl. Med. 2014, 12, 79. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, C.; Santibañez, S.; Villagrán, F. Effectiveness of intermittent fasting to potentiate weight loss or muscle gains in humans younger than 60 years old: A systematic review. Int. J. Food Sci. Nutr. 2021, 1–12. [Google Scholar] [CrossRef]
- Paoli, A.; Tinsley, G.; Bianco, A.; Moro, T. The influence of meal frequency and timing on health in humans: The role of fasting. Nutrients 2019, 11, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currenti, W.; Godos, J.; Castellano, S.; Mogavero, M.P.; Ferri, R.; Caraci, F.; Grosso, G.; Galvano, F. Time restricted feeding and mental health: A review of possible mechanisms on affective and cognitive disorders. Int. J. Food Sci. Nutr. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Marventano, S.; D’Urso, M.; Mistretta, A.; Galvano, F. The Mediterranean healthy eating, ageing, and lifestyle (MEAL) study: Rationale and study design. Int. J. Food Sci. Nutr. 2017, 68, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Mistretta, A.; Marventano, S.; Platania, A.; Godos, J.; Galvano, F.; Grosso, G. Metabolic profile of the Mediterranean healthy Eating, Lifestyle and Aging (MEAL) study cohort. Med. J. Nutr. Metab. 2017, 10, 131–140. [Google Scholar] [CrossRef]
- Bakris, G.; Ali, W.; Parati, G. ACC/AHA versus ESC/ESH on hypertension guidelines: JACC guideline comparison. J. Am. Coll. Cardiol. 2019, 73, 3018–3026. [Google Scholar] [CrossRef]
- Marventano, S.; Mistretta, A.; Platania, A.; Galvano, F.; Grosso, G. Reliability and relative validity of a food frequency questionnaire for Italian adults living in Sicily, Southern Italy. Int. J. Food Sci. Nutr. 2016, 67, 857–864. [Google Scholar] [CrossRef]
- Buscemi, S.; Rosafio, G.; Vasto, S.; Massenti, F.M.; Grosso, G.; Galvano, F.; Rini, N.; Barile, A.M.; Maniaci, V.; Cosentino, L.; et al. Validation of a food frequency questionnaire for use in Italian adults living in Sicily. Int. J. Food Sci. Nutr. 2015, 66, 426–438. [Google Scholar] [CrossRef]
- Marventano, S.; Godos, J.; Platania, A.; Galvano, F.; Mistretta, A.; Grosso, G. Mediterranean diet adherence in the Mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 2018, 69, 100–107. [Google Scholar] [CrossRef]
- Sofi, F.; Dinu, M.; Pagliai, G.; Marcucci, R.; Casini, A. Validation of a literature-based adherence score to Mediterranean diet: The MEDI-LITE score. Int. J. Food Sci. Nutr. 2017, 68, 757–762. [Google Scholar] [CrossRef]
- Rynders, C.A.; Thomas, E.A.; Zaman, A.; Pan, Z.; Catenacci, V.A.; Melanson, E.L. Effectiveness of Intermittent Fasting and Time-Restricted Feeding Compared to Continuous Energy Restriction for Weight Loss. Nutrients 2019, 11, 2442. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, M.; Cioffi, I.; Evangelista, A.; Ponzo, V.; Goitre, I.; Ciccone, G.; Ghigo, E.; Bo, S. Correction to: Effects of time-restricted feeding on body weight and metabolism. A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2020, 21, 35. