Association of Dietary Patterns with Weight Status and Metabolic Risk Factors among Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Anthropometric Measurements and Blood Pressure
2.3. Biochemical Assessments
2.4. Criteria of Metabolic Risk Factors
2.5. Dietary Assessments
2.6. Dietary Patterns Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, Y.; Lim, H. The global childhood obesity epidemic and the association between socio-economic status and childhood obesity. Int. Rev. Psychiatry 2012, 24, 176–188. [Google Scholar] [CrossRef] [Green Version]
- The Ministry of Education in Korea. Student Health Test Sample Investigation 2017 in Korea; Ministry of Education: Seoul, Korea, 2017.
- World Health Organization. Childhood Overweight and Obesity. Available online: https://www.who.int/dietphysicalactivity/childhood/en/ (accessed on 5 January 2021).
- Sameera, K.; Amar, K. Childhood obesity: A global public health crisis. Int. J. Prev. Med. 2012, 3, 1–7. [Google Scholar]
- Popkin, B.; Adair, L.; Ng, S. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asghari, G.; Yuzbashian, E.; Mirmiran, P.; Mahmoodi, B.; Azizi, F. Fast food intake increases the incidence of metabolic syndrome in children and adolescents: Tehran lipid and glucose study. PLoS ONE 2015, 10, e0139641. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Livingstone, M. Associations between meal and snack frequency and overweight and abdominal obesity in US children and adolescents from national health and nutrition examination survey (NHANES) 2003–2012. Br. J. Nutr. 2016, 115, 1819–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.M. Association of meat intake with overweight and obesity among school-aged children and adolescents. J. Obes. Metab. Syndr. 2017, 26, 217–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gina, L.A. Childhood Dietary Patterns and Later Obesity: A Review of the Evidence. Proc. Nutr. Soc. 2014, 73, 137. [Google Scholar] [CrossRef]
- Huybrechts, I.; Lioret, S.; Mouratidou, T.; Gunter, M.J.; Manios, Y.; Kersting, M.; Gottrand, F.; Kafatos, A.; De Henauw, S.; Cuenca-García, M.; et al. Using reduced rank regression methods to identify dietary patterns associated with obesity: A cross-country study among European and Australian adolescents. Br. J. Nutr. 2017, 117, 295–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oellingrath, I.; Svendsen, M.; Brantsæter, A.L. Eating patterns and overweight in 9-to 10-year-old children in Telemark County, Norway: A cross-sectional study. Eur. J. Clin. Nutr. 2010, 64, 1272–1279. [Google Scholar] [CrossRef] [Green Version]
