The Gut Microbiome in Schizophrenia and the Potential Benefits of Prebiotic and Probiotic Treatment
Abstract
:1. Introduction
2. The Gut Microbiome in Behavior and Psychiatric Diseases
2.1. Schizophrenia
2.2. Acute Schizophrenia
2.3. Chronic Schizophrenia
3. Antipsychotics and the Potential Role of the Gut Microbiome
3.1. Antipsychotic-Induced Metabolic Side Effects
3.2. Effects of Antipsychotics on the Microbiome
4. Evidence for Psychobiotic Intervention in Schizophrenia
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carabotti:, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209. [Google Scholar]
- Rea, K.; Dinan, T.G.; Cryan, J.F. The microbiome: A key regulatory of stress and neuroinflammation. Neurobiol. Stress 2016, 4, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Dinan, T.G.; Cryan, J.F. Gut-brain axis in 2016: Brain-gut-microbiota axis mood, metabolism and behavior. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 69–70. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Xing, C.; Long, W.; Wang, H.Y.; Liu, Q.; Wang, R.-F. Impact of microbiota on central nervous system and neurological diseases: The gut-brain axis. J. NeuroInflamm. 2019, 16, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein-Coupled Receptor FFAR2. Diabetes 2011, 61, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Shishov, V.A.; Kirovskaia, T.A.; Kudrin, V.S.; Oleskin, A.V. Amine neuromediators, their precursors, and ox-idation products in the culture of Escherichia coli K-12. Prikl. Biokhimiia I Mikrobiol. 2009, 45, 550–554. [Google Scholar]
- Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703. [Google Scholar] [CrossRef] [Green Version]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef] [Green Version]
- Russell, W.R.; Gratz, S.W.; Duncan, S.H.; Holtrop, G.; Ince, J.; Scobbie, L.; Duncan, G.; Johnstone, A.M.; E Lobley, G.; Wallace, R.J.; et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 2011, 93, 1062–1072. [Google Scholar] [CrossRef]
- Asano, Y.; Hiramoto, T.; Nishino, R.; Aiba, Y.; Kimura, T.; Yoshihara, K.; Koga, Y.; Sudo, N. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Liver Physiol. Gastrointest. Liver Physiol. 2012, 303, G1288–G1295. [Google Scholar] [CrossRef] [Green Version]
- Barrett, E.; Ross, R.P.; O’Toole, P.W.; Fitzgerald, G.F.; Stanton, C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 2012, 113, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Erny, D.; De Angelis, A.L.H.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T.; et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 2015, 18, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Bercik, P.; Denou, E.; Collins, J.; Jackson, W.; Lu, J.; Jury, J.; Deng, Y.; Blennerhassett, P.; Macri, J.; McCoy, K.D.; et al. The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology 2011, 141, 599–609.e3. [Google Scholar] [CrossRef] [Green Version]
- De Palma, G.; Lynch, M.D.J.; Lu, J.; Dang, V.T.; Deng, Y.; Jury, J.; Umeh, G.; Miranda, P.M.; Pastor, M.P.; Sidani, S.; et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci. Transl. Med. 2017, 9, eaaf6397. [Google Scholar] [CrossRef]
- Wrzosek, L.; Ciocan, D.; Borentain, P.; Spatz, M.; Puchois, V.; Hugot, C.; Ferrere, G.; Mayeur, C.; Perlemuter, G.; Cassard, A.-M. Transplantation of human microbiota into conventional mice durably reshapes the gut microbiota. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 2016, 167, 1339–1353.e21. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Vuong, H.E.; Nusbaum, D.J.; Hsiao, E.Y.; Evans, C.J.; Taylor, A.M.W. The gut microbiota mediates reward and sensory responses associated with regimen-selective morphine dependence. Neuropsychopharmacology 2018, 43, 2606–2614. [Google Scholar] [CrossRef] [Green Version]
- Lowe, P.P.; Gyongyosi, B.; Satishchandran, A.; Iracheta-Vellve, A.; Cho, Y.; Ambade, A.; Szabo, G. Reduced gut microbiome protects from alcohol-induced neuroinflammation and alters intestinal and brain inflammasome expression. J. NeuroInflamm. 2018, 15, 1–12. [Google Scholar] [CrossRef]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef] [Green Version]
- Celiberto, L.S.; Pinto, R.A.; Rossi, E.A.; Vallance, B.A.; Cavallini, D.C.U. Isolation and Characterization of Potentially Probiotic Bacterial Strains from Mice: Proof of Concept for Personalized Probiotics. Nutrients 2018, 10, 1684. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-J.; Lee, K.-E.; Kim, J.-K.; Kim, D.-H. Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.-N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 2004, 558, 263–275. [Google Scholar] [CrossRef]
- Luk, B.; Veeraragavan, S.; Engevik, M.; Balderas, M.; Major, A.; Runge, J.; Luna, R.A.; Versalovic, J. Postnatal colonization with human "infant-type" Bifidobacterium species alters behavior of adult gnotobiotic mice. PLoS ONE 2018, 13, e0196510. [Google Scholar] [CrossRef]