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.; Panda, S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab. 2015, 22, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Moro, T.; Tinsley, G.; Bianco, A.; Marcolin, G.; Pacelli, Q.F.; Battaglia, G.; Palma, A.; Gentil, P.; Neri, M.; Paoli, A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 2016, 14, 290. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Forsse, J.S.; Butler, N.K.; Paoli, A.; Bane, A.A.; La Bounty, P.M.; Morgan, G.B.; Grandjean, P.W. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur. J. Sport Sci. 2017, 17, 200–207. [Google Scholar] [CrossRef]
- Gabel, K.; Hoddy, K.K.; Haggerty, N.; Song, J.; Kroeger, C.M.; Trepanowski, J.F.; Panda, S.; Varady, K.A. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr. Healthy Aging 2018, 4, 345–353. [Google Scholar] [CrossRef]
- Lowe, D.A.; Wu, N.; Rohdin-Bibby, L.; Moore, A.H.; Kelly, N.; Liu, Y.E.; Philip, E.; Vittinghoff, E.; Heymsfield, S.B.; Olgin, J.E.; et al. Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men with Overweight and Obesity: The TREAT Randomized Clinical Trial. JAMA Intern. Med. 2020, 180, 1491–1499. [Google Scholar] [CrossRef]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27, 1212–1221.e3. [Google Scholar] [CrossRef] [Green Version]
- Schroder, J.D.; Falqueto, H.; Mânica, A.; Zanini, D.; de Oliveira, T.; de Sá, C.A.; Cardoso, A.M.; Manfredi, L.H. Effects of time-restricted feeding in weight loss, metabolic syndrome and cardiovascular risk in obese women. J. Transl. Med. 2021, 19, 3. [Google Scholar] [CrossRef]
- Kahleova, H.; Lloren, J.I.; Mashchak, A.; Hill, M.; Fraser, G.E. Meal Frequency and Timing Are Associated with Changes in Body Mass Index in Adventist Health Study 2. J. Nutr. 2017, 147, 1722–1728. [Google Scholar] [CrossRef] [Green Version]
- Taetzsch, A.; Roberts, S.B.; Bukhari, A.; Lichtenstein, A.H.; Gilhooly, C.H.; Martin, E.; Krauss, A.J.; Hatch-McChesney, A.; Das, S.K. Eating Timing: Associations with Dietary Intake and Metabolic Health. J. Acad. Nutr. Diet. 2020. [Google Scholar] [CrossRef]
- Zouhal, H.; Bagheri, R.; Triki, R.; Saeidi, A.; Wong, A.; Hackney, A.C.; Laher, I.; Suzuki, K.; Ben Abderrahman, A. Effects of Ramadan Intermittent Fasting on Gut Hormones and Body Composition in Males with Obesity. Int. J. Environ. Res. Public Health 2020, 17, 5600. [Google Scholar] [CrossRef]
- Urooj, A.; Pai Kotebagilu, N.; Shivanna, L.M.; Anandan, S.; Thantry, A.N.; Siraj, S.F. Effect of ramadan fasting on body composition, biochemical profile, and antioxidant status in a sample of healthy individuals. Int. J. Endocrinol. Metab. 2020, 18, e107641. [Google Scholar] [CrossRef]
- Karras, S.N.; Koufakis, T.; Adamidou, L.; Antonopoulou, V.; Karalazou, P.; Thisiadou, K.; Mitrofanova, E.; Mulrooney, H.; Petróczi, A.; Zebekakis, P.; et al. Effects of orthodox religious fasting versus combined energy and time restricted eating on body weight, lipid concentrations and glycaemic profile. Int. J. Food Sci. Nutr. 2021, 72, 82–92. [Google Scholar] [CrossRef]