- Appannah, G.; Pot, G.; Huang, R.; Oddy, W.; Beilin, L.; Mori, T.; Jebb, S.; Ambrosini, G. Identification of a dietary pattern associated with greater cardiometabolic risk in adolescence. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 643–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naja, F.; Hwalla, N.; Itani, L.; Karam, S.; Sibai, A.M.; Nasreddine, L. A western dietary pattern is associated with overweight and obesity in a national sample of Lebanese adolescents (13–19 years): A cross-sectional study. Br. J. Nutr. 2015, 114, 1909–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hojhabrimanesh, A.; Akhlaghi, M.; Rahmani, E.; Amanat, S.; Atefi, M.; Najafi, M.; Hashemzadeh, M.; Salehi, S.; Faghih, S.; Akhlaghi, M. A western dietary pattern is associated with higher blood pressure in iranian adolescents. Eur. J. Nutr. 2017, 56, 399–408. [Google Scholar] [CrossRef]
- Seo, Y.-G.; Lim, H.; Kim, Y.; Ju, Y.-S.; Choi, Y.-J.; Lee, H.-J.; Jang, H.B.; Park, S.I.; Park, K.H. Effects of circuit training or a nutritional intervention on body mass index and other cardiometabolic outcomes in children and adolescents with overweight or obesity. PLoS ONE 2021, 16, e245875. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Yun, S.; Hwang, S.-S.; Shim, J.O.; Chae, H.W.; Lee, Y.J.; Lee, J.H.; Kim, S.C.; Lim, D.; Yang, S.W.; et al. The 2017 Korean national growth charts for children and adolescents: Development, improvement, and prospects. Korean J. Pediatr. 2018, 61, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Mirza, N.; Phan, T.-L.; Tester, J.; Fals, A.; Fernandez, C.; Datto, G.; Estrada, E.; Eneli, I. A narrative review of medical and genetic risk factors among children age 5 and younger with severe obesity. Child. Obes. 2018, 14, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrows, R.; Correa-Burrows, P.; Reyes, M.; Blanco, E.; Albala, C.; Gahagan, S. Healthy Chilean adolescents with HOMA-IR ≥ 2.6 have increased cardiometabolic risk: Association with genetic, biological, and environmental factors. J. Diabetes Res. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, Y.-G.; Choi, M.-K.; Kang, J.-H.; Lee, H.-J.; Jang, H.B.; Park, S.I.; Ju, Y.S.; Park, K.H. Cardiovascular disease risk factor clustering in children and adolescents: A prospective cohort study. Arch. Dis. Child. 2018, 103, 968–973. [Google Scholar] [CrossRef] [PubMed]
- Criqui, M.H.; Barrett-Connor, E.; Holdbrook, M.J.; Austin, M.; Turner, J.D. Clustering of cardiovascular disease risk factors. Prev. Med. 1980, 9, 525–533. [Google Scholar] [CrossRef]
- Chu, N.F.; Rimm, E.B.; Wang, D.J.; Liou, H.S.; Shieh, S.M. Clustering of cardiovascular disease risk factor among obese schoolchildren: The Taipei Children Heart Study1–3. Am. J. Clin. Nutr. 1998, 67, 1141–1146. [Google Scholar] [CrossRef]
- Willett, W. Nutritional Epidemiology: Monographs in Epidemiology and Biostatistics, 40; OUP USA: New York, NY, USA, 2012. [Google Scholar]
- Division of Health and Nutrition Survey, Center for Disease Prevention, KCDC. Food and Nutrient Intakes in Korea: Korea National Health and Nutrition Survey; Korea Centers for Disease Control and Prevention (KCDC): Cheongju, Korea, 2017.