- Luo, Y.; Zeng, B.; Zeng, L.; Du, X.; Li, B.; Huo, R.; Liu, L.; Wang, H.; Dong, M.; Pan, J.; et al. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Transl. Psychiatry 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Kelly, J.R.; Borre, Y.; Brien, C.O.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016, 82, 109–118. [Google Scholar] [CrossRef]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef]
- Lavretsky, H. History of Schizophrenia as a Psychiatric Disorder. In Clinical Handbook of Schizophrenia; Mueser, K.T., Jeste, D.V., Eds.; Guilford Press: New York, NY, USA, 2008. [Google Scholar]
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Ijaz, S.; Bolea, B.; Davies, S.; Savović, J.; Richards, A.; Sullivan, S.; Moran, P. Antipsychotic polypharmacy and metabolic syndrome in schizophrenia: A review of systematic reviews. BMC Psychiatry 2018, 18, 275. [Google Scholar] [CrossRef] [Green Version]
- Severance, E.G.; Prandovszky, E.; Castiglione, J.; Yolken, R.H. Gastroenterology Issues in Schizophrenia: Why the Gut Matters. Curr. Psychiatry Rep. 2015, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Kosciolek, T.; Eyler, L.T.; Knight, R.; Jeste, D.V. Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. J. Psychiatr. Res. 2018, 99, 50–61. [Google Scholar] [CrossRef]
- Kanji, S.; Fonseka, T.M.; Marshe, V.S.; Sriretnakumar, V.; Hahn, M.K.; Müller, D.J. The microbiome-gut-brain axis: Implications for schizophrenia and antipsychotic induced weight gain. Eur. Arch. Psychiatry Clin. Neurosci. 2018, 268, 3–15. [Google Scholar] [CrossRef]
- He, Y.; Kosciolek, T.; Tang, J.; Zhou, Y.; Li, Z.; Ma, X.; Zhu, Q.; Yuan, N.; Yuan, L.; Li, C.; et al. Gut microbiome and magnetic resonance spectroscopy study of subjects at ultra-high risk for psychosis may support the membrane hypothesis. Eur. Psychiatry 2018, 53, 37–45. [Google Scholar] [CrossRef]
- Castro-Nallar, E.; Bendall, M.L.; Pérez-Losada, M.; Sabuncyan, S.; Severance, E.G.; Dickerson, F.B.; Schroeder, J.R.; Yolken, R.H.; Crandall, K.A. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ 2015, 3, e1140. [Google Scholar] [CrossRef] [PubMed]
- Yolken, R.; Prandovszky, E.; Severance, E.G.; Hatfield, G.; Dickerson, F. The oropharyngeal microbiome is altered in individuals with schizophrenia and mania. Schizophr. Res. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Pan, L.-Y.; Zhang, Z.; Zhou, Y.-Y.; Jiang, H.-Y.; Ruan, B. Analysis of gut mycobiota in first-episode, drug-naïve Chinese patients with schizophrenia: A pilot study. Behav. Brain Res. 2020, 379, 112374. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, P.; Wang, Y.; Liu, Y.; Li, X.; Kumar, B.U.; Hei, G.; Lv, L.; Huang, X.-F.; Fan, X.; et al. Changes in metabolism and microbiota after 24-week risperidone treatment in drug naïve, normal weight patients with first episode schizophrenia. Schizophr. Res. 2018, 201, 299–306. [Google Scholar] [CrossRef]
- Zhu, F.; Ju, Y.; Wang, W.; Wang, Q.; Guo, R.; Ma, Q.; Sun, Q.; Fan, Y.; Xie, Y.; Yang, Z.; et al. Metagenome-wide association of gut microbiome features for schizophrenia. Nat. Commun. 2020, 11, 1612. [Google Scholar] [CrossRef] [Green Version]
- Pełka-Wysiecka, J.; Kaczmarczyk, M.; Bąba-Kubiś, A.; Liśkiewicz, P.; Wroński, M.; Skonieczna-Żydecka, K.; Marlicz, W.; Misiak, B.; Starzyńska, T.; Kucharska-Mazur, J.; et al. Analysis of Gut Microbiota and Their Metabolic Potential in Patients with Schizophrenia Treated with Olanzapine: Results from a Six-Week Observational Prospective Cohort Study. J. Clin. Med. 2019, 8, 1605. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Xu, J.; Li, Z.; Huang, Y.; Yuan, Y.; Wang, J.; Zhang, M.; Hu, S.; Liang, Y. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr. Res. 2018, 197, 470–477. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kosciolek, T.; Maldonado, Y.; Daly, R.E.; Martin, A.S.; McDonald, D.; Knight, R.; Jeste, D.V. Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr. Res. 2019, 204, 23–29. [Google Scholar] [CrossRef]
- Zheng, P.; Zeng, B.; Liu, M.; Chen, J.; Pan, J.; Han, Y.; Liu, Y.; Cheng, K.; Zhou, C.; Wang, H.; et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv. 2019, 5, eaau8317. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Asif, H.; Dai, L.; He, Y.; Zheng, W.; Wang, D.; Ren, H.; Tang, J.; Li, C.; Jin, K.; et al. Alteration of the gut microbiome in first-episode drug-naïve and chronic medicated schizophrenia correlate with regional brain volumes. J. Psychiatr. Res. 2020, 123, 136–144. [Google Scholar] [CrossRef]
- Xu, R.; Wu, B.; Liang, J.; He, F.; Gu, W.; Li, K.; Luo, Y.; Chen, J.; Gao, Y.; Wu, Z.; et al. Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain Behav. Immun. 2020, 85, 120–127. [Google Scholar] [CrossRef]
- Penninx, B.W.J.H.; Lange, S.M.M. Metabolic syndrome in psychiatric patients: Overview, mechanisms, and implications. Dialog. Clin. Neurosci. 2018, 20, 63–73. [Google Scholar]
- Gressier, F.; Porcelli, S.; Calati, R.; Serretti, A. Pharmacogenetics of clozapine response and induced weight gain: A comprehensive review and meta-analysis. Eur. Neuropsychopharmacol. 2016, 26, 163–185. [Google Scholar] [CrossRef]