- Osman, F.; Haldar, S.; Henry, C.J. Effects of Time-Restricted Feeding during Ramadan on Dietary Intake, Body Composition and Metabolic Outcomes. Nutrients 2020, 12, 2478. [Google Scholar] [CrossRef]
- Karras, S.N.; Koufakis, T.; Adamidou, L.; Polyzos, S.A.; Karalazou, P.; Thisiadou, K.; Zebekakis, P.; Makedou, K.; Kotsa, K. Similar late effects of a 7-week orthodox religious fasting and a time restricted eating pattern on anthropometric and metabolic profiles of overweight adults. Int. J. Food Sci. Nutr. 2021, 72, 248–258. [Google Scholar] [CrossRef]
- Kawakami, Y.; Yamanaka-Okumura, H.; Sakuma, M.; Mori, Y.; Adachi, C.; Matsumoto, Y.; Sato, T.; Yamamoto, H.; Taketani, Y.; Katayama, T.; et al. Gene expression profiling in peripheral white blood cells in response to the intake of food with different glycemic index using a DNA microarray. J. Nutrigenet. Nutr. 2013, 6, 154–168. [Google Scholar] [CrossRef]
- Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003, 52, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Fu, O.; Yao, L.; Sun, L.; Zhuge, F.; Fu, Z. Differential responses of peripheral circadian clocks to a short-term feeding stimulus. Mol. Biol. Rep. 2012, 39, 9783–9789. [Google Scholar] [CrossRef]
- Budai, Z.; Balogh, L.; Sarang, Z. Short-term high-fat meal intake alters the expression of circadian clock-, inflammation-, and oxidative stress-related genes in human skeletal muscle. Int. J. Food Sci. Nutr. 2019, 70, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Hatori, M.; Vollmers, C.; Zarrinpar, A.; DiTacchio, L.; Bushong, E.A.; Gill, S.; Leblanc, M.; Chaix, A.; Joens, M.; Fitzpatrick, J.A.J.; et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012, 15, 848–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, M.P. Energy intake, meal frequency, and health: A neurobiological perspective. Annu. Rev. Nutr. 2005, 25, 237–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anson, R.M.; Guo, Z.; de Cabo, R.; Iyun, T.; Rios, M.; Hagepanos, A.; Ingram, D.K.; Lane, M.A.; Mattson, M.P. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc. Natl. Acad. Sci. USA 2003, 100, 6216–6220. [Google Scholar] [CrossRef] [Green Version]
- Salvucci, E. The human-microbiome superorganism and its modulation to restore health. Int. J. Food Sci. Nutr. 2019, 70, 781–795. [Google Scholar] [CrossRef]
- Mammucari, C.; Schiaffino, S.; Sandri, M. Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy 2008, 4, 524–526. [Google Scholar] [CrossRef] [Green Version]
- Gatica, D.; Chiong, M.; Lavandero, S.; Klionsky, D.J. Molecular mechanisms of autophagy in the cardiovascular system. Circ. Res. 2015, 116, 456–467. [Google Scholar] [CrossRef] [Green Version]
- Reutrakul, S.; Hood, M.M.; Crowley, S.J.; Morgan, M.K.; Teodori, M.; Knutson, K.L.; Van Cauter, E. Chronotype is independently associated with glycemic control in type 2 diabetes. Diabetes Care 2013, 36, 2523–2529. [Google Scholar] [CrossRef] [Green Version]