- Zhang, J.; Wang, H.; Wang, Y.; Xue, H.; Wang, Z.; Du, W.; Su, C.; Zhang, J.; Jiang, H.; Zhai, F.; et al. Dietary patterns and their associations with childhood obesity in china. Br. J. Nutr. 2015, 113, 1978–1984. [Google Scholar] [CrossRef] [Green Version]
- Morinaka, T.; Wozniewicz, M.; Jeszka, J.; Bajerska, J.; Nowaczyk, P.; Sone, Y. Westernization of dietary patterns among young Japanese and polish females–A comparison study. Ann. Agric. Environ. Med. 2013, 20, 122. [Google Scholar] [PubMed]
- Song, Y.; Park, M.J.; Paik, H.-Y.; Joung, H. Secular trends in dietary patterns and obesity-related risk factors in Korean adolescents aged 10–19 years. Int. J. Obes. 2010, 34, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Bradlee, M.L.; Singer, M.R.; Qureshi, M.M.; Moore, L.L. Food group intake and central obesity among children and adolescents in the Third National Health and Nutrition Examination Survey (NHANES III). Public Health Nutr. 2010, 13, 797–805. [Google Scholar] [CrossRef] [Green Version]
- Briefel, R.R.; Wilson, A.; Gleason, P.M. Consumption of low-nutrient, energy-dense foods and beverages at school, home, and other locations among school lunch participants and nonparticipants. J. Am. Diet. Assoc. 2009, 109, S90. [Google Scholar] [CrossRef]
- Sesé, M.A.; Jiménez-Pavón, D.; Gilbert, C.C.; González-Gross, M.; Gottrand, F.; De Henauw, S.; Breidenassel, C.; Wärnberg, J.; Widhalm, K.; Molnar, D.; et al. Eating behaviour, insulin resistance and cluster of metabolic risk factors in European adolescents. the HELENA study. Appetite 2012, 59, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.; Ma, Y.; Zhao, Z.; Yang, X.; Wen, D. Dietary pattern is associated with obesity in Chinese children and adolescents: Data from china health and nutrition survey (CHNS). Nutr. J. 2018, 17, 68–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Paik, H.; Song, Y. The relationship between intake of nutrients and food groups and insulin resistancein Korean adults: Using the fourth Korea national health and nutrition examination survey. Korean J. Nutr. 2013, 46, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-Y.; Ahn, A.; Lee, H.; Choi, J.; Lim, H. Dietary Patterns Independent of Fast Food Are Associated with Obesity among Korean Adults: Korea National Health and Nutrition Examination Survey 2010–2014. Nutrients 2019, 11, 2740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.; Joung, H.; Lee, H.; Jang, H.; Kang, J.; Song, J. The influence of dietary patterns on the nutritional profile in a Korean child cohort study. Osong Public Health Res. Perspect. 2011, 2, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.W.; Cho, M.S. The traditional Korean dietary pattern is associated with decreased risk of metabolic syndrome: Findings from the Korean national health and nutrition examination survey, 1998–2009. J. Med. Food 2014, 17, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Joung, H.; Engelhardt, K.; Yoo, S.Y.; Paik, H.Y. Traditional v. modified dietary patterns and their influence on adolescents’ nutritional profile. Br. J. Nutr. 2005, 93, 943–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmaillzadeh, A.; Kimiagar, M.; Mehrabi, Y.; Azadbakht, L.; Hu, F.B.; Willett, W.C. Dietary patterns, insulin resistance, and prevalence of the metabolic syndrome in women. Am. J. Clin. Nutr. 2007, 85, 910–918. [Google Scholar] [CrossRef] [Green Version]
