Diet, Physical Activity, and Disinhibition in Middle-Aged and Older Adults: A UK Biobank Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The UK Biobank Study
2.2. Diet
2.3. Behavioral Disinhibition
2.4. Physical Activity
2.5. Covariates
2.6. Statistical Procedures
3. Results
3.1. Dietary Components
3.2. Dietary Groups
3.3. Disinhibition
3.4. Diet and Disinhibition
3.5. MVPA and Disinhibition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, L.; Markon, K.E.; Clark, L.A. Toward a theory of distinct types of “impulsive” behaviors: A meta-analysis of self-report and behavioral measures. Psychol. Bull. 2014, 140, 374–408. [Google Scholar] [CrossRef] [PubMed]
- Cortese, S.; Moreira-Maia, C.R.; Fleur, D.S.; Morcillo-Peñalver, C.; Rohde, L.A.; Faraone, S.V. Association Between ADHD and Obesity: A Systematic Review and Meta-Analysis. Am. J. Psychiatry 2016, 173, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Kubzansky, L.D.; Park, N.; Peterson, C.; Vokonas, P.; Sparrow, D. Healthy Psychological Functioning and Incident Coronary Heart Disease. Arch. Gen. Psychiatry 2011, 68, 400–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Blyderveen, S.; Lafrance, A.; Emond, M.; Kosmerly, S.; O’Connor, M.; Chang, F. Personality differences in the susceptibility to stress-eating: The influence of emotional control and impulsivity. Eat. Behav. 2016, 23, 76–81. [Google Scholar] [CrossRef]
- Guerrieri, R.; Nederkoorn, C.; Jansen, A. How impulsiveness and variety influence food intake in a sample of healthy women. Appetite 2007, 48, 119–122. [Google Scholar] [CrossRef]
- Bénard, M.; Bellisle, F.; Kesse-Guyot, E.; Julia, C.; A Andreeva, V.; Etilé, F.; Reach, G.; Dechelotte, P.; Tavolacci, M.-P.; Hercberg, S.; et al. Impulsivity is associated with food intake, snacking, and eating disorders in a general population. Am. J. Clin. Nutr. 2019, 109, 117–126. [Google Scholar] [CrossRef]
- Loewen, O.K.; Maximova, K.; Ekwaru, J.P.; Asbridge, M.; Ohinmaa, A.; Veugelers, P.J. Adherence to life-style rec-ommendations and Attention-Deficit/Hyperactivity Disorder: A population-based study of children aged 10 to 11 years. Psychosom. Med. 2020, 82, 305–315. [Google Scholar] [CrossRef]
- Łojko, D.; Stelmach-Mardas, M.; Suwalska, A. Diet quality and eating patterns in euthymic bipolar patients. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1221–1238. [Google Scholar]
- Alkerwi, A.; Baydarlioglu, B.; Sauvageot, N.; Stranges, S.; Lemmens, P.; Shivappa, N.; Hébert, J.R. Smoking status is inversely associated with overall diet quality: Findings from the ORISCAV-LUX study. Clin. Nutr. 2017, 36, 1275–1282. [Google Scholar] [CrossRef]
- Lindroos, A.K.; Lissner, L.; Mathiassen, M.E.; Karlsson, J.; Sullivan, M.; Bengtsson, C.; Sjöström, L. Dietary intake in relation to restrained eating, disinhibition, and hunger in obese and nonobese swe-dish women. Obes. Res. 1997, 5, 175–182. [Google Scholar] [CrossRef]
- French, S.A.; Mitchell, N.R.; Finlayson, G.; Blundell, J.E.; Jeffery, R.W. Questionnaire and laboratory measures of eating behavior. Associations with energy intake and BMI in a community sample of working adults. Appetite 2014, 72, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Steadman, K.M.; Knouse, L.E. Is the Relationship Between ADHD Symptoms and Binge Eating Mediated by Impulsivity? J. Atten. Disord. 2016, 20, 907–912. [Google Scholar] [CrossRef]
- Kaisari, P.; Dourish, C.T.; Rotshtein, P.; Higgs, S. Associations between core symptoms of attention deficit hyperactivity disorder and both binge and restrictive eating. Front. Psychiatry 2018, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kelly, N.R.; Jaramillo, M.; Ramirez, S.; Altman, D.R.; Rubin, S.G.; Yang, S.B.; Courville, A.B.; Shank, L.M.; Byrne, M.E.; Lemay-Russell, S.; et al. Executive functioning and disinhibited eating in children and adolescents. Pediatr. Obes. 2020, 15, e12614. [Google Scholar] [CrossRef]
