A Comprehensive Review Evaluating the Impact of Protein Source (Vegetarian vs. Meat Based) in Hepatic Encephalopathy
Abstract
:1. Introduction
2. Methods
2.1. Reasoning for the Use of Vegetarian Diet
2.2. Evidence from Animal Studies and Humans
2.3. Evidence Regarding the Use of Vegetable-Based Protein in Patients with Cirrhosis
2.4. Role of Branch Chain Amino Acids (BCAA)
2.4.1. Evidence from Animal Studies
2.4.2. Evidence Regarding the Use of BCAA in Patients with Cirrhosis
2.5. Role in Prevention of Sarcopenia
2.6. Role of Microbiota
2.7. Other Potential Effects of Diet in Patients with Cirrhosis
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Romero-Gómez, M.; Boza, F.; García-Valdecasas, M.S.; García, E.; Aguilar-Reina, J. Subclinical hepatic encephalopathy predicts the development of overt hepatic encephalopathy. Am. J. Gastroenterol. 2001, 96, 2718–2723. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Wade, J.B.; Sanyal, A.J. Spectrum of neurocognitive impairment in cirrhosis: Implications for the assessment of hepatic encephalopathy. Hepatology 2009, 50, 2014–2021. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Schubert, C.M.; Heuman, D.M.; Wade, J.B.; Gibson, D.P.; Topaz, A.; Saeian, K.; Hafeezullah, M.; Bell, D.E.; Sterling, R.K.; et al. Persistence of cognitive impairment after resolution of overt hepatic encephalopathy. Gastroenterology 2010, 138, 2332–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldonado-Garza, H.J.; Vázquez-Elizondo, G.; Gaytán-Torres, J.O.; Flores-Rendón, A.R.; Cárdenas-Sandoval, M.G.; Bosques-Padilla, F.J. Prevalence of minimal hepatic encephalopathy in cirrhotic patients. Ann. Hepatol. 2011, 10, S40–S44. [Google Scholar] [CrossRef]
- Dhiman, R.K.; Chawla, Y.K. Minimal hepatic encephalopathy. Indian J. Gastroenterol. 2009, 28, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Patidar, K.R.; Bajaj, J.S. Covert and Overt Hepatic Encephalopathy: Diagnosis and Management. Clin. Gastroenterol. Hepatol. 2015, 13, 2048–2061. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, J.S.; Riggio, O.; Allampati, S.; Prakash, R.; Gioia, S.; Onori, E.; Piazza, N.; Noble, N.A.; White, M.B.; Mullen, K.D. Cognitive dysfunction is associated with poor socioeconomic status in patients with cirrhosis: An international multicenter study. Clin. Gastroenterol. Hepatol. 2013, 11, 1511–1516. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, J.S.; Wade, J.B.; Gibson, D.P.; Heuman, D.M.; Thacker, L.R.; Sterling, R.K.; Stravitz, R.T.; Luketic, V.; Fuchs, M.; White, M.B.; et al. The multi-dimensional burden of cirrhosis and hepatic encephalopathy on patients and caregivers. Am. J. Gastroenterol. 2011, 106, 1646–1653. [Google Scholar] [CrossRef] [Green Version]
- Stepanova, M.; Mishra, A.; Venkatesan, C.; Younossi, Z.M. In-Hospital mortality and economic burden associated with hepatic encephalopathy in the United States from 2005 to 2009. Clin. Gastroenterol. Hepatol. 2012, 10, 1034–1041.e1. [Google Scholar] [CrossRef]
- El Khoury, A.C.; Klimack, W.K.; Wallace, C.; Razavi, H. Economic burden of hepatitis C-associated diseases in the United States. J. Viral Hepat. 2012, 19, 153–160. [Google Scholar] [CrossRef]