- Toledo, K.; Aranda, M.; Asenjo, S.; Sáez, K.; Bustos, P. Unsaturated fatty acids and insulin resistance in childhood obesity. J. Pediatr. Endocrinol. Metab. 2014, 27, 503–510. [Google Scholar] [CrossRef]
- Kim, R.J.; Wang, L.; Worley, S.; Leonard, D. Nut consumption and metabolic syndrome in US adolescents. Public Health Nutr. 2018, 21, 3245–3252. [Google Scholar] [CrossRef]
- McNaughton, S.A.; Ball, K.; Mishra, G.D.; Crawford, D.A. Dietary Patterns of Adolescents and Risk of Obesity and Hypertention1–3. J. Nutr. 2008, 138, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Kafatos, A.; Verhagen, H.; Moschandreas, J.; Apostolaki, I.; Van Westerop, J.J. Mediterranean diet of Crete: Foods and nutrient content. J. Am. Diet. Assoc. 2000, 100, 1487–1493. [Google Scholar] [CrossRef]
- Carmen, S.O.; Carlos, S.; Martinez-Gonzalez, M.A. Does cooking with vegetable oils increase the risk of chronic diseases?: A systematic review. Br. J. Nutr. 2015, 113, S36–S48. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Light, K.; Henderson, M.; O’Loughlin, J.; Mathieu, M.-E.; Paradis, G.; Gray-Donald, K. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity. J. Nutr. 2014, 144, 81–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Total (n = 435) | Boys (n = 261) | Girls (n = 174) | p-Value * | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Age (years) | 11.11 | ± | 1.98 | 10.92 | ± | 1.82 | 11.39 | ± | 2.16 | 0.017 |
Dietary intake | ||||||||||
Energy (kcal) | 2179.11 | ± | 565.45 | 2289.20 | ± | 585.90 | 2014.00 | ± | −490.50 | <0.0001 |
Carbohydrate (g) | 290.19 | ± | 77.26 | 303.50 | ± | 79.24 | 270.30 | ± | 69.80 | <0.0001 |
Protein (g) | 84.52 | ± | 25.84 | 88.44 | ± | 26.79 | 78.64 | ± | 23.21 | <0.0001 |
Fat (g) | 73.34 | ± | 27.35 | 77.78 | ± | 28.91 | 66.68 | ± | 23.38 | <0.0001 |
C:P:F ratio (%) | 53.8:15.7:30.6 | 53.5:15.6:30.9 | 54.2:15.8:30.1 | |||||||
Cholesterol (mg) | 182.73 | ± | 29.17 | 182.30 | ± | 28.37 | 183.40 | ± | 30.41 | 0.686 |
SFA (g) | 7.44 | ± | 5.86 | 7.87 | ± | 5.54 | 6.80 | ± | 6.27 | 0.062 |
MUFA (g) | 6.80 | ± | 6.25 | 7.28 | ± | 5.92 | 6.07 | ± | 6.66 | 0.047 |
PUFA (g) | 4.94 | ± | 4.51 | 5.26 | ± | 4.33 | 4.46 | ± | 4.74 | 0.069 |
Anthropometrics | ||||||||||
Height (cm) | 151.73 | ± | 11.10 | 152.70 | ± | 11.40 | 150.30 | ± | 10.50 | 0.026 |
Weight (kg) | 62.16 | ± | 19.96 | 64.66 | ± | 19.85 | 58.41 | ± | 19.59 | 0.001 |
WC (cm) | 84.02 | ± | 15.22 | 87.23 | ± | 14.27 | 79.19 | ± | 15.37 | <0.0001 |
HC (cm) | 94.06 | ± | 13.09 | 95.14 | ± | 11.68 | 92.45 | ± | 14.85 | 0.045 |
WHR | 0.89 | ± | 0.09 | 0.91 | ± | 0.07 | 0.85 | ± | 0.10 | <0.0001 |