- Makarem, N.; Paul, J.; Giardina, E.-G.V.; Liao, M.; Aggarwal, B. Evening chronotype is associated with poor cardiovascular health and adverse health behaviors in a diverse population of women. Chronobiol. Int. 2020, 37, 673–685. [Google Scholar] [CrossRef]
- Maukonen, M.; Kanerva, N.; Partonen, T.; Männistö, S. Chronotype and energy intake timing in relation to changes in anthropometrics: A 7-year follow-up study in adults. Chronobiol. Int. 2019, 36, 27–41. [Google Scholar] [CrossRef]
- Xiao, Q.; Garaulet, M.; Scheer, F.A.J.L. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int. J. Obes. 2019, 43, 1701–1711. [Google Scholar] [CrossRef]
- Reutrakul, S.; Hood, M.M.; Crowley, S.J.; Morgan, M.K.; Teodori, M.; Knutson, K.L. The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol. Int. 2014, 31, 64–71. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Aprano, S.; Framondi, L.; Di Matteo, R.; Laudisio, D.; Pugliese, G.; Savastano, S.; Colao, A.; On Behalf Of The Opera Prevention Project. Chronotype and Adherence to the Mediterranean Diet in Obesity: Results from the Opera Prevention Project. Nutrients 2020, 12, 1354. [Google Scholar] [CrossRef]
- Rodríguez-Muñoz, P.M.; Carmona-Torres, J.M.; Rivera-Picón, C.; Fabbian, F.; Manfredini, R.; Rodríguez-Borrego, M.A.; López-Soto, P.J. Associations between Chronotype, Adherence to the Mediterranean Diet and Sexual Opinion among University Students. Nutrients 2020, 12, 1900. [Google Scholar] [CrossRef]
- Wang, J.B.; Patterson, R.E.; Ang, A.; Emond, J.A.; Shetty, N.; Arab, L. Timing of energy intake during the day is associated with the risk of obesity in adults. J. Hum. Nutr. Diet. 2014, 27 (Suppl. 2), 255–262. [Google Scholar] [CrossRef]
- Bertéus Forslund, H.; Lindroos, A.K.; Sjöström, L.; Lissner, L. Meal patterns and obesity in Swedish women-a simple instrument describing usual meal types, frequency and temporal distribution. Eur. J. Clin. Nutr. 2002, 56, 740–747. [Google Scholar] [CrossRef] [Green Version]
- Berg, C.; Lappas, G.; Wolk, A.; Strandhagen, E.; Torén, K.; Rosengren, A.; Thelle, D.; Lissner, L. Eating patterns and portion size associated with obesity in a Swedish population. Appetite 2009, 52, 21–26. [Google Scholar] [CrossRef]
- Baron, K.G.; Reid, K.J.; Kern, A.S.; Zee, P.C. Role of sleep timing in caloric intake and BMI. Obesity 2011, 19, 1374–1381. [Google Scholar] [CrossRef]
- Summerbell, C.D.; Moody, R.C.; Shanks, J.; Stock, M.J.; Geissler, C. Relationship between feeding pattern and body mass index in 220 free-living people in four age groups. Eur. J. Clin. Nutr. 1996, 50, 513–519. [Google Scholar]
- Thomas, E.A.; Zaman, A.; Cornier, M.-A.; Catenacci, V.A.; Tussey, E.J.; Grau, L.; Arbet, J.; Broussard, J.L.; Rynders, C.A. Later meal and sleep timing predicts higher percent body fat. Nutrients 2020, 13, 73. [Google Scholar] [CrossRef]