- Preuss, H.; Leister, L.; Pinnow, M.; Legenbauer, T. Inhibitory control pathway to disinhibited eating: A matter of perspective? Appetite 2019, 141, 104297. [Google Scholar] [CrossRef]
- Steele, C.C.; Pirkle, J.R.A.; Kirkpatrick, K. Diet-induced impulsivity: Effects of a high-fat and a high-sugar diet on impulsive choice in rats. PLoS ONE 2017, 12, e0180510. [Google Scholar] [CrossRef] [Green Version]
- Krishna, S.; Keralapurath, M.M.; Lin, Z.; Wagner, J.J.; De La Serre, C.B.; Harn, D.A.; Filipov, N.M. Neurochemical and electrophysiological deficits in the ventral hippocampus and selective behavioral alterations caused by high-fat diet in female C57BL/6 mice. Neuroscience 2015, 297, 170–181. [Google Scholar] [CrossRef]
- Sharma, S.; Fernandes, M.F.; Fulton, S. Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal. Int. J. Obes. 2013, 37, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Verlaet, A.A.J.; Noriega, D.B.; Hermans, N.; Savelkoul, H.F.J. Nutrition, immunological mechanisms and dietary immunomodulation in ADHD. Eur. Child Adolesc. Psychiatry 2014, 23, 519–529. [Google Scholar] [CrossRef]
- Pelsser, L.M.J.; Buitelaar, J.K.; Savelkoul, H.F.J. ADHD as a (non) allergic hypersensitivity disorder: A hypothesis. Pediatr. Allergy Immunol. 2009, 20, 107–112. [Google Scholar] [CrossRef]
- Radak, Z.; Marton, O.; Nagy, E.; Koltai, E.; Goto, S. The complex role of physical exercise and reactive oxygen species on brain. J. Sport Health Sci. 2013, 2, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Kinnunen, M.I.; Suihko, J.; Hankonen, N.; Absetz, P.; Jallinoja, P. Self-Control is Associated with Physical Activity and Fitness among Young Males. Behav. Med. 2012, 38, 83–89. [Google Scholar] [CrossRef]
- Cardol, C.K.; Escamilla, C.I.; Gebhardt, W.A.; Perales, J.C. Exploring the direct or inverse association of physical activity with behavioral addictions and other self-regulation problems. Adicciones 2019, 31, 18–32. [Google Scholar]
- Pokhrel, P.; Schmid, S.; Pagano, I. Physical Activity and Use of Cigarettes and E-Cigarettes Among Young Adults. Am. J. Prev. Med. 2020, 58, 580–583. [Google Scholar] [CrossRef]
- Gapin, J.I.; Labban, J.D.; Etnier, J.L. The effects of physical activity on attention deficit hyperactivity disorder symptoms: The evidence. Prev. Med. 2011, 52, S70–S74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardo, M.T.; Compton, W.M. Does physical activity protect against drug abuse vulnerability? Drug Alcohol Depend. 2015, 153, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Wakimoto, P.; Block, G. Dietary Intake, Dietary Patterns, and Changes with Age: An Epidemiological Perspective. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, 65–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westenhoefer, J. Age and Gender Dependent Profile of Food Choice. Nutr. Oppor. Asia 2005, 57, 44–51. [Google Scholar] [CrossRef]
- Schuit, A.J.; van Loon, A.J.M.; Tijhuis, M.; Ocké, M.C. Clustering of lifestyle risk factors in a general adult population. Prev. Med. 2002, 35, 219–224. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.A.; Coleman, J.R.; Adams, M.; Allen, N.; Breen, G.; Cullen, B.; Dickens, C.; Fox, E.; Graham, N.; Holliday, J.; et al. Mental health in UK Biobank Revised. MedRxiv 2019. [Google Scholar]
- Bradbury, K.E.; Young, H.J.; Guo, W.; Key, T.J. Dietary assessment in UK Biobank: An evaluation of the performance of the touchscreen dietary questionnaire. J. Nutr. Sci. 2018, 7, e6. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.B.; Florez, J.C.; Hirschhorn, J.N. Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fraley, C.; Raftery, A.E.; Scrucca, L.; Murphy, T.B.; Fop, T. Package ‘Mclust’; 2020; pp. 1–169. Available online: https://cran.r-project.org/web/packages/mclust/mclust.pdf (accessed on 14 January 2021).