SBP (mmHg) | 116.92 | ± | 17.16 | 119.20 | ± | 16.55 | 113.50 | ± | 17.54 | 0.001 |
DBP (mmHg) | 67.58 | ± | 10.17 | 68.37 | ± | 9.77 | 66.39 | ± | 10.66 | 0.046 |
BMI (kg/m2) | 26.39 | ± | 5.73 | 27.13 | ± | 5.38 | 25.28 | ± | 6.07 | 0.001 |
BMI z-score | 2.17 | ± | 1.57 | 2.34 | ± | 1.43 | 1.92 | ± | 1.74 | 0.007 |
Household income (n, %) (1) | ||||||||||
Low income | 123 | (28.28) | 73 | (27.97) | 50 | (28.74) | 0.983 | |||
Middle income | 113 | (25.98) | 69 | (26.44) | 44 | (25.29) | ||||
High income | 87 | (20.00) | 51 | (19.54) | 36 | (20.69) | ||||
Paternal Education level (n, %) | ||||||||||
≤Middle school graduation | 8 | (1.84) | 5 | (1.92) | 3 | (1.72) | 0.725 | |||
Graduated high school | 132 | (30.34) | 84 | (32.18) | 48 | (27.59) | ||||
>High school graduation | 241 | (55.40) | 139 | (53.26) | 102 | (58.62) | ||||
Cardiometabolic risk (m, %) (2) | ||||||||||
Obesity | 299 | (68.70) | 183 | (70.11) | 96 | (55.17) | 0.164 | |||
Insulin resistance | 312 | (71.70) | 192 | (73.56) | 120 | (68.97) | 0.297 | |||
Metabolic Syndrome | 268 | (61.60) | 163 | (62.45) | 105 | (60.34) | 0.658 | |||
Biochemistry | ||||||||||
Triglycerides (mg/dL) | 105.33 | ± | 52.39 | 103.00 | ± | 50.09 | 108.80 | ± | 55.63 | 0.255 |
Total cholesterol (mg/dL) | 182.73 | ± | 29.17 | 182.30 | ± | 28.37 | 183.40 | ± | 30.41 | 0.686 |
HDL cholesterol (mg/dL) | 52.11 | ± | 12.53 | 51.79 | ± | 12.15 | 52.58 | ± | 13.11 | 0.522 |
LDL cholesterol (mg/dL) | 109.55 | ± | 25.06 | 109.90 | ± | 24.30 | 109.10 | ± | 26.23 | 0.745 |
Fasting glucose (mg/dL) | 89.47 | ± | 8.76 | 89.99 | ± | 8.82 | 88.70 | ± | 8.64 | 0.133 |
Insulin (uU/mL) | 19.48 | ± | 13.69 | 20.06 | ± | 14.46 | 18.61 | ± | 12.43 | 0.265 |
HOMA-IR | 4.32 | ± | 3.38 | 4.51 | ± | 3.73 | 4.05 | ± | 2.77 | 0.138 |
Dietary Patterns | ||||||
---|---|---|---|---|---|---|
Food Groups | Fast Food & Soda | White Rice & Kimchi | Oil & Seasoned Vegetable | |||
White rice | −0.222 | 0.745 | 0.082 | |||
Whole grain & others | −0.298 | −0.064 | 0.001 | |||
Snack & cereals | 0.070 | −0.482 | −0.079 | |||
Flour & rice cakes | −0.049 | −0.281 | 0.040 | |||
Instant ramen | 0.298 | 0.182 | −0.167 | −0.75 | ||
Noodles | −0.071 | −0.260 | 0.188 | −0.65 | ||
Potatoes | −0.044 | 0.020 | 0.321 | −0.55 | ||
Sugars | −0.154 | −0.264 | 0.519 | −0.45 | ||
Soups | −0.347 | 0.062 | −0.121 | −0.35 | ||
Legumes | −0.268 | 0.014 | 0.096 | −0.25 | ||
Nuts | −0.263 | −0.202 | 0.295 | −0.15 | ||
Vegetable & mushrooms | −0.369 | 0.076 | 0.259 | 0 | ||
Kimchi | −0.147 | 0.424 | 0.139 | 0.15 | ||
Fruit | −0.296 | −0.160 | −0.426 | 0.25 | ||
Meat & fish | −0.209 | 0.028 | 0.080 | 0.35 | ||
Eggs | 0.027 | 0.440 | 0.041 | 0.45 | ||
Seaweed | 0.033 | 0.187 | 0.087 | 0.55 | ||
Milk and dairy products | −0.413 | −0.237 | −0.417 | 0.65 | ||
Vegetable oil | −0.151 | 0.310 | 0.647 | 0.75 | ||
Carbonated beverages | 0.583 | −0.200 | 0.129 | |||
Other drinks | −0.004 | 0.074 | −0.080 | |||