- Cahill, L.E.; Chiuve, S.E.; Mekary, R.A.; Jensen, M.K.; Flint, A.J.; Hu, F.B.; Rimm, E.B. Prospective study of breakfast eating and incident coronary heart disease in a cohort of male US health professionals. Circulation 2013, 128, 337–343. [Google Scholar] [CrossRef]
- Garaulet, M.; Gómez-Abellán, P.; Alburquerque-Béjar, J.J.; Lee, Y.C.; Ordovás, J.M.; Scheer, F.A.J.L. Timing of food intake predicts weight loss effectiveness. Int. J. Obes. 2013, 37, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Jacob, R.; Tremblay, A.; Panahi, S.; Provencher, V.; Drapeau, V. Is the timing of food intake a potential indicator of low weight loss responders? A secondary analysis of three weight loss studies. Clin. Obes. 2020, 10, e12360. [Google Scholar] [CrossRef]
- Scheer, F.A.J.L.; Hilton, M.F.; Mantzoros, C.S.; Shea, S.A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. USA 2009, 106, 4453–4458. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.J.; Yang, J.N.; Garcia, J.I.; Myers, S.; Bozzi, I.; Wang, W.; Buxton, O.M.; Shea, S.A.; Scheer, F.A.J.L. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc. Natl. Acad. Sci. USA 2015, 112, E2225–E2234. [Google Scholar] [CrossRef] [Green Version]
- Wefers, J.; van Moorsel, D.; Hansen, J.; Connell, N.J.; Havekes, B.; Hoeks, J.; van Marken Lichtenbelt, W.D.; Duez, H.; Phielix, E.; Kalsbeek, A.; et al. Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proc. Natl. Acad. Sci. USA 2018, 115, 7789–7794. [Google Scholar] [CrossRef] [Green Version]
TRF-8 | TRF-10 | |||||||
---|---|---|---|---|---|---|---|---|
Yes (n = 108) | No (n = 1828) | p-Value * | pfor trend * | Yes (n = 276) | No (n = 1660) | p-Value * | pfor trend * | |
Sex, n (%) | 0.369 | - | 0.121 | - | ||||
Men | 47 (43.5) | 757 (41.4) | 124 (44.9) | 680 (41.0) | ||||
Women | 61 (56.5) | 1071 (58.6) | 152 (55.1) | 980 (59.0) | ||||
Age groups, mean (SD) | 54.7 (15.7) | 48.1 (17.6) | <0.001 | - | 49.2 (17.5) | 43.8 (17.1) | <0.001 | - |
Educational status, n (%) | 0.003 | 0.342 | <0.001 | 0.381 | ||||
Primary/secondary school | 43 (39.8) | 654 (35.8) | 72 (26.1) | 625 (37.7) | ||||
High school | 51 (47.2) | 669 (36.6) | 127 (46.0) | 593 (35.7) | ||||
University | 14 (13.0) | 505 (27.6) | 77 (27.9) | 442 (26.6) | ||||
Occupational status, n (%) | <0.001 | 0.421 | 0.062 | 0.623 | ||||
Unemployed | 10 (11.0) | 451 (28.8) | 49 (21.3) | 412 (28.9) | ||||
Unskilled workers | 30 (33.0) | 236 (15.1) | 46 (20.0) | 220 (15.4) | ||||
Partially skilled workers | 30 (33.0) | 410 (26.2) | 67 (29.1) | 373 (26.1) | ||||
Skilled workers | 21 (23.1) | 470 (30.0) | 68 (29.6) | 423 (29.6) | ||||
Smoking status, n (%) | <0.001 | - | <0.001 | - | ||||
Never smoker | 43 (39.8) | 1152 (63.0) | 127 (46.0) | 1068 (64.3) | ||||
Former smoker | 52 (48.1) | 413 (22.6) | 126 (45.7) | 339 (20.4) | ||||
Current smoker | 13 (12.0) | 263 (14.4) | 23 (8.3) | 253 (15.2) | ||||
Physical activity level, n (%) | 0.047 | 0.527 | 0.149 | 0.521 | ||||