- Vancampfort, D.; Correll, C.U.; Galling, B.; Probst, M.; De Hert, M.; Ward, P.B.; Rosenbaum, S.; Gaughran, F.P.; Lally, J.A.; Stubbs, B. Diabetes mellitus in people with schizophrenia, bipolar disorder and major depressive disorder: A systematic review and large scale meta-analysis. World Psychiatry 2016, 15, 166–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aringhieri, S.; Carli, M.; Kolachalam, S.; Verdesca, V.; Cini, E.; Rossi, M.; McCormick, P.J.; Corsini, G.U.; Maggio, R.; Scarselli, M. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol. Ther. 2018, 192, 20–41. [Google Scholar] [CrossRef]
- Sicard, M.N.; Zai, C.C.; Tiwari, A.K.; Souza, R.P.; Meltzer, H.Y.; A Lieberman, J.; Kennedy, J.L.; Müller, D.J. Polymorphisms of theHTR2Cgene and antipsychotic-induced weight gain: An update and meta-analysis. Pharmacogenomics 2010, 11, 1561–1571. [Google Scholar] [CrossRef]
- Chowdhury, N.I.; Souza, R.P.; Tiwari, A.K.; Brandl, E.J.; Sicard, M.; Meltzer, H.Y.; Lieberman, J.A.; Kennedy, J.L.; Muller, D.J. Investigation of melanocortin system gene variants in antipsychotic-induced weight gain. World J. Biol. Psychiatry 2014, 15, 251–258. [Google Scholar] [CrossRef]
- Ragguett, R.-M.; Hahn, M.; Messina, G.; Chieffi, S.; Monda, M.; De Luca, V. Association between antipsychotic treatment and leptin levels across multiple psychiatric populations: An updated meta-analysis. Hum. Psychopharmacol. Clin. Exp. 2017, 32, e2631. [Google Scholar] [CrossRef]
- Pisano, S.; Coppola, G.; Catone, G.; Carotenuto, M.; Iuliano, R.; D’Esposito, V.; Cabaro, S.; Del Giudice, E.M.; Bravaccio, C.; Formisano, P. Differences in Metabolic Factors Between Antipsychotic-Induced Weight Gain and Non-pharmacological Obesity in Youths. Clin. Drug Investig. 2018, 38, 457–462. [Google Scholar] [CrossRef]
- Scaini, G.; Quevedo, J.; Velligan, D.; Roberts, D.L.; Raventos, H.; Walss-Bass, C. Second generation antipsychotic-induced mitochondrial alterations: Implications for increased risk of metabolic syndrome in patients with schizophrenia. Eur. Neuropsychopharmacol. 2018, 28, 369–380. [Google Scholar] [CrossRef]
- Gorbovskaya, I.; Kanji, S.; Liu, J.C.; MacKenzie, N.E.; Agarwal, S.M.; Marshe, V.S.; Sriretnakumar, V.; Verdu, E.F.; Bercik, P.; De Palma, G.; et al. Investigation of the Gut Microbiome in Patients with Schizophrenia and Clozapine-Induced Weight Gain: Protocol and Clinical Characteristics of First Patient Cohorts. Neuropsychobiology 2020, 79, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Davey, K.J.; O’Mahony, S.M.; Schellekens, H.; O’Sullivan, O.; Bienenstock, J.; Cotter, P.D.; Dinan, T.G.; Cryan, J.F. Gender-dependent consequences of chronic olanzapine in the rat: Effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology 2012, 221, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Davey, K.J.; Cotter, P.D.; Osullivan, O.; Crispie, F.; Dinan, T.G.; Cryan, J.F.; Omahony, S.M. Antipsychotics and the gut microbiome: Olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Transl. Psychiatry 2013, 3, e309. [Google Scholar] [CrossRef] [Green Version]
- Bahr, S.M.; Tyler, B.; Wooldridge, N.; Butcher, B.; Burns, T.L.; Teesch, L.M.; Oltman, C.L.; Azcarate-Peril, M.; Kirby, J.R.; A Calarge, C. Use of the second-generation antipsychotic, risperidone, and secondary weight gain are associated with an altered gut microbiota in children. Transl. Psychiatry 2015, 5, e652. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. The microbiota–gut–brain axis in obesity. Lancet Gastroenterol. Hepatol. 2017, 2, 747–756. [Google Scholar] [CrossRef]
- Morgan, A.P.; Crowley, J.J.; Nonneman, R.J.; Quackenbush, C.R.; Miller, C.N.; Ryan, A.K.; Bogue, M.A.; Paredes, S.H.; Yourstone, S.; Carroll, I.M.; et al. The Antipsychotic Olanzapine Interacts with the Gut Microbiome to Cause Weight Gain in Mouse. PLoS ONE 2014, 9, e115225. [Google Scholar] [CrossRef]
- Fernø, J.; Ersland, K.; Duus, I.; González-García, I.; Fossan, K.; Berge, R.; Steen, V.; Skrede, S. Olanzapine depot exposure in male rats: Dose-dependent lipogenic effects without concomitant weight gain. Eur. Neuropsychopharmacol. 2015, 25, 923–932. [Google Scholar] [CrossRef]
- Kraal, A.Z.; Ward, K.M.; Ellingrod, V.L. Sex Differences in Antipsychotic Related Metabolic Functioning in Schizophrenia Spectrum Disorders. Psychopharmacol. Bull. 2017, 47, 8–21. [Google Scholar]
- Perez-Gomez, A.; Carretero, M.; Weber, N.; Peterka, V.; To, A.; Titova, V.; Solis, G.; Osborn, O.; Petrascheck, M. A phenotypic Caenorhabditis elegans screen identifies a selective suppressor of antipsychotic-induced hyperphagia. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Kao, A.C.-C.; Spitzer, S.; Anthony, D.C.; Lennox, B.; Burnet, P.W.J. Prebiotic attenuation of olanzapine-induced weight gain in rats: Analysis of central and peripheral biomarkers and gut microbiota. Transl. Psychiatry 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Flowers, S.A.; Evans, S.J.; Ward, K.M.; McInnis, M.G.; Ellingrod, V.L. Interaction between Atypical Antipsychotics and the Gut Microbiome in a Bipolar Disease Cohort. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 261–267. [Google Scholar] [CrossRef]
- Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.; Dose, H.; Mori, H.; et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nat. Cell Biol. 2018, 555, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, E.; Maukonen, J.; Hyytiäinen, T.; Kieseppä, T.; Orešič, M.; Sabunciyan, S.; Mantere, O.; Saarela, M.; Yolken, R.; Suvisaari, J. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr. Res. 2018, 192, 398–403. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Li, Z.-R.; Green, R.S.; Holzman, I.R.; Lin, J. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. J. Nutr. 2009, 139, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Machiels, K.; Joossens, M.; Sabino, J.; De Preter, V.; Arijs, I.; Eeckhaut, V.; Ballet, V.; Claes, K.; Van Immerseel, F.; Verbeke, K.; et al. A decrease of the butyrate-producing speciesRoseburia hominisandFaecalibacterium prausnitziidefines dysbiosis in patients with ulcerative colitis. Gut 2013, 63, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Tóth, M.; Korecka, A.; Bakocevic, N.; Ng, L.G.; Kundu, P.; et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 2014, 6, 263ra158. [Google Scholar] [CrossRef] [Green Version]
- Gorecki, A.M.; Preskey, L.; Bakeberg, M.C.; Kenna, J.E.; Gildenhuys, C.; MacDougall, G.; Dunlop, S.A.; Mastaglia, F.L.; Akkari, P.A.; Koengten, F.; et al. Altered gut microbiome in Parkinson’s disease and the influence of lipopolysaccharide in a human α-synuclein over-expressing mouse model. Front. Neurosci. 2019, 13, 839. [Google Scholar] [CrossRef] [Green Version]
- Basta-Kaim, A.; Szczęsny, E.; Leśkiewicz, M.; Głombik, K.; Ślusarczyk, J.; Budziszewska, B.; Regulska, M.; Kubera, M.; Nowak, W.; Wędzony, K.; et al. Maternal immune activation leads to age-related behavioral and immunological changes in male rat offspring—The effect of antipsychotic drugs. Pharmacol. Rep. 2012, 64, 1400–1410. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, L.; Ding, Y.-Q.; Zhao, J.; Zheng, Y. Neonatal intrahippocampal injection of lipopolysaccharide induces deficits in social behavior and prepulse inhibition and microglial activation in rats: Implication for a new schizophrenia animal model. Brain Behav. Immun. 2014, 38, 166–174. [Google Scholar] [CrossRef]
- Waterhouse, U.; Roper, V.E.; Brennan, K.A.; Ellenbroek, B.A. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: A study in rats. Dis. Models Mech. 2016, 9, 1159–1167. [Google Scholar] [CrossRef] [Green Version]
- Prestwood, T.R.; Asgariroozbehani, R.; Wu, S.; Agarwal, S.M.; Logan, R.W.; Ballon, J.S.; Hahn, M.K.; Freyberg, Z. Roles of inflammation in intrinsic pathophysiology and antipsychotic drug-induced metabolic disturbances of schizophrenia. Behav. Brain Res. 2021, 402, 113101. [Google Scholar] [CrossRef]
- Dinan, T.G.; Stanton, C.; Cryan, J.F. Psychobiotics: A Novel Class of Psychotropic. Biol. Psychiatry 2013, 74, 720–726. [Google Scholar] [CrossRef]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Kiely, B.; Cryan, J.F.; Dinan, T.G. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 2010, 170, 1179–1188. [Google Scholar] [CrossRef]
- Smith, C.J.; Emge, J.R.; Berzins, K.; Lung, L.; Khamishon, R.; Shah, P.; Rodrigues, D.M.; Sousa, A.J.; Reardon, C.; Sherman, P.M.; et al. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice. Am. J. Physiol. Liver Physiol. 2014, 307, G793–G802. [Google Scholar] [CrossRef]
- Bruce-Keller, A.J.; Salbaum, J.M.; Berthoud, H.-R. Harnessing Gut Microbes for Mental Health: Getting from Here to There. Biol. Psychiatry 2018, 83, 214–223. [Google Scholar] [CrossRef]
- Nishida, K.; Sawada, D.; Kuwano, Y.; Tanaka, H.; Rokutan, K. Health Benefits of Lactobacillus gasseri CP2305 Tablets in Young Adults Exposed to Chronic Stress: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2019, 11, 1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardsjord, E.S.; Romm, K.L.; Friis, S.; Barder, H.E.; Evensen, J.; Haahr, U.; Hegelstad, W.T.V.; Joa, I.; Johannessen, J.O.; Langeveld, J.; et al. Subjective quality of life in first-episode psychosis. A ten year follow-up study. Schizophr. Res. 2016, 172, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Upthegrove, R.; Marwaha, S.; Birchwood, M. Depression and Schizophrenia: Cause, Consequence, or Trans-diagnostic Issue? Schizophr. Bull. 2016, 43, 240–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burokas, A.; Arboleya, S.; Moloney, R.D.; Peterson, V.L.; Murphy, K.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biol. Psychiatry 2017, 82, 472–487. [Google Scholar] [CrossRef]
- Lin, P.; Ding, B.; Feng, C.; Yin, S.; Zhang, T.; Qi, X.; Lv, H.; Guo, X.; Dong, K.; Zhu, Y.; et al. Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder. J. Affect. Disord. 2017, 207, 300–304. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Gui, S.; Zhou, C.; Chen, J.; Yang, C.; Hu, Z.; Wang, H.; Zhong, X.; Zeng, L.; et al. Comparative metaproteomics analysis shows altered fecal microbiota signatures in patients with major depressive disorder. NeuroReport 2018, 29, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Tillmann, S.; Abildgaard, A.; Winther, G.; Wegener, G. Altered fecal microbiota composition in the Flinders sensitive line rat model of depression. Psychopharmacology 2019, 236, 1445–1457. [Google Scholar] [CrossRef] [Green Version]