- Lee, P.-C.; Yang, Y.-Y.; Lin, M.-W.; Hou, M.-C.; Huang, C.-S.; Lee, K.-C.; Wang, Y.-W.; Hsieh, Y.-C.; Huang, Y.-H.; Chu, C.-J.; et al. Benzodiazepine-associated hepatic encephalopathy significantly increased healthcare utilization and medical costs of Chinese cirrhotic patients: 7-Year experience. Dig. Dis. Sci. 2014, 59, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Neff, G.; Zachry, W. Systematic Review of the Economic Burden of Overt Hepatic Encephalopathy and Pharmacoeconomic Impact of Rifaximin. Pharmacoeconomics 2018, 36, 809–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merli, M.; Riggio, O. Dietary and nutritional indications in hepatic encephalopathy. Metab. Brain Dis. 2009, 24, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Gabuzda, G.J.; Shear, L. Metabolism of dietary protein in hepatic cirrhosis. Nutritional and clinical considerations. Am. J. Clin. Nutr. 1970, 23, 479–487. [Google Scholar] [CrossRef]
- O’Brien, A.; Williams, R. Nutrition in end-stage liver disease: Principles and practice. Gastroenterology 2008, 134, 1729–1740. [Google Scholar] [CrossRef] [Green Version]
- Kalaitzakis, E.; Bjornsson, E. Hepatic encephalopathy in patients with liver cirrhosis: Is there a role of malnutrition? World J. Gastroenterol. 2008, 14, 3438–3439. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Hafeezullah, M.; Franco, J.; Varma, R.R.; Hoffmann, R.G.; Knox, J.F.; Hischke, D.; Hammeke, T.A.; Pinkerton, S.D.; Saeian, K. Inhibitory control test for the diagnosis of minimal hepatic encephalopathy. Gastroenterology 2008, 135, 1591–1600.e1. [Google Scholar] [CrossRef]
- Heyman, J.K.; Whitfield, C.J.; Brock, K.E.; McCaughan, G.W.; Donaghy, A.J. Dietary protein intakes in patients with hepatic encephalopathy and cirrhosis: Current practice in NSW and ACT. Med. J. Aust. 2006, 185, 542–543. [Google Scholar] [CrossRef]
- Selberg, O.; Böttcher, J.; Tusch, G.; Pichlmayr, R.; Henkel, E.; Müller, M.J. Identification of high- and low-risk patients before liver transplantation: A prospective cohort study of nutritional and metabolic parameters in 150 patients. Hepatology 1997, 25, 652–657. [Google Scholar] [CrossRef]
- Phillips, G.B.; Schwartz, R.; Gabuzda, G.J.; Davidson, C.S. The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. N. Engl. J. Med. 1952, 247, 239–246. [Google Scholar] [CrossRef]
- Gheorghe, L.; Iacob, R.; Vădan, R.; Iacob, S.; Gheorghe, C. Improvement of hepatic encephalopathy using a modified high-calorie high-protein diet. Rom. J. Gastroenterol. 2005, 14, 231–238. [Google Scholar] [PubMed]
- Córdoba, J.; López-Hellín, J.; Planas, M.; Sabín, P.; Sanpedro, F.; Castro, F.; Esteban, R.; Guardia, J. Normal protein diet for episodic hepatic encephalopathy: Results of a randomized study. J. Hepatol. 2004, 41, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Mullen, K.D.; Dasarathy, S. Protein restriction in hepatic encephalopathy: Necessary evil or illogical dogma? J. Hepatol. 2004, 41, 147–148. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R.; Miller, S.L. The recommended dietary allowance of protein: A misunderstood concept. JAMA 2008, 299, 2891–2893. [Google Scholar] [CrossRef]
- De Bruijn, K.M.; Blendis, L.M.; Zilm, D.H.; Carlen, P.L.; Anderson, G.H. Effect of dietary protein manipulation in subclinical portal-systemic encephalopathy. Gut 1983, 24, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Harper, H.A.; Najarian, J.S. A clinical study of the effect of arginine on blood ammonia. Am. J. Med. 1956, 21, 832–842. [Google Scholar] [CrossRef]
- Bessman, S.P.; Shear, S.; Fitzgerald, J. Effect of arginine and glutamate on the removal of ammonia from the blood in normal and cirrhotic patients. N. Engl. J. Med. 1957, 256, 941–943. [Google Scholar] [CrossRef]