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Hill, W.D.; Davies, N.M.; Ritchie, S.J.; Skene, N.G.; Bryois, J.; Bell, S.; Di Angelantonio, E.; Roberts, D.J.; Xueyi, S.; Davies, G.; et al. Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income. Nat. Commun. 2019, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Nieminen, P.; Lehtiniemi, H.; Vähäkangas, K.; Huusko, A.; Rautio, A. Standardised regression coefficient as an effect size index in summarising findings in epidemiological studies. Epidemiol. Biostat. Public Health 2013, 10, 1–15. [Google Scholar]
- Alamy, M.; Bengelloun, W.A. Malnutrition and brain development: An analysis of the effects of inadequate diet during different stages of life in rat. Neurosci. Biobehav. Rev. 2012, 36, 1463–1480. [Google Scholar] [CrossRef]
- Tylee, D.S.; Sun, J.; Hess, J.L.; Tahir, M.A.; Sharma, E.; Malik, R.; Worrall, B.B.; Levine, A.J.; Martinson, J.J.; Nejentsev, S.; et al. Genetic correlations among psychiatric and immune-related phenotypes based on genome-wide association data. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2018, 177, 641–657. [Google Scholar] [CrossRef]
- Mills, J.S.; Weinheimer, L.A.; Polivy, J.; Herman, C.P. Are there different types of dieters? A review of personality and dietary restraint. Appetite 2018, 125, 380–400. [Google Scholar] [CrossRef]
- Sariyska, R.; Markett, S.; Lachmann, B.; Montag, C. What Does Our Personality Say About Our Dietary Choices? In-sights on the Associations between Dietary Habits, Primary Emotional Systems and the Dark Triad of Personality. Front. Psychol. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pfeiler, T.M.; Egloff, B. Personality and eating habits revisited: Associations between the big five, food choices, and Body Mass Index in a representative Australian sample. Appetite 2020, 149, 104607. [Google Scholar] [CrossRef] [PubMed]
- Forestell, C.A.; Nezlek, J.B. Vegetarianism, depression, and the five factor model of personality. Ecol. Food Nutr. 2018, 57, 246–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, C.; Siegrist, M. Does personality influence eating styles and food choices? Direct and indirect effects. Appetite 2015, 84, 128–138. [Google Scholar] [CrossRef]
- Pfeiler, T.M.; Egloff, B. Examining the ‘Veggie’ personality: Results from a representative German sample. Appetite 2018, 120, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.E.; Tye, C.; Kuntsi, J.; Vassos, E.; Asherson, P. Omega-3 polyunsaturated fatty acid supplementation and cognition: A systematic review and meta-analysis. J. Psychopharmacol. 2015, 29, 753–763. [Google Scholar] [CrossRef]
- Dekkers, T.J.; Popma, A.; Sonuga-Barke, E.J.; Oldenhof, H.; Bexkens, A.; Jansen, B.R.J.; Huizenga, H.M. Risk Taking by Adolescents with Attention-Deficit/Hyperactivity Disorder (ADHD): A Behavioral and Psychophysiological Investigation of Peer Influence. J. Abnorm. Child Psychol. 2020, 48, 1129–1141. [Google Scholar] [CrossRef]
- Swain, D.P.; Franklin, B.A. Comparison of Cardioprotective Benefits of Vigorous Versus Moderate Intensity Aerobic Exercise. Am. J. Cardiol. 2006, 97, 141–147. [Google Scholar] [CrossRef]