- Tomasik, J.; Yolken, R.H.; Bahn, S.; Dickerson, F.B. Immunomodulatory Effects of Probiotic Supplementation in Schizophrenia Patients: A Randomized, Placebo-Controlled Trial. Biomark. Insights 2015, 10, 47–54. [Google Scholar] [CrossRef]
- Dickerson, F.B.; Stallings, C.; Origoni, A.; Katsafanas, E.; Savage, C.L.G.; Schweinfurth, L.A.B.; Goga, J.; Khushalani, S.; Yolken, R.H. Effect of Probiotic Supplementation on Schizophrenia Symptoms and Association with Gastrointestinal Functioning: A Randomized, Placebo-Controlled Trial. Prim. Care Companion CNS Disord. 2014, 16, PCC.13m01579. [Google Scholar] [CrossRef] [Green Version]
- Severance, E.G.; Gressitt, K.L.; Stallings, C.R.; Katsafanas, E.; Schweinfurth, L.A.; Savage, C.L.; Adamos, M.B.; Sweeney, K.M.; Origoni, A.E.; Khushalani, S.; et al. Probiotic normalization of Candida albicans in schizophrenia: A randomized, placebo-controlled, longitudinal pilot study. Brain Behav. Immun. 2017, 62, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okubo, R.; Koga, M.; Katsumata, N.; Odamaki, T.; Matsuyama, S.; Oka, M.; Narita, H.; Hashimoto, N.; Kusumi, I.; Xiao, J.; et al. Effect of bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: A proof-of-concept study. J. Affect. Disord. 2019, 245, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Ghaderi, A.; Banafshe, H.R.; Mirhosseini, N.; Moradi, M.; Karimi, M.-A.; Mehrzad, F.; Bahmani, F.; Asemi, Z. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry 2019, 19, 77. [Google Scholar] [CrossRef] [Green Version]
- Ghyselinck, J.; Pfeiffer, S.; Heylen, K.; Sessitsch, A.; De Vos, P. The Effect of Primer Choice and Short Read Sequences on the Outcome of 16S rRNA Gene Based Diversity Studies. PLoS ONE 2013, 8, e71360. [Google Scholar] [CrossRef] [Green Version]
Publication | Study Design | Diversity Findings | Taxa Abundance Differences in Schizophrenia |
---|---|---|---|
He et al., 2018 [33] | Gut microbiome 81 high-risk schizophrenia patients, 19 ultra-high-risk schizophrenia patients, 69 healthy controls Recruited from the Second Xiangya Hospital, Central South University, Changsha, Hunan, China Experimental Method: 16S rRNA gene sequencing from stool samples collected at baseline | No significant differences between the groups | Observed increased relative abundance of various taxa in schizophrenia: Orders: Bacteroidales, Clostridiales, Lactobacillales Genera: Lactobacillus, Prevotella Species: Lactobacillus ruminis |
Castro-Nallar et al., 2015 [34] | Oral microbiome 16 schizophrenia patients, 16 healthy controls Recruited from the Stanley Research Program at Sheppard Pratt Hospital Maryland, US Experimental Method: Illumina sequencing of DNA from throat swabs | Lower species richness and more homogenously distributed in schizophrenia patients | Observed increased relative abundance of various taxa in schizophrenia: Phyla: Firmicutes Genera: Bifidobacterium, Lactobacillus Species: Bifidobacterium pseudocatenulatum, Candida dubliniensis, Catenibacterium mitsuokai, Eubacterium hallii, Lactobacillus gasseri, Lactobacillus salivarius |
Yolken et al., 2020 [35] | Oral microbiome 121 schizophrenia patients, 85 healthy controls Recruited from psychiatric programs affiliated with the Sheppard Pratt Health System and at other outpatient treatment sites in central Maryland, US Experimental Method: 16S rRNA gene sequencing of V3–V4 region from throat swabs | No significant differences in alpha diversity (microbial richness and diversity) were found Altered beta diversity was found in individuals with schizophrenia compared to healthy controls | Observed increased relative abundance of various taxa in schizophrenia: Genera: Streptococcus Observed decreased relative abundance of various taxa in schizophrenia: Families: Weeksellaceae Genera: Prevotella Species: Neisseria subflava |
Zhang et al., 2020 [36] | Gut microbiome 10 antipsychotic-naïve patients with first-episode schizophrenia, 16 healthy controls Recruited from the Seventh People’s Hospital of Hangzhou in Hangzhou, Zhejiang Experimental Method: 16S rRNA gene sequencing from stool samples collected at baseline | No significant differences in alpha diversity (microbial richness and diversity) were found Principle coordinate analysis distinguished a cluster between the two groups, indicating a significant decrease in beta diversity in the schizophrenia group compared to the control group | Observed increased relative abundance of various taxa in schizophrenia: Phyla: Proteobacteria Classes: Deltaproteobacteria, Saccharimonadia, Synergistia Orders: Actinomycetales, Desulfovibrionales, Saccharimonadales, Synergistales Families: Actinomycetaceae, Burkholderiaceae, Desulfovibrionaceae, Saccharimonadaceae, Synergistaceae Genera: Actinomyces, Anaerotruncus, Bilophila, Blautia, Christensenella, Cloacibacillus, Dorea, Eggerthella, Eisenbergiella, Flavonifractor, Holdemania, Hungatella, Oscillibacter, Parasutterella, Prevotella Observed decreased relative abundance of various taxa in schizophrenia: Families: Lachnospiraceae Genera: Agathobacter, Butyricicoccus, Coprococcus, Faecalibacterium, Fusicatenibacter, Ruminococcus |