- Weber, F.L.; Minco, D.; Fresard, K.M.; Banwell, J.G. Effects of vegetable diets on nitrogen metabolism in cirrhotic subjects. Gastroenterology 1985, 89, 538–544. [Google Scholar] [CrossRef]
- Uribe, M.; Dibildox, M.; Malpica, S.; Guillermo, E.; Villallobos, A.; Nieto, L.; Vargas, F.; Garcia Ramos, G. Beneficial effect of vegetable protein diet supplemented with psyllium plantago in patients with hepatic encephalopathy and diabetes mellitus. Gastroenterology 1985, 88, 901–907. [Google Scholar] [CrossRef]
- Cummings, J.H.; Branch, W.; Jenkins, D.J.; Southgate, D.A.; Houston, H.; James, W.P. Colonic response to dietary fibre from carrot, cabbage, apple, bran. Lancet 1978, 1, 5–9. [Google Scholar] [CrossRef]
- Carpenedo, R.; Mannaioni, G.; Moroni, F. Oxindole, a sedative tryptophan metabolite, accumulates in blood and brain of rats with acute hepatic failure. J. Neurochem. 1998, 70, 1998–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phear, E.A.; Ruebner, B.; Sherlock, S.; Summerskill, W.H. Methionine toxicity in liver disease and its prevention by chlortetracycline. Clin. Sci. 1956, 15, 93–117. [Google Scholar] [PubMed]
- Chen, S.; Zieve, L.; Mahadevan, V. Mercaptans and dimethyl sulfide in the breath of patients with cirrhosis of the liver. Effect of feeding methionine. J. Lab. Clin. Med. 1970, 75, 628–635. [Google Scholar] [PubMed]
- Moroni, F.; Carpenedo, R.; Venturini, I.; Baraldi, M.; Zeneroli, M.L. Oxindole in pathogenesis of hepatic encephalopathy. Lancet 1998, 351, 1861. [Google Scholar] [CrossRef]
- Moroni, F.; Carpenedo, R.; Mannaioni, G.; Galli, A.; Chiarugi, A.; Carlà, V.; Moneti, G. Studies on the pharmacological properties of oxindole (2-hydroxyindole) and 5-hydroxyindole: Are they involved in hepatic encephalopathy? Adv. Exp. Med. Biol. 1997, 420, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.H.; Rypins, E.B.; Henderson, J.M.; Heymsfield, S.B.; Moffitt, S.D.; Bain, R.P.; Chawla, R.K.; Bleier, J.C.; Rudman, D. Evidence for impairment of transsulfuration pathway in cirrhosis. Gastroenterology 1981, 81, 668–675. [Google Scholar] [CrossRef]
- Brandsch, C.; Shukla, A.; Hirche, F.; Stangl, G.I.; Eder, K. Effect of proteins from beef, pork, and turkey meat on plasma and liver lipids of rats compared with casein and soy protein. Nutrition 2006, 22, 1162–1170. [Google Scholar] [CrossRef]
- Song, S.; Hooiveld, G.J.; Li, M.; Zhao, F.; Zhang, W.; Xu, X.; Muller, M.; Li, C.; Zhou, G. Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats. Sci. Rep. 2016, 6, 20036. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Hooiveld, G.J.; Zhang, W.; Li, M.; Zhao, F.; Zhu, J.; Xu, X.; Muller, M.; Li, C.; Zhou, G. Comparative Proteomics Provides Insights into Metabolic Responses in Rat Liver to Isolated Soy and Meat Proteins. J. Proteome Res. 2016, 15, 1135–1142. [Google Scholar] [CrossRef]
- Song, S.; Hua, C.; Zhao, F.; Li, M.; Fu, Q.; Hooiveld, G.J.E.J.; Muller, M.; Li, C.; Zhou, G. Purified Dietary Red and White Meat Proteins Show Beneficial Effects on Growth and Metabolism of Young Rats Compared to Casein and Soy Protein. J. Agric. Food Chem. 2018, 66, 9942–9951. [Google Scholar] [CrossRef]
- Shi, X.; Lin, X.; Zhu, Y.; Ma, Y.; Li, Y.; Xu, X.; Zhou, G.; Li, C. Effects of Dietary Protein from Different Sources on Biotransformation, Antioxidation, and Inflammation in the Rat Liver. J. Agric. Food Chem. 2018, 66, 8584–8592. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Brinton, R.D. WHI and WHIMS follow-up and human studies of soy isoflavones on cognition. Expert. Rev. Neurother. 2007, 7, 1549–1564. [Google Scholar] [CrossRef] [PubMed]