Seasonings | −0.325 | 0.144 | 0.449 | |||
Fast food | 0.702 | −0.184 | −0.079 | |||
Processed food | −0.044 | 0.441 | −0.102 | |||
Fermented salty foods | −0.208 | −0.132 | 0.122 |
Fast Food & Soda | p for Trend (2) | White Rice & Kimchi | p for Trend | Oil & Seasoned Vegetable | p for Trend | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 (low) | T2 | T3 (High) | T1 (Low) | T2 | T3 (High) | T1 (Low) | T2 | T3 (High) | ||||||||||||||||||||||
Dietary intakes (3) | ||||||||||||||||||||||||||||||
Energy (kcal) | 2066.72 | ± | 45.46 b | 2214.16 | ± | 45.24 ab | 2256.44 | ± | 45.47 a | <0.0001 | 2264.08 | ± | 44.76 b | 2252.70 | ± | 44.77 ab | 2020.54 | ± | 44.76 a | <0.0001 | 2146.69 | ± | 45.90 | 2233.89 | ± | 45.62 | 2156.75 | ± | 45.88 | <0.0001 |
Carbohydrate (g) | 294.37 | ± | 3.45 | 292.13 | ± | 3.41 | 284.07 | ± | 3.44 | <0.0001 | 281.73 | ± | 3.40 c | 291.93 | ± | 3.40 b | 296.92 | ± | 3.43 a | <0.0001 | 288.91 | ± | 3.45 | 289.26 | ± | 3.43 | 292.42 | ± | 3.44 | <0.0001 |
Protein (g) | 86.68 | ± | 1.14 a | 81.88 | ± | 1.13 b | 84.99 | ± | 1.14 ab | <0.0001 | 84.72 | ± | 1.14 | 85.10 | ± | 1.14 | 83.73 | ± | 1.15 | <0.0001 | 84.29 | ± | 1.14 | 85.35 | ± | 1.14 | 83.91 | ± | 1.14 | <0.0001 |
Fat (g) | 71.16 | ± | 1.24 b | 73.41 | ± | 1.23 ab | 75.46 | ± | 1.24 a | <0.0001 | 77.10 | ± | 1.22 b | 72.46 | ± | 1.22 a | 70.46 | ± | 1.23 a | <0.0001 | 74.37 | ± | 1.24 | 73.19 | ± | 1.23 | 72.47 | ± | 1.24 | <0.0001 |
C:P:F ratio | 54.4:16.0:29.6 | 54.2:15.2:30.6 | 52.7:15.8:31.5 | 52.2:15.7:32.1 | 54.1:15.8:30.2 | 55.1:15.5:29.4 | 53.4:15.6:31.0 | 53.6:15.8:30.5 | 54.2:15.6:30.2 | |||||||||||||||||||||
Anthropometric | ||||||||||||||||||||||||||||||
Height (cm) | 151.70 | ± | 0.62 | 151.92 | ± | 0.61 | 151.57 | ± | 0.61 | <0.0001 | 152.29 | ± | 0.61 | 151.34 | ± | 0.61 | 151.56 | ± | 0.62 | <0.0001 | 152.57 | ± | 0.61 | 151.50 | ± | 0.61 | 151.11 | ± | 0.61 | <0.0001 |
Weight (kg) | 61.06 | ± | 1.32 | 62.56 | ± | 1.30 | 62.86 | ± | 1.31 | <0.0001 | 62.45 | ± | 1.31 | 62.23 | ± | 1.31 | 61.79 | ± | 1.32 | <0.0001 | 63.80 | ± | 1.31 | 62.02 | ± | 1.30 | 60.65 | ± | 1.31 | <0.0001 |
WC (cm) | 82.23 | ± | 1.11 | 84.56 | ± | 1.10 | 85.26 | ± | 1.11 | <0.0001 | 83.20 | ± | 1.11 | 84.83 | ± | 1.11 | 84.02 | ± | 1.12 | <0.0001 | 84.58 | ± | 1.11 | 84.61 | ± | 1.11 | 82.86 | ± | 1.11 | 0.013 |
HC (cm) | 92.75 | ± | 0.90 | 94.39 | ± | 0.89 | 95.06 | ± | 0.90 | N/S | 94.18 | ± | 0.90 | 94.31 | ± | 0.90 | 93.70 | ± | 0.91 | <0.0001 | 94.41 | ± | 0.90 | 94.25 | ± | 0.90 | 93.53 | ± | 0.90 | <0.0001 |
WHR | 0.88 | ± | 0.01 | 0.89 | ± | 0.01 | 0.89 | ± | 0.01 | <0.0001 | 0.87 | ± | 0.01 a | 0.90 | ± | 0.01b | 0.89 | ± | 0.01ab | <0.0001 | 0.89 | ± | 0.01 | 0.89 | ± | 0.01 | 0.88 | ± | 0.01 | <0.0001 |
BMI (kg/m2) | 25.81 | ± | 0.44 | 26.52 | ± | 0.43 | 26.84 | ± | 0.44 | <0.0001 | 26.27 | ± | 0.44 | 26.59 | ± | 0.44 | 26.31 | ± | 0.44 | <0.0001 | 26.75 | ± | 0.44 | 26.45 | ± | 0.44 | 25.97 | ± | 0.44 | 0.981 |