Yuan et al., 2018 [37] | Gut microbiome 41 antipsychotic naïve patients with first-episode schizophrenia and 41 healthy controls Patients were started on risperidone treatment for 24 weeks (1–6 mg/day) Recruited from First Affiliated Hospital of Zhengzhou University Experimental Method: 16S rRNA gene sequencing from stool samples collected from baseline, weeks 6, 12 and 24 | Not reported | Abundance of Bifidobacterium spp. and Escherichia coli increased with risperidone treatment Abundance of Lactobaccillus spp. and Clostridium coccoides decreased with risperidone treatment Observed increased relative abundance of various taxa in schizophrenia: Species: Clostridium coccoides Observed decreased relative abundance of various taxa in schizophrenia: Genera: Bifidobacterium., Lactobacillus Species: Escherichia coli |
Zhu et al., 2020 [38] | Gut microbiome 90 antipsychotic-free patients with first-episode schizophrenia and 81 healthy controls Followed up with 38 patients after 3 months of treatment (27 risperidone and 11 other antipsychotics) Recruited from multiple clinical sites across the Shaanxi Province, China Experimental Method: Metagenomic shotgun sequencing from stool samples collected at baseline and 3 months after antipsychotic treatment | Higher alpha diversity (microbial richness and diversity) was observed at the genus level Individuals with schizophrenia presented with a more variable gut microbiome compared to healthy controls | Observed increased relative abundance of various Species in chronically antipsychotic-treated schizophrenia compared to: HC: Acidaminococcus fermentans, Acidaminococcus intestini, Akkermansia muciniphila, Alkaliphilus oremlandii, Bacillus amyloliquefaciens, Bacteroides plebeius, Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium dentium, Bifidobacterium longum, Enterococcus faecium, Eubacterium siraeum, Lactobacillus casei, Lactobacillus crispatus, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus oris, Lactobacillus ruminis, Lactobacillus salivarius, Methanobrevibacter smithii, Pseudoflavonifractor capillosus, Stenotrophomonas maltophilia, Streptococcus anginosus, Streptococcus mutans, Veillonella atypica, Veillonella parvula FSCZ: Actinomyces odontolyticus, Enterobacter aerogenes, Enterobacter asburiae, Enterobacter cancerogenus, Enterobacter cloacae, Escherichia coli, Lactococcus lactis, Victivallis vadensis, Observed decreased relative abundance of various Species in chronically antipsychotic-treated schizophrenia compared to: HC: Bacteroides intestinalis, Lactobacillus acidophilus, Lactococcus lactis FSCZ: Alkaliphilus oremlandii, Anaerostipes caccae, Bacteroides ovatus, Bifidobacterium angulatum, Bifidobacterium bifidum, Bifidobacterium longum, Clostridium bolteae, Dorea formicigenerans, Enterococcus faecium, Eubacterium hallii, Faecalibacterium prausnitzii, Lactobacillus ruminis, Streptococcus anginosus Observed increased relative abundance of various Genera in first-episode schizophrenia compared to controls: Acidaminococcus, Akkermansia, Anaerotruncus, Bifidobacterium, Citrobacter, Clavibacter, Comamonas, Coprobacillus, Cryptobacterium, Dialister, Enterococcus, Lactobacillus, Methanobrevibacter, Peptoniphilus, Pseudoflavonifractor, Veillonella Observed decreased relative abundance of various Genera in first-episode schizophrenia compared to controls: Butyrivibrio, Gemella |
Pełka-Wysiecka et al., 2019 [39] | Gut microbiome 20 schizophrenia patients Patients underwent a 7 day washout and were started on olanzapine for 2 weeks (5–20 mg/day). Recruited from Department of Psychiatry in Szczecin (Poland) Experimental Method: 16S rRNA gene sequencing of V4 region from stool samples collected after washout and week 2 of treatment. | No significant changes in alpha diversity after 2 weeks of olanzapine treatment | No significant changes in OTU abundancies between weeks 0 and 6. No changes in Firmicutes/Bacteroidetes ratio |
Shen et al., 2018 [40] | Gut microbiome 64 schizophrenia patients on antipsychotic medication and 53 healthy controls Recruited from hospital or outpatient clinics within Huludao area in China Experimental Method: 16S rRNA gene sequencing of V3–V4 region from stool samples collected at baseline | No significant differences in alpha diversity (microbial richness and diversity) were found | Observed increased relative abundance of various taxa in schizophrenia: Phyla: Proteobacteria Classes: Gammaproteobacteria Orders: Aeromonadales, Fusobacteriales Families: Enterobacteriaceae, Fusobacteriaceae, Lactobacillaceae, Prevotellaceae, Succinivibrionaceae, Veillonellaceae Genera: Acidaminococcus, Citrobacter, Clostridium, Collinsella, Desulfovibrio, Fusobacterium, Klebsiella, Lactobacillus, Megasphaera, Phascolarctobacterium, Prevotella, Succinivibrio Species: Bifidobacterium adolescentis, Bacteroides fragilis, Collinsella aerofaciens, Lactobacillus mucosae, Prevotella stercorea Observed decreased relative abundance of various taxa in schizophrenia: Phyla: Firmicutes Classes: Clostridia Orders: Clostridiales Families: Alkaligenaceae, Lachnospiraceae Genera: Blautia, Coprococcus, Roseburia, Streptococcus Species: Bacteroides eggerthii, Blautia producta, Collinsella plebeius, Roseburia faecis |