- Proot, S.; Biourge, V.; Teske, E.; Rothuizen, J. Soy protein isolate versus meat-based low-protein diet for dogs with congenital portosystemic shunts. J. Vet. Intern. Med. 2009, 23, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Sarhan, N.A.Z.; El-Denshary, E.S.; Hassan, N.S.; Abu-Salem, F.M.; Abdel-Wahhab, M.A. Isoflavones-Enriched Soy Protein Prevents CCL(4)-Induced Hepatotoxicity in Rats. ISRN Pharmacol. 2012, 2012, 347930. [Google Scholar] [CrossRef] [Green Version]
- Mercer, K.E.; Pulliam, C.F.; Pedersen, K.B.; Hennings, L.; Ronis, M.J. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet. Exp. Biol. Med. 2017, 242, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Mercer, K.E.; Pulliam, C.; Hennings, L.; Lai, K.; Cleves, M.; Jones, E.; Drake, R.R.; Ronis, M. Soy Protein Isolate Protects Against Ethanol-Mediated Tumor Progression in Diethylnitrosamine-Treated Male Mice. Cancer Prev. Res. 2016, 9, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, K.; Xu, B. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Sci. Hum. Wellness 2017, 7. [Google Scholar] [CrossRef]
- Watanabe, H.; Inaba, Y.; Kimura, K.; Asahara, S.-I.; Kido, Y.; Matsumoto, M.; Motoyama, T.; Tachibana, N.; Kaneko, S.; Kohno, M.; et al. Dietary Mung Bean Protein Reduces Hepatic Steatosis, Fibrosis, and Inflammation in Male Mice with Diet-Induced, Nonalcoholic Fatty Liver Disease. J. Nutr. 2017, 147, 52–60. [Google Scholar] [CrossRef]
- Kohno, M.; Sugano, H.; Shigihara, Y.; Shiraishi, Y.; Motoyama, T. Improvement of glucose and lipid metabolism via mung bean protein consumption: Clinical trials of GLUCODIA™ isolated mung bean protein in the USA and Canada. J. Nutr. Sci. 2018, 7, e2. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, G.P.; Marchesini, G.; Fabbri, A.; Rondelli, A.; Bugianesi, E.; Zoli, M.; Pisi, E. Vegetable versus animal protein diet in cirrhotic patients with chronic encephalopathy. A randomized cross-over comparison. J. Intern. Med. 1993, 233, 385–392. [Google Scholar] [CrossRef]
- Amodio, P.; Del Piccolo, F.; Marchetti, P.; Angeli, P.; Iemmolo, R.; Caregaro, L.; Merkel, C.; Gerunda, G.; Gatta, A. Clinical features and survivial of cirrhotic patients with subclinical cognitive alterations detected by the number connection test and computerized psychometric tests. Hepatology 1999, 29, 1662–1667. [Google Scholar] [CrossRef] [PubMed]
- Conn, H.O.; Leevy, C.M.; Vlahcevic, Z.R.; Rodgers, J.B.; Maddrey, W.C.; Seeff, L.; Levy, L.L. Comparison of lactulose and neomycin in the treatment of chronic portal-systemic encephalopathy. A double blind controlled trial. Gastroenterology 1977, 72, 573–583. [Google Scholar] [CrossRef]
- Uribe, M.; Márquez, M.A.; Garcia Ramos, G.; Ramos-Uribe, M.H.; Vargas, F.; Villalobos, A.; Ramos, C. Treatment of chronic portal--systemic encephalopathy with vegetable and animal protein diets. A controlled crossover study. Dig. Dis. Sci. 1982, 27, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Greenberger, N.J.; Carley, J.; Schenker, S.; Bettinger, I.; Stamnes, C.; Beyer, P. Effect of vegetable and animal protein diets in chronic hepatic encephalopathy. Am. J. Dig. Dis. 1977, 22, 845–855. [Google Scholar] [CrossRef]
- Fenton, J.C.; Knight, E.J.; Humpherson, P.L. Milk-and-Cheese diet in portal-systemic encephalopathy. Lancet 1966, 1, 164–166. [Google Scholar] [CrossRef]