Low | 27 (26.0) | 302 (18.6) | 42 (15.6) | 287 (19.7) | ||||
Moderate | 40 (38.5) | 816 (50.2) | 132 (48.9) | 724 (49.7) | ||||
High | 37 (35.6) | 506 (31.2) | 96 (35.6) | 447 (30.7) | ||||
Health status, n (%) | ||||||||
Hypertension | 49 (45.4) | 927 (50.7) | 0.281 | - | 95 (34.4) | 881 (53.1) | <0.001 | - |
Diabetes | 9 (8.3) | 137 (9) | 0.429 | - | 9 (8.3) | 137 (9.0) | 0.004 | - |
Dyslipidemias | 11 (10.2) | 345 (18.9) | 0.012 | - | 15 (5.4) | 341 (20.5) | <0.001 | - |
Overweight/obesity | 21 (24.1) | 926 (54.1) | <0.001 | - | 61 (27.0) | 886 (56.4) | <0.001 | - |
BMI, mean (SD) | 23.2 (2.4) | 26.0 (4.62) | <0.001 | - | 23.5 (2.7) | 25.9 (4.6) | <0.001 | - |
Systolic blood pressure | 117.2 (11.6) | 122.1 (12.9) | <0.001 | - | 122.3 (13.9) | 121.7 (12.8) | 0.606 | - |
Diastolic blood pressure | 73.4 (8.8) | 75.3 (10.6) | 0.042 | - | 76.6 (11.1) | 75.0 (10.4) | 0.135 | - |
TRF-8 | TRF-10 | |||||
---|---|---|---|---|---|---|
Yes (n = 108) | No (n = 1828) | p-Value * | Yes (n = 276) | No (n = 1660) | p-Value * | |
Mean (SD) | Mean (SD) | |||||
Energy intake (kcal/day) | 2106.3 (813.6) | 2243.5 (885) | 0.090 | 2104 (819.8) | 2173.8 (806.8) | 0.189 |
Energy intake (kJ/day) | 8539.5 (3369.9) | 9135 (3678.6) | 0.076 | 8528.9 (3393.3) | 8836 (3361.5) | 0.163 |
Macronutrients | ||||||
Carbohydrates (g/day) | 306.6 (127.4) | 334.7 (132.7) | 0.027 | 306 (127.9) | 321.2 (127.0) | 0.067 |
Fiber (g/day) | 33 (17.7) | 40 (26.1) | <0.001 | 33.2 (18.1) | 35.2 (19.4) | 0.098 |
Protein (g/day) | 88.2 (37.8) | 93.7 (47.6) | 0.151 | 88.3 (38.8) | 89.3 (36.3) | 0.699 |
Fat (g/day) | 62.5 (27.7) | 63.6 (31.4) | 0.682 | 62.3 (27.6) | 64.1 (30.0) | 0.315 |
Cholesterol (mg/day) | 200 (109.7) | 196.9 (140.6) | 0.772 | 201.4 (112.6) | 191 (105.3) | 0.152 |
SFA | 24.6 (11.4) | 24.5 (12.2) | 0.954 | 24.5 (11.2) | 25 (12.8) | 0.433 |
MUFA | 26.3 (10.9) | 27 (12.9) | 0.475 | 26.2 (10.8) | 27.1 (12) | 0.212 |
PUFA | 11.48 (5.9) | 12 (6.0) | 0.412 | 11.5 (6.0) | 11.8 (5.3) | 0.420 |
Total Omega-3 | 1.73 (0.9) | 1.73 (1.0) | 0.924 | 1.74 (0.9) | 1.66 (0.7) | 0.207 |
Micronutrients | ||||||
Vitamin A (Retinol) | 5.8 (6.5) | 6.6 (9.2) | 0.119 | 897.4 (482) | 904.2 (421.2) | 0.825 |
Vitamin C (mg/day) | 164.2 (115.1) | 208.9 (154.8) | <0.001 | 164 (117.4) | 182.8 (121.3) | 0.014 |
Vitamin E (mg/day) | 9 (4.0) | 10 (4.8) | 0.009 | 9 (4.0) | 9.6 (4.2) | 0.017 |
Vitamin B12 | 7 (7.4) | 6.7 (6.5) | 0.692 | 7 (7.7) | 6.2 (4.8) | 0.076 |
Vitamin D | 894.3 (472.6) | 967.5 (490) | 0.220 | 5.9 (6.7) | 5.5 (6.3) | 0.267 |
Sodium (mg/day) | 2937 (1208.1) | 2824.2 (1246.4) | 0.347 | 2907.6 (1191.6) | 3069.5 (1310.6) | 0.040 |
Potassium (mg/day) | 3828.7 (1822.8) | 4350.6 (2556.5) | 0.005 | 3842.9 (1876) | 3947.7 (1864.5) | 0.390 |
Foods | ||||||
Cereals (total, g/day) | 219.9 (138.1) | 240.1 (127.8) | 0.138 | 219.1 (138.7) | 232.5 (130.2) | 0.135 |
Vegetables (g/day) | 272.2 (184.6) | 296 (229.7) | 0.201 | 273.5 (190.0) | 273.5 (171.8) | 0.999 |