Nguyen et al., 2019 [41] | Gut microbiome 25 patients with chronic schizophrenia or schizoaffective disorder (most patients were being treated with antipsychotic medication), 25 demographically matched non-psychiatric controls Recruited as outpatients in San Diego Experimental Method: 16S rRNA gene sequencing of V4 region from stool samples collected at baseline | No significant differences in alpha diversity (microbial richness and diversity) were found | Observed increased relative abundance of various taxa in schizophrenia: Genera: Anaerococcus, Blautia, Megasphaera,, Ruminococcus Observed decreased relative abundance of various taxa in schizophrenia: Phyla: Proteobacteria Genera: Clostridium, Haemophilus, Oscillospira, Sutterella Species: Haemophilus parainfluenzae |
Zheng et al., 2019 [42] | Gut microbiome 63 schizophrenia patients (most patients were being treated with antipsychotic medication), 69 healthy controls Recruited from the First Affiliated Hospital of Chongqing Medical University Experimental Method: 16S rRNA gene sequencing of V3–V4 region from stool samples collected at baseline | Lower alpha diversity (species richness and diversity) was observed in schizophrenia patients | Observed increased relative abundance of various taxa in schizophrenia: Families: Bacteroidaceae, Coriobacteriaceae, Prevotellaceae, Veillonellaceae Genera: Akkermansia, Fusobacterium, Megasphaera, Prevotella Observed decreased relative abundance of various taxa in schizophrenia: Families: Acidaminococcaceae, Enterobacteriaceae, Lachnospiraceae, Rikenellaceae, Ruminococcaceae Genera: Blautia, Citrobacter, Coprococcus, Lachnoclostridium Species: Bacteroides eggerthii, Bacteroides massiliensis, Collinsella stercoris, Haemophilus parainfluenzae |
Ma et al., 2020 [43] | Gut microbiome 40 antipsychotic-naïve patients with first-episode schizophrenia (FSCZ), 85 chronically antipsychotic-treated schizophrenia patients, 69 healthy controls (HC) Recruited from the Second Xiangya Hospital of Central South University Experimental Method: 16S rRNA gene sequencing of V4 region from stool samples collected at baseline | Lower alpha diversity (species richness and diversity) was observed in chronically antipsychotic-treated schizophrenia patients compared to antipsychotic-naïve patients with first-episode schizophrenia and healthy controls | Observed increased relative abundance of various taxa in chronically antipsychotic-treated schizophrenia compared to: Phyla HC: Proteobacteria Families HC: Christensenellaceae, Enterobacteriaceae, Enterococcaceae, Lactobacillaceae FSCZ: Enterococcaceae, Lactobacillaceae, Peptostreptococcaceae. Streptococcaceae, Veillonellaceae Genera HC: Escherichia, Bulleidia, Coprobacillus, Enterococcus, Lactobacillus, Shigella, Streptococcus, Trabulsiella, Veillonella FSCZ: Citrobacter, Clostridium, Enterobacter, Enterococcus, Escherichia, Fusobacterium, Lachnobacterium, Megasphaera, Lactobacillus, Ruminococcus, Shigella, Streptococcus, Sutterella, Veillonella Observed decreased relative abundance of various taxa in chronically antipsychotic-treated schizophrenia compared to: Phyla HC: Cyanobacteria FSCZ: Lentisphaerae Families HC: Pasteurellaceae, Turicibacteraceae Genera HC: Bacteroides, Parabacteroides, Turicibacter FSCZ: Lachnobacterium |
Xu et al., 2020 [44] | Gut microbiome 44 schizophrenia patients, 44 healthy controls Recruited from Longgang Central Hospital of Shenzhen and Shenzhen Kangning Hospital in Shenzhen, China Experimental Method: 16S rRNA gene sequencing of V4 region from stool samples collected at baseline | Lower species richness was observed in schizophrenia patients NMDS analysis at the species level resulted in distinct clusters with few overlaps between schizophrenia patients and healthy controls. The microbial dysbiosis index was significantly increased in patients with schizophrenia compared to controls. | Observed increased relative abundance of various taxa in schizophrenia: Phyla: Actinobacteria Classes: Deltaproteobacteria Orders: Actinomycetales, Sphingomonadales Families: Sphingomonadaceae Genera: Eggerthella, Megasphaera Species: Akkermansia muciniphila, Bifidobacterium adolescentis, Clostridium perfringens, Lactobacillus gasseri, Megasphaera elsdeniis Observed decreased relative abundance of various taxa in schizophrenia: Orders: Rhodocyclales Families: Alcaligenaceae, Enterococcaceae, Leuconostocaceae, Rhodocyclaceae, Rikenellaceae Genera: Enterococcus |
Taxa | Increased in Schizophrenia | Decreased in Schizophrenia |
---|---|---|