- Keshavarzian, A.; Meek, J.; Sutton, C.; Emery, V.M.; Hughes, E.A.; Hodgson, H.J. Dietary protein supplementation from vegetable sources in the management of chronic portal systemic encephalopathy. Am. J. Gastroenterol. 1984, 79, 945–949. [Google Scholar]
- Shaw, S.; Worner, T.M.; Lieber, C.S. Comparison of animal and vegetable protein sources in the dietary management of hepatic encephalopathy. Am. J. Clin. Nutr. 1983, 38, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Chiarino, C.; Frosi, A.; Vezzoli, F.; Sforza, M.; Rusca, M. Comparison between a diet with mainly vegetal protein content and a diet with mainly animal protein content in hepatic cirrhosis. Minerva Gastroenterol. Dietol. 1992, 38, 7–14. [Google Scholar]
- Vilstrup, H.; Amodio, P.; Bajaj, J.; Cordoba, J.; Ferenci, P.; Mullen, K.D.; Weissenborn, K.; Wong, P. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology 2014, 60, 715–735. [Google Scholar] [CrossRef]
- Rossi-Fanelli, F.; Freund, H.; Krause, R.; Smith, A.R.; James, J.H.; Castorina-Ziparo, S.; Fischer, J.E. Induction of coma in normal dogs by the infusion of aromatic amino acids and its prevention by the addition of branched-chain amino acids. Gastroenterology 1982, 83, 664–671. [Google Scholar] [CrossRef]
- Meyer, H.P.; Chamuleau, R.A.; Legemate, D.A.; Mol, J.A.; Rothuizen, J. Effects of a branched-chain amino acid-enriched diet on chronic hepatic encephalopathy in dogs. Metab. Brain Dis. 1999, 14, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Bak, L.K.; Iversen, P.; Sørensen, M.; Keiding, S.; Vilstrup, H.; Ott, P.; Waagepetersen, H.S.; Schousboe, A. Metabolic fate of isoleucine in a rat model of hepatic encephalopathy and in cultured neural cells exposed to ammonia. Metab. Brain Dis. 2009, 24, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.H.; Bae, S.H.; Kim, H.L.; Park, N.R.; Choi, E.S.; Jung, E.S.; Choi, J.Y.; Yoon, S.K. Branched-Chain amino acids ameliorate fibrosis and suppress tumor growth in a rat model of hepatocellular carcinoma with liver cirrhosis. PLoS ONE 2013, 8, e77899. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, M.; Kobayashi, Y.; Mifuji-Moroka, R.; Hara, N.; Miyachi, H.; Sugimoto, R.; Tanaka, H.; Fujita, N.; Gabazza, E.C.; Takei, Y. Branched-Chain amino acid supplementation reduces oxidative stress and prolongs survival in rats with advanced liver cirrhosis. PLoS ONE 2013, 8, e70309. [Google Scholar] [CrossRef] [Green Version]
- Takegoshi, K.; Honda, M.; Okada, H.; Takabatake, R.; Matsuzawa-Nagata, N.; Campbell, J.S.; Nishikawa, M.; Shimakami, T.; Shirasaki, T.; Sakai, Y.; et al. Branched-Chain amino acids prevent hepatic fibrosis and development of hepatocellular carcinoma in a non-alcoholic steatohepatitis mouse model. Oncotarget 2017, 8, 18191–18205. [Google Scholar] [CrossRef] [PubMed]
- Dasarathy, S.; Hatzoglou, M. Hyperammonemia and proteostasis in cirrhosis. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 30–36. [Google Scholar] [CrossRef]
- Fischer, J.E.; Funovics, J.M.; Aguirre, A.; James, J.H.; Keane, J.M.; Wesdorp, R.I.; Yoshimura, N.; Westman, T. The role of plasma amino acids in hepatic encephalopathy. Surgery 1975, 78, 276–290. [Google Scholar]
- Tajiri, K.; Shimizu, Y. Branched-Chain amino acids in liver diseases. World J. Gastroenterol. 2013, 19, 7620–7629. [Google Scholar] [CrossRef]