Fruit (g/day) | 407.4 (347) | 542.4 (438.9) | <0.001 | 410.7 (352.6) | 440.3 (362) | 0.199 |
Legumes (g/day) | 38.3 (49.8) | 53.4 (73.0) | 0.003 | 38.3 (51.3) | 43.8 (52.4) | 0.099 |
Nuts (total, g/day) | 23 (43.0) | 15 (19.0) | 0.068 | 23.7 (47.9) | 16.2 (19.3) | 0.011 |
Fish (g/day) | 69.1 (83.2) | 77.3 (99.5) | 0.326 | 70.5 (86.3) | 64.2 (69.8) | 0.247 |
Meat (total, g/day) | 71.9 (40.3) | 62.8 (34.9) | 0.022 | 71.6 (39.7) | 70.1 (42.2) | 0.578 |
Red meat (g/day) | 34.8 (26.7) | 30.2 (22.0) | 0.076 | 34.7 (26.9) | 33.9 (23.4) | 0.642 |
Processed Meat (g/day) | 17.3 (21.0) | 15.6 (28.0) | 0.4 | 17.1 (21.3) | 17.8 (22.5) | 0.655 |
Dairy products (g/day) | 201.6 (180.5) | 165.9 (191) | 0.047 | 206 (181.2) | 160.8 (176.9) | <0.001 |
Alcohol (total, g/day) | 7.6 (11.9) | 7.5 (12.0) | 0.953 | 7.7 (12.0) | 6.8 (11.8) | 0.256 |
Coffee (mL/day) | 59.1 (45.6) | 58.4 (47.5) | 0.878 | 59.3 (45.7) | 57.8 (45.9) | 0.638 |
Tea (mL/day) | 72.5 (146.5) | 93.5 (164.0) | 0.160 | 72.8 (149.3) | 78.7 (137.0) | 0.548 |
Olive oil (mL/day) | 7 (3.2) | 7 (3.2) | 0.802 | 7 (3.2) | 7 (3.2) | 0.746 |
OR (95% CI) * | ||||
---|---|---|---|---|
Overweight/Obesity | Hypertension | Type-2 Diabetes | Dyslipidemias | |
TRF-8 | ||||
Model 1 | 0.27 (0.16, 0.45) | 0.80 (0.55, 1.19) | 1.12 (0.56, 2.27) | 0.48 (0.26, 0.92) |
Model 2 | 0.19 (0.11, 0.32) | 0.46 (0.29, 0.72) | 0.72 (0.34, 1.53) | 0.34 (0.17, 0.65) |
Model 3 | 0.20 (0.11, 0.37) | 0.37 (0.22, 0.63) | 0.78 (0.35, 1.75) | 0.25 (0.12, 0.53) |
Model 4 | 0.08 (0.04, 0.15) | 0.33 (0.17, 0.60) | 1.03 (0.38, 2.87) | 0.46 (0.19, 1.15) |
TRF-10 | ||||
Model 1 | 0.30 (0.21, 0.41) | 0.46 (0.35, 0.60) | 0.37 (0.18, 0.74) | 0.22 (0.13, 0.37) |
Model 2 | 0.44 (0.30, 0.66) | 0.52 (0.38, 0.71) | 0.46 (0.22, 0.95) | 0.26 (0.14, 0.45) |
Model 3 | 0.33 (0.23, 0.48) | 0.42 (0.30, 0.60) | 0.48 (0.22, 1.02) | 0.20 (0.11, 0.38) |
Model 4 | 0.05 (0.01, 0.07) | 0.24 (0.13, 0.45) | 0.59 (0.21, 1.64) | 0.26 (0.10, 0.63) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Currenti, W.; Buscemi, S.; Cincione, R.I.; Cernigliaro, A.; Godos, J.; Grosso, G.; Galvano, F. Time-Restricted Feeding and Metabolic Outcomes in a Cohort of Italian Adults. Nutrients 2021, 13, 1651. https://doi.org/10.3390/nu13051651
Currenti W, Buscemi S, Cincione RI, Cernigliaro A, Godos J, Grosso G, Galvano F. Time-Restricted Feeding and Metabolic Outcomes in a Cohort of Italian Adults. Nutrients. 2021; 13(5):1651. https://doi.org/10.3390/nu13051651
Chicago/Turabian StyleCurrenti, Walter, Silvio Buscemi, Raffaele Ivan Cincione, Achille Cernigliaro, Justyna Godos, Giuseppe Grosso, and Fabio Galvano. 2021. "Time-Restricted Feeding and Metabolic Outcomes in a Cohort of Italian Adults" Nutrients 13, no. 5: 1651. https://doi.org/10.3390/nu13051651
APA StyleCurrenti, W., Buscemi, S., Cincione, R. I., Cernigliaro, A., Godos, J., Grosso, G., & Galvano, F. (2021). Time-Restricted Feeding and Metabolic Outcomes in a Cohort of Italian Adults. Nutrients, 13(5), 1651. https://doi.org/10.3390/nu13051651