Phylum: Firmicutes | Castro-Nallar et al., 2015 (Oral) [34] | Shen et al., 2018 [40] |
Phylum: Proteobacteria | Shen et al., 2018 [40] Ma et al., 2020 (vs HC only) [43] Zhang et al., 2020 (FSCZ) [36] | Nguyen et al., 2019 [41] |
Class: Deltaproteobacteria | Xu et al., 2020 [44] Zhang et al., 2020 (FSCZ) [36] | |
Order: Actinomycetales | Xu et al., 2020 [44] Zhang et al., 2020 (FSCZ) [36] | |
Order: Clostridiales | He et al., 2018 (High-risk for SCZ) [33] | Shen et al., 2018 [40] |
Family: Enterobacteriaceae | Shen et al., 2018 [40] Ma et al., 2020 (vs. HC only) [43] | Zheng et al., 2019 [42] |
Family: Enterococcaceae | Ma et al., 2020 [43] | Xu et al., 2020 [44] |
Family: Lactobacillaceae | Shen et al., 2018 [40] Ma et al., 2020 [43] | |
Family: Lachnospiraceae | Shen et al., 2018 [40] Zheng et al., 2019 [42] Zhang et al., 2020 (FSCZ) [36] | |
Family: Prevotellaceae | Shen et al., 2018 [40] Zheng et al., 2019 [42] | |
Family: Rikenellaceae | Zheng et al., 2019 | Xu et al., 2020 [44] |
Family: Veillonellaceae | Shen et al., 2018 [40] Zheng et al., 2019 [42] Ma et al., 2020 (vs. FSCZ only) [43] | |
Genus: Acidaminococcus | Shen et al., 2018 [40] Zhu et al., 2020 (FSCZ) [38] | |
Genus: Akkermansia | Zheng et al., 2019 [42] Zhu et al., 2020 (FSCZ) [38] | |
Genus: Anaerotruncus | Zhang et al., 2020 (FSCZ) [36] Zhu et al., 2020 (FSCZ) [38] | |
Genus: Bifidobacterium | Castro-Nallar et al., 2015 (Oral) [34] Zhu et al., 2020 (FSCZ) [38] | Yuan et al., 2018 (FSCZ) [37] |
Genus: Blautia | Nguyen et al., 2019 [41] Zhang et al., 2020 (FSCZ) [36] | Shen et al., 2018 [40] Zheng et al., 2019 [42] |
Genus: Citrobacter | Shen et al., 2018 [40] Ma et al., 2020 (vs. FSCZ only) [43] Zhu et al., 2020 (FSCZ) [38] | Zheng et al., 2019 [42] |
Genus: Clostridium | Shen et al., 2018 [40] Ma et al., 2020 (vs. FSCZ only) [43] | |
Genus: Coprobacillus | Ma et al., 2020 (vs. HC only) [43] Zhu et al., 2020 (FSCZ) [38] | |
Genus: Coprococcus | Zhang et al., 2020 (FSCZ) [36] | Shen et al., 2018 [40] Zheng et al., 2019 [42] |
Genus: Eggerthella | Xu et al., 2020 [44] Zhang et al., 2020 (FSCZ) [36] | |
Genus: Enterococcus | Ma et al., 2020 [43] Zhu et al., 2020 (FSCZ) [38] | Xu et al., 2020 [44] |
Genus: Fusobacterium | Shen et al., 2018 [40] Zheng et al., 2019 [42] Ma et al., 2020 (vs. FSCZ only) [43] | |
Genus: Lactobacillus | Castro-Nallar et al., 2015 (Oral) [34] He et al., 2018 (High-risk for SCZ) [33] Shen et al., 2018 [40] Ma et al., 2020 [43] Zhu et al., 2020 (FSCZ) [38] | Yuan et al., 2018 (FSCZ) [37] |
Genus: Megasphaera | Shen et al., 2018 [40] Nguyen et al., 2019 [41] Zheng et al., 2019 [42] Ma et al., 2020 (vs. FSCZ only) [43] Xu et al., 2020 [44] | |
Genus: Prevotella | He et al., 2018 (High-risk for SCZ) [33] Shen et al., 2018 [40] Zheng et al., 2019 [42] Zhang et al., 2020 (FSCZ) [36] | Yolken et al., 2020 (Oral) [35] |
Genus: Ruminococcus | Nguyen et al., 2019 [41] Ma et al., 2020 (vs. FSCZ only) [43] | Zhang et al., 2020 (FSCZ) [36] |
Genus: Streptococcus | Ma et al., 2020 [43] Yolken et al., 2020 (Oral) [35] | Shen et al., 2018 [40] |
Genus: Veillonella | Ma et al., 2020 [43] Zhu et al., 2020 (FSCZ) [38] | |
Species: Akkermansia muciniphila | Xu et al., 2020 [44] Zhu et al., 2020 (vs. HC only) [38] | |
Species: Bacteroides eggerthii | Shen et al., 2018 [40] Zheng et al., 2019 [42] | |
Species: Bifidobacterium adolescentis | Shen et al., 2018 [40] Xu et al., 2020 [44] Zhu et al., 2020 (vs. HC only) [38] | |
Species: Escherichia coli | Zhu et al., 2020 (vs. FSCZ only) [38] | Yuan et al., 2018 (FSCZ) [37] |
Species: Eubacterium hallii | Castro-Nallar et al., 2015 (Oral) [34] | Zhu et al., 2020 (vs FSCZ only) [38] |
Species: Lactobacillus gasseri | Castro-Nallar et al., 2015 (Oral) [34] Xu et al., 2020 [44] | |
Species: Lactobacillus ruminis | He et al., 2019 (High-risk for SCZ) [33] Zhu et al., 2020 (vs. HC only) [38] | Zhu et al., 2020 (vs FSCZ) [38] |
Species: Lactobacillus salivarius | Castro-Nallar et al., 2015 (Oral) [34] Zhu et al., 2020 (vs. HC only) [38] | |
Species: Haemophilus parainfluenzae | Nguyen et al., 2019 [41] Zheng et al., 2019 [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.C.W.; Gorbovskaya, I.; Hahn, M.K.; Müller, D.J. The Gut Microbiome in Schizophrenia and the Potential Benefits of Prebiotic and Probiotic Treatment. Nutrients 2021, 13, 1152. https://doi.org/10.3390/nu13041152
Liu JCW, Gorbovskaya I, Hahn MK, Müller DJ. The Gut Microbiome in Schizophrenia and the Potential Benefits of Prebiotic and Probiotic Treatment. Nutrients. 2021; 13(4):1152. https://doi.org/10.3390/nu13041152
Chicago/Turabian StyleLiu, Jonathan C. W., Ilona Gorbovskaya, Margaret K. Hahn, and Daniel J. Müller. 2021. "The Gut Microbiome in Schizophrenia and the Potential Benefits of Prebiotic and Probiotic Treatment" Nutrients 13, no. 4: 1152. https://doi.org/10.3390/nu13041152
APA StyleLiu, J. C. W., Gorbovskaya, I., Hahn, M. K., & Müller, D. J. (2021). The Gut Microbiome in Schizophrenia and the Potential Benefits of Prebiotic and Probiotic Treatment. Nutrients, 13(4), 1152. https://doi.org/10.3390/nu13041152