- Holecek, M. Branched-Chain amino acids and ammonia metabolism in liver disease: Therapeutic implications. Nutrition 2013, 29, 1186–1191. [Google Scholar] [CrossRef]
- Holecek, M. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab. Brain Dis. 2014, 29, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Charlton, M. Branched-Chain amino acid enriched supplements as therapy for liver disease. J. Nutr. 2006, 136, 295S–298S. [Google Scholar] [CrossRef] [PubMed]
- Dam, G.; Aamann, L.; Vistrup, H.; Gluud, L.L. The role of Branched Chain Amino Acids in the treatment of hepatic Encephalopathy. J. Clin. Exp. Hepatol. 2018, 8, 448–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchesini, G.; Marzocchi, R.; Noia, M.; Bianchi, G. Branched-Chain amino acid supplementation in patients with liver diseases. J. Nutr. 2005, 135, 1596S–1601S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naylor, C.D.; O’Rourke, K.; Detsky, A.S.; Baker, J.P. Parenteral nutrition with branched-chain amino acids in hepatic encephalopathy. A meta-analysis. Gastroenterology 1989, 97, 1033–1042. [Google Scholar] [CrossRef]
- Marchesini, G.; Dioguardi, F.S.; Bianchi, G.P.; Zoli, M.; Bellati, G.; Roffi, L.; Martines, D.; Abbiati, R. Long-Term oral branched-chain amino acid treatment in chronic hepatic encephalopathy. A randomized double-blind casein-controlled trial. The Italian Multicenter Study Group. J. Hepatol. 1990, 11, 92–101. [Google Scholar] [CrossRef]
- Nakaya, Y.; Harada, N.; Kakui, S.; Okada, K.; Takahashi, A.; Inoi, J.; Ito, S. Severe catabolic state after prolonged fasting in cirrhotic patients: Effect of oral branched-chain amino-acid-enriched nutrient mixture. J. Gastroenterol. 2002, 37, 531–536. [Google Scholar] [CrossRef]
- Watanabe, A.; Wakabayashi, H.; Kuwabara, Y. Nutrient-Induced thermogenesis and protein-sparing effect by rapid infusion of a branched chain-enriched amino acid solution to cirrhotic patients. J. Med. 1996, 27, 176–182. [Google Scholar]
- Vilstrup, H.; Gluud, C.; Hardt, F.; Kristensen, M.; Køhler, O.; Melgaard, B.; Dejgaard, A.; Hansen, B.A.; Krintel, J.J.; Schütten, H.J. Branched chain enriched amino acid versus glucose treatment of hepatic encephalopathy. A double-blind study of 65 patients with cirrhosis. J. Hepatol. 1990, 10, 291–296. [Google Scholar] [CrossRef]
- Watanabe, A.; Shiota, T.; Okita, M.; Nagashima, H. Effect of a branched chain amino acid-enriched nutritional product on the pathophysiology of the liver and nutritional state of patients with liver cirrhosis. Acta Medica Okayama 1983, 37, 321–333. [Google Scholar] [CrossRef]
- Plauth, M.; Egberts, E.H.; Hamster, W.; Török, M.; Müller, P.H.; Brand, O.; Fürst, P.; Dölle, W. Long-Term treatment of latent portosystemic encephalopathy with branched-chain amino acids. A double-blind placebo-controlled crossover study. J. Hepatol. 1993, 17, 308–314. [Google Scholar] [CrossRef]
- Michel, H.; Bories, P.; Aubin, J.P.; Pomier-Layrargues, G.; Bauret, P.; Bellet-Herman, H. Treatment of acute hepatic encephalopathy in cirrhotics with a branched-chain amino acids enriched versus a conventional amino acids mixture. A controlled study of 70 patients. Liver 1985, 5, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Sieg, A.; Walker, S.; Czygan, P.; Gärtner, U.; Lanzinger-Rossnagel, G.; Stiehl, A.; Kommerell, B. Branched-Chain amino acid-enriched elemental diet in patients with cirrhosis of the liver. A double blind crossover trial. Z Gastroenterol. 1983, 21, 644–650. [Google Scholar] [PubMed]