- Anderson, T.; Wideman, L. Exercise and the Cortisol Awakening Response: A Systematic Review. Sports Med. Open 2017, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Montoya, E.R.; Terburg, D.; Bos, P.A.; Van Honk, J. Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motiv. Emot. 2011, 36, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Byambasukh, O.; Snieder, H.; Corpeleijn, E. Relation between Leisure Time, Commuting, and Occupational Physical Activity With Blood Pressure in 125 402 Adults: The Lifelines Cohort. J. Am. Hear. Assoc. 2020, 9, e014313. [Google Scholar] [CrossRef]
- Meddens, S.F.W.; De Vlaming, R.; Bowers, P.; Burik, C.A.P.; Linnér, R.K.; Lee, C.; Okbay, A.; Turley, P.; Rietveld, C.A.; Fontana, M.A.; et al. Genomic analysis of diet composition finds novel loci and associations with health and lifestyle. Mol. Psychiatry 2020, 1–14. [Google Scholar] [CrossRef]
- Kipnis, V.; Midthune, D.; Freedman, L.S.; Bingham, S.; Schatzkin, A.; Subar, A.; Carroll, R.J. Empirical Evidence of Correlated Biases in Dietary Assessment Instruments and Its Implications. Am. J. Epidemiol. 2001, 153, 394–403. [Google Scholar] [CrossRef]
DC1 | DC2 | DC3 | DC4 | |
---|---|---|---|---|
Wholegrain bread vs. any other bread | 0.58 | |||
Dried fruit frequency | 0.48 | |||
Oily fish frequency | 0.47 | |||
Raw vegetables/salad frequency | 0.45 | |||
Fresh fruit frequency | 0.45 | |||
Cooked vegetables frequency | 0.38 | |||
Water frequency | 0.34 | |||
Non-oily fish frequency | 0.33 | 0.33 | ||
Cereal frequency | 0.31 | |||
Ground coffee vs. any other coffee | 0.32 | |||
Instant coffee vs. any other coffee | −0.31 | |||
Refined sugar-sweetened cereal products | −0.33 | |||
White bread vs. any other bread | −0.55 | |||
‘I never eat dairy’ vs. no restrictions | 0.64 | |||
‘I never eat wheat’ vs. no restrictions | 0.64 | |||
‘I never eat eggs, sugar, wheat or dairy’ vs. no restrictions | 0.51 | |||
‘I never eat eggs’ vs. no restrictions | 0.50 | |||
‘I never eat dairy’ vs. no dairy restrictions | 0.34 | |||
‘I never eat wheat’ vs. no wheat restrictions | 0.34 | |||
‘I never eat sugar’ vs. no restrictions | −0.31 | |||
Bread vs. ‘I never eat bread’ | −0.38 | |||
Lamb frequency | 0.75 | |||
Beef frequency | 0.73 | |||
Pork frequency | 0.73 | |||
Processed meat frequency | 0.48 | |||
Poultry frequency | 0.40 | |||
Added salt frequency | 0.31 | |||
Fat content of milk | 0.83 | |||
Semi-skimmed milk vs. any other milk | 0.55 | |||
Full cream milk vs. any other milk | 0.31 | |||
Skimmed milk vs. any other milk | −0.84 |
M (SD)/N(%) | M(SD)/N(%) | M(SD)/N(%) | M(SD)/N(%) | M(SD)/N(%) | |
---|---|---|---|---|---|
Prudent-Moderate | Unhealthy | Low-Fat Dairy | Avoid Meat | Restricted | |
N | 49,463 (31.4) | 42,663 (27.1) | 32,555 (20.7) | 21,797 (13.9) | 10,876 (6.9) |
Male | 20,315 (41.1) | 20,143 (47.2) a | 12,054 (37.0) a | 11,287 (51.8) a | 4461 (41.0) a |
Age | 55.5 (7.7) | 55.9 (7.8) bc | 56.3 (7.6) bc | 56.2 (7.9) ab | 56.4(7.7) bc |
BMI | 26.2 (4.3) | 27.4 (4.7) bc | 27.3 (4.7) bc | 26.1 (4.3) c | 26.7 (4.8) bc |
IMD | 13.4 (10.7) | 15.7 (12.6) bc | 14.5 (11.7) bc | 15.5 (12.1) bc | 16.6 (13.2) bc |
Years in education | 17.1 (4.1) | 15.6 (4.7) bc | 16.3 (4.5) bc | 17.0 (4.3) bc | 16.0 (4.7) bc |
Annual income d | 32.9 (16.0) | 29.1 (14.9) bc | 31.8 (16.0) bc | 32.2 (16.7) b | 30.6 (16.4) bc |
Unemployment | 524 (1.1) | 672 (1.6) b | 394 (1.2) | 289 (1.3) | 177 (1.6) b |
Non-white ethnicity | 956 (1.9) | 1136 (2.7) bc | 697 (2.1) b | 1209 (5.6) bc | 561 (5.2) bc |
Sleep duration | |||||
Short | 9592 (19.4) | 9762 (22.9) bc | 7271 (22.3) bc | 4862 (22.3) bc | 2831 (26.0) bc |
Long | 782 (1.6) | 1111 (2.6) bc | 721 (2.2) bc | 527 (2.4) bc | 326 (3.0) bc |