BMI z-score | 1.99 | ± | 0.13 | 2.22 | ± | 0.13 | 2.30 | ± | 0.13 | <0.0001 | 2.14 | ± | 0.13 | 2.25 | ± | 0.13 | 2.13 | ± | 0.13 | <0.0001 | 2.26 | ± | 0.13 | 2.20 | ± | 0.13 | 2.06 | ± | 0.13 | <0.0001 |
SBP (mmHg) | 115.54 | ± | 1.37 | 116.91 | ± | 1.35 | 118.32 | ± | 1.36 | N/S | 117.16 | ± | 1.36 | 116.58 | ± | 1.36 | 117.03 | ± | 1.37 | N/S | 117.40 | ± | 1.36 | 117.48 | ± | 1.35 | 115.88 | ± | 1.36 | N/S |
DBP (mmHg) | 67.09 | ± | 0.85 | 67.63 | ± | 0.84 | 68.02 | ± | 0.85 | 0.902 | 67.19 | ± | 0.85 | 67.53 | ± | 0.84 | 68.02 | ± | 0.85 | <0.0001 | 67.90 | ± | 0.85 | 67.48 | ± | 0.84 | 67.48 | ± | 0.84 | <0.0001 |
Biochemistry | ||||||||||||||||||||||||||||||
Glucose (mg/dL) | 88.68 | ± | 0.74 | 89.47 | ± | 0.73 | 90.27 | ± | 0.73 | N/S | 89.52 | ± | 0.73 | 89.57 | ± | 0.73 | 89.33 | ± | 0.74 | <0.0001 | 89.69 | ± | 0.73 | 90.02 | ± | 0.73 | 88.72 | ± | 0.73 | <0.0001 |
Insulin (uU/mL) | 18.13 | ± | 1.11 | 19.65 | ± | 1.10 | 20.67 | ± | 1.11 | <0.0001 | 19.40 | ± | 1.11 | 19.93 | ± | 1.10 | 19.11 | ± | 1.12 | <0.0001 | 20.57 | ± | 1.11 | 19.84 | ± | 1.10 | 18.03 | ± | 1.10 | <0.0001 |
HOMA-IR | 3.98 | ± | 0.28 | 4.33 | ± | 0.27 | 4.66 | ± | 0.28 | <0.0001 | 4.35 | ± | 0.27 | 4.42 | ± | 0.27 | 4.21 | ± | 0.28 | <0.0001 | 4.54 | ± | 0.27 | 4.49 | ± | 0.27 | 3.94 | ± | 0.27 | <0.0001 |
Triglyceride (mg/dL) | 99.21 | ± | 4.39 | 105.18 | ± | 4.34 | 111.60 | ± | 4.37 | <0.0001 | 101.83 | ± | 4.32ab | 97.91 | ± | 4.32b | 116.26 | ± | 4.37a | <0.0001 | 110.08 | ± | 4.37 | 102.69 | ± | 4.35 | 103.22 | ± | 4.37 | <0.0001 |
HDL cholesterol (mg/dL) | 52.18 | ± | 1.04 | 52.15 | ± | 1.03 | 52.00 | ± | 1.03 | <0.0001 | 51.29 | ± | 1.03 | 52.66 | ± | 1.03 | 52.37 | ± | 1.04 | <0.0001 | 51.64 | ± | 1.03 | 52.74 | ± | 1.03 | 51.94 | ± | 1.03 | <0.0001 |
LDL cholesterol (mg/dL) | 108.70 | ± | 2.11 | 109.36 | ± | 2.09 | 110.60 | ± | 2.11 | 0.902 | 109.91 | ± | 2.10 | 110.09 | ± | 2.10 | 108.66 | ± | 2.12 | 0.714 | 110.37 | ± | 2.10 | 111.07 | ± | 2.09 | 107.22 | ± | 2.10 | <0.0001 |
Fast Food & Soda | White Rice & Kimchi | Oil & Seasoned Vegetable | ||||
---|---|---|---|---|---|---|
β | p-Value | β | p-Value | β | p-Value | |
Height (cm) | 0.00 | <0.0001 | −0.32 | <0.0001 | −0.73 | <0.0001 |
Weight (kg) | 1.00 | <0.0001 | −0.24 | <0.0001 | −1.57 | <0.0001 |
SBP (mmHg) | 1.31 | <0.0001 | −0.17 | <0.0001 | −0.76 | <0.0001 |
DBP (mmHg) | 0.53 | 0.157 | 0.46 | 0.166 | −0.26 | 0.189 |
WC (cm) | 1.55 | <0.0001 | 0.44 | <0.0001 | −0.86 | <0.0001 |
HC (cm) | 1.18 | <0.0001 | −0.23 | <0.0001 | −0.44 | <0.0001 |
WHR (%) | 0.01 | <0.0001 | 0.01 | <0.0001 | −0.00 | <0.0001 |
BMI (kg/m2) | 0.53 | <0.0001 | 0.03 | <0.0001 | −0.39 | <0.0001 |
BMI z score | 0.16 | 0.001 | 0.00 | 0.004 | −0.10 | 0.001 |
Glucose (mg/dL) | 0.84 | 0.425 | −0.06 | 0.747 | −0.49 | 0.631 |
Insulin (uU/mL) | 1.25 | <0.0001 | −0.16 | <0.0001 | −1.27 | <0.0001 |
HOMA-IR | 0.34 | <0.0001 | −0.07 | 0.000 | −0.30 | <0.0001 |
Triglyceride (mg/dL) | 6.03 | 0.112 | 7.03 | 0.070 | −3.50 | 0.247 |