- Horst, D.; Grace, N.D.; Conn, H.O.; Schiff, E.; Schenker, S.; Viteri, A.; Law, D.; Atterbury, C.E. Comparison of dietary protein with an oral, branched chain-enriched amino acid supplement in chronic portal-systemic encephalopathy: A randomized controlled trial. Hepatology 1984, 4, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Les, I.; Doval, E.; García-Martínez, R.; Planas, M.; Cárdenas, G.; Gómez, P.; Flavià, M.; Jacas, C.; Mínguez, B.; Vergara, M.; et al. Effects of branched-chain amino acids supplementation in patients with cirrhosis and a previous episode of hepatic encephalopathy: A randomized study. Am. J. Gastroenterol. 2011, 106, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Muto, Y.; Sato, S.; Watanabe, A.; Moriwaki, H.; Suzuki, K.; Kato, A.; Kato, M.; Nakamura, T.; Higuchi, K.; Nishiguchi, S.; et al. Effects of oral branched-chain amino acid granules on event-free survival in patients with liver cirrhosis. Clin. Gastroenterol. Hepatol. 2005, 3, 705–713. [Google Scholar] [CrossRef]
- Gluud, L.L.; Dam, G.; Les, I.; Marchesini, G.; Borre, M.; Aagaard, N.K.; Vilstrup, H. Branched-Chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst. Rev. 2017, 5, CD001939. [Google Scholar] [CrossRef]
- Gluud, L.L.; Dam, G.; Borre, M.; Les, I.; Cordoba, J.; Marchesini, G.; Aagaard, N.K.; Vilstrup, H. Lactulose, rifaximin or branched chain amino acids for hepatic encephalopathy: What is the evidence? Metab. Brain Dis. 2013, 28, 221–225. [Google Scholar] [CrossRef]
- Amodio, P.; Bemeur, C.; Butterworth, R.; Cordoba, J.; Kato, A.; Montagnese, S.; Uribe, M.; Vilstrup, H.; Morgan, M.Y. The nutritional management of hepatic encephalopathy in patients with cirrhosis: International Society for Hepatic Encephalopathy and Nitrogen Metabolism Consensus. Hepatology 2013, 58, 325–336. [Google Scholar] [CrossRef]
- Sinclair, M.; Gow, P.J.; Grossmann, M.; Angus, P.W. Review article: Sarcopenia in cirrhosis—Aetiology, implications and potential therapeutic interventions. Aliment. Pharmacol. Ther. 2016, 43, 765–777. [Google Scholar] [CrossRef] [Green Version]
- Han, D.-S.; Chang, K.-V.; Li, C.-M.; Lin, Y.-H.; Kao, T.-W.; Tsai, K.-S.; Wang, T.-G.; Yang, W.-S. Skeletal muscle mass adjusted by height correlated better with muscular functions than that adjusted by body weight in defining sarcopenia. Sci. Rep. 2016, 6, 19457. [Google Scholar] [CrossRef]
- Kim, H.Y.; Jang, J.W. Sarcopenia in the prognosis of cirrhosis: Going beyond the MELD score. World J. Gastroenterol. 2015, 21, 7637–7647. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-V.; Chen, J.-D.; Wu, W.-T.; Huang, K.-C.; Lin, H.-Y.; Han, D.-S. Is sarcopenia associated with hepatic encephalopathy in liver cirrhosis? A systematic review and meta-analysis. J. Formos. Med. Assoc. 2019, 118, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Bhanji, R.A.; Moctezuma-Velazquez, C.; Duarte-Rojo, A.; Ebadi, M.; Ghosh, S.; Rose, C.; Montamo-Loza, A.J. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol. Int. 2018, 12, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Tapper, E.B.; Jiang, Z.G.; Patwardhan, V.R. Refining the ammonia hypothesis: A physiology-driven approach to the treatment of hepatic encephalopathy. Mayo Clin. Proc. 2015, 90, 646–658. [Google Scholar] [CrossRef] [Green Version]
- Lucero, C.; Verna, E.C. The Role of Sarcopenia and Frailty in Hepatic Encephalopathy Management. Clin. Liver Dis. 2015, 19, 507–528. [Google Scholar] [CrossRef]