DC1 | 0.55 (0.62) | −0.92 (0.72) | 0.10 (0.95) | 0.42 (0.92) | −0.04 (1.12) |
DC2 | −0.46 (0.37) | −0.25 (0.38) | −0.15 (0.49) | 0.36 (0.56) | 2.84 (1.54) |
DC3 | 0.14 (0.78) | 0.34 (0.77) | 0.05 (0.94) | −0.90 (1.21) | −0.29 (1.26) |
DC4 | 0.53 (0.51) | 0.45 (0.47) | −1.55 (0.39) | 0.44 (0.69) | −0.38 (1.10) |
MVPA quintiles | 3.06 (1.36) | 2.82 (1.43) bc | 2.96 (1.39) bc | 3.11 (1.40) bc | 3.03 (1.43) |
Single-Predictor Models | Multiple-Predictor Models a | ||||||||
---|---|---|---|---|---|---|---|---|---|
β | SE | p | β | SE | p | ||||
Men | DC1 (prudent diet) | −0.036 | 0.004 | <0.0001 | * | −0.031 | 0.004 | <0.0001 | * |
DC2 (no wheat/dairy/eggs) | 0.030 | 0.004 | <0.0001 | * | 0.039 | 0.004 | <0.0001 | * | |
DC3 (meat) | 0.041 | 0.004 | <0.0001 | * | 0.039 | 0.004 | <0.0001 | * | |
DC4 (full-cream dairy) | 0.023 | 0.004 | 0.0001 | * | 0.022 | 0.004 | <0.0001 | * | |
Unhealthy vs. prudent-moderate | 0.087 | 0.010 | <0.0001 | * | 0.086 | 0.010 | <0.0001 | * | |
Restricted vs. prudent-moderate | 0.125 | 0.016 | <0.0001 | ** | 0.124 | 0.016 | <0.0001 | ** | |
Avoid meat vs. prudent-moderate | 0.075 | 0.011 | <0.0001 | * | 0.075 | 0.011 | <0.0001 | * | |
Low-fat dairy vs. prudent-moderate | 0.042 | 0.011 | 0.0002 | * | 0.042 | 0.011 | 0.0002 | * | |
MVPA quintiles | −0.007 | 0.004 | 0.0508 | −0.004 | 0.004 | 0.2432 | |||
Women | DC1 (prudent diet) | −0.043 | 0.003 | <0.0001 | * | −0.049 | 0.003 | <0.0001 | * |
DC2 (no wheat/dairy/eggs) | 0.038 | 0.003 | <0.0001 | * | 0.043 | 0.003 | <0.0001 | * | |
DC3 (meat) | −0.017 | 0.003 | 0.0036 | −0.018 | 0.003 | 0.0001 | |||
DC4 (full-cream dairy) | 0.010 | 0.003 | 0.0023 | 0.011 | 0.003 | 0.0014 | |||
Unhealthy vs. prudent-moderate | 0.097 | 0.009 | <0.0001 | * | 0.095 | 0.009 | <0.0001 | * | |
Restricted vs. prudent-moderate | 0.156 | 0.013 | <0.0001 | ** | 0.156 | 0.013 | <0.0001 | ** | |
Avoid meat vs. prudent-moderate | 0.154 | 0.011 | <0.0001 | ** | 0.154 | 0.011 | <0.0001 | ** | |
Low-fat dairy vs. prudent-moderate | 0.054 | 0.009 | <0.0001 | * | 0.054 | 0.009 | <0.0001 | * | |
MVPA quintiles | −0.009 | 0.003 | 0.0054 | −0.003 | 0.003 | 0.3343 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schweren, L.J.S.; van Rooij, D.; Shi, H.; Larsson, H.; Arias-Vasquez, A.; Li, L.; Grimstvedt Kvalvik, L.; Haavik, J.; Buitelaar, J.; Hartman, C. Diet, Physical Activity, and Disinhibition in Middle-Aged and Older Adults: A UK Biobank Study. Nutrients 2021, 13, 1607. https://doi.org/10.3390/nu13051607
Schweren LJS, van Rooij D, Shi H, Larsson H, Arias-Vasquez A, Li L, Grimstvedt Kvalvik L, Haavik J, Buitelaar J, Hartman C. Diet, Physical Activity, and Disinhibition in Middle-Aged and Older Adults: A UK Biobank Study. Nutrients. 2021; 13(5):1607. https://doi.org/10.3390/nu13051607
Chicago/Turabian StyleSchweren, Lizanne J. S., Daan van Rooij, Huiqing Shi, Henrik Larsson, Alejandro Arias-Vasquez, Lin Li, Liv Grimstvedt Kvalvik, Jan Haavik, Jan Buitelaar, and Catharina Hartman. 2021. "Diet, Physical Activity, and Disinhibition in Middle-Aged and Older Adults: A UK Biobank Study" Nutrients 13, no. 5: 1607. https://doi.org/10.3390/nu13051607
APA StyleSchweren, L. J. S., van Rooij, D., Shi, H., Larsson, H., Arias-Vasquez, A., Li, L., Grimstvedt Kvalvik, L., Haavik, J., Buitelaar, J., & Hartman, C. (2021). Diet, Physical Activity, and Disinhibition in Middle-Aged and Older Adults: A UK Biobank Study. Nutrients, 13(5), 1607. https://doi.org/10.3390/nu13051607