HDL cholesterol (mg/dL) | −0.03 | 0.001 | 0.58 | 0.001 | 0.17 | 0.001 |
LDL cholesterol (mg/dL) | 1.00 | 0.938 | −0.59 | 0.959 | −1.58 | 0.872 |
Fast Food & Soda | p for Trend | White Rice & Kimchi | p for Trend | Oil & Seasoned Vegetable | p for Trend | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | ||||||||||
T1 | T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3 | ||||
BMI z score ≥ 2 | ||||||||||||
Model I (1) | 1.00 | 1.36 | 1.67 | 0.043 | 1.00 | 1.31 | 0.76 | 0.255 | 1.00 | 0.85 | 0.85 | 0.527 |
(0.836, 2.220) | (1.013, 2.756) | (0.786, 2.194) | (0.466, 1.234) | (0.516, 1.401) | (0.516, 1.401) | |||||||
Model II (2) | 1.00 | 1.25 | 1.49 | 0.654 | 1.00 | 1.31 | 0.83 | 0.099 | 1.00 | 0.79 | 0.793 | 0.858 |
(0.762, 2.058) | (0.890, 2.482) | (0.781, 2.199) | (0.501, 1.364) | (0.473, 1.309) | (0.476, 1.323) | |||||||
HOMA-IR ≥ 2.6 | ||||||||||||
Model I | 1.00 | 1.84 | 2.41 | 0.000 | 1.00 | 1.45 | 1.26 | 0.362 | 1.00 | 1.29 | 0.80 | 0.362 |
(1.113, 3.032) | (1.430, 4.068) | (0.870, 2.425) | (0.761, 2.083) | (0.759, 2.181) | (0.483, 1.314) | |||||||
Model II | 1.00 | 1.73 | 2.11 | 0.008 | 1.00 | 1.47 | 1.41 | 0.114 | 1.00 | 1.16 | 0.67 | 0.206 |
(1.032, 2.905) | (1.227, 3.638) | (0.865, 2.484) | (0.831, 2.403) | (0.671, 1.997) | (0.396, 1.132) | |||||||
Metabolic Syndrome (3) | ||||||||||||
Model I | 1.00 | 1.63 | 1.79 | 0.016 | 1.00 | 1.03 | 1.09 | 0.717 | 1.00 | 1.09 | 0.94 | 0.809 |
(1.016, 2.609) | (1.109, 2.871) | (0.642, 1.650) | (0.680, 1.753) | (0.679, 1.757) | (0.589, 1.512) | |||||||
Model II | 1.00 | 1.57 | 1.63 | 0.039 | 1.00 | 0.97 | 1.18 | 0.578 | 1.00 | 1.05 | 0.91 | 0.578 |
(0.967, 2.556) | (0.993, 2.672) | (0.600, 1.575) | (0.716, 1.928) | (0.641, 1.707) | (0.559, 1.494) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.; Lee, S.Y.; Kim, D.-Y.; Woo, S.; Kim, Y.; Lee, H.-J.; Jang, H.B.; Park, S.I.; Park, K.H.; Lim, H. Association of Dietary Patterns with Weight Status and Metabolic Risk Factors among Children and Adolescents. Nutrients 2021, 13, 1153. https://doi.org/10.3390/nu13041153
Oh S, Lee SY, Kim D-Y, Woo S, Kim Y, Lee H-J, Jang HB, Park SI, Park KH, Lim H. Association of Dietary Patterns with Weight Status and Metabolic Risk Factors among Children and Adolescents. Nutrients. 2021; 13(4):1153. https://doi.org/10.3390/nu13041153
Chicago/Turabian StyleOh, Seulki, So Yeong Lee, Do-Yeon Kim, Sarah Woo, YoonMyung Kim, Hye-Ja Lee, Han Byul Jang, Sang Ick Park, Kyung Hee Park, and Hyunjung Lim. 2021. "Association of Dietary Patterns with Weight Status and Metabolic Risk Factors among Children and Adolescents" Nutrients 13, no. 4: 1153. https://doi.org/10.3390/nu13041153
APA StyleOh, S., Lee, S. Y., Kim, D.-Y., Woo, S., Kim, Y., Lee, H.-J., Jang, H. B., Park, S. I., Park, K. H., & Lim, H. (2021). Association of Dietary Patterns with Weight Status and Metabolic Risk Factors among Children and Adolescents. Nutrients, 13(4), 1153. https://doi.org/10.3390/nu13041153