- Miki, A.; Hashimoto, Y.; Matsumoto, S.; Ushigome, E.; Fukuda, T.; Sennmaru, T.; Tanaka, M.; Yamazaki, M.; Fukui, M. Protein Intake, Especially Vegetable Protein Intake, Is Associated with Higher Skeletal Muscle Mass in Elderly Patients with Type 2 Diabetes. J. Diabetes Res. 2017, 2017, 7985728. [Google Scholar] [CrossRef] [Green Version]
- Chan, R.; Leung, J.; Woo, J. A Prospective Cohort Study to Examine the Association between Dietary Patterns and Sarcopenia in Chinese Community-Dwelling Older People in Hong Kong. J. Am. Med. Dir. Assoc. 2016, 17, 336–342. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Kye, S.; Chung, Y.-S.; Kim, K.-M. Association of vegetables and fruits consumption with sarcopenia in older adults: The Fourth Korea National Health and Nutrition Examination Survey. Age Ageing 2015, 44, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Tomova, A.; Bukovsky, I.; Rembert, E.; Yonas, W.; Alwarith, J.; Barnard, N.D.; Kahleova, H. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front. Nutr. 2019, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Genome Med. 2016, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hentges, D.J.; Maier, B.R.; Burton, G.C.; Flynn, M.A.; Tsutakawa, R.K. Effect of a high-beef diet on the fecal bacterial flora of humans. Cancer Res. 1977, 37, 568–571. [Google Scholar] [PubMed]
- Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baffy, G. Kupffer cells in non-alcoholic fatty liver disease: The emerging view. J. Hepatol. 2009, 51, 212–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crispe, I.N. The liver as a lymphoid organ. Annu. Rev. Immunol. 2009, 27, 147–163. [Google Scholar] [CrossRef]
- Mancini, A.; Campagna, F.; Amodio, P.; Tuohy, K.M. Gut: Liver: Brain axis: The microbial challenge in the hepatic encephalopathy. Food Funct. 2018, 9, 1373–1388. [Google Scholar] [CrossRef]
- Butterworth, R.F. Hepatic encephalopathy: A central neuroinflammatory disorder? Hepatology 2011, 53, 1372–1376. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Heuman, D.M.; Hylemon, P.B.; Sanyal, A.J.; White, M.B.; Monteith, P.; Noble, N.A.; Unser, A.B.; Daita, K.; Fisher, A.R.; et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J. Hepatol. 2014, 60, 940–947. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, F.; Lu, H.; Wang, B.; Chen, Y.; Lei, D.; Wang, Y.; Zhu, B.; Li, L. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011, 54, 562–572. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Ridlon, J.M.; Hylemon, P.B.; Thacker, L.R.; Heuman, D.M.; Smith, S.; Sikaroodi, M.; Gillevet, P.M. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G168–G175. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, J.S. The role of microbiota in hepatic encephalopathy. Gut Microbes 2014, 5, 397–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrêa-Oliveira, R.; Fachi, J.L.; Vieira, A.; Sato, F.T.; Vinolo, M.A.R. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 2016, 5, e73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhai, H.; Geng, J.; Yu, R.; Ren, H.; Fan, H.; Shi, P. Large-Scale survey of gut microbiota associated with MHE Via 16S rRNA-based pyrosequencing. Am. J. Gastroenterol. 2013, 108, 1601–1611. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, V.; Betrapally, N.S.; Hylemon, P.B.; White, M.B.; Gillevet, P.M.; Unser, A.B.; Fagan, A.; Daita, K.; Heuman, D.M.; Zhou, H.; et al. Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis. Sci. Rep. 2016, 6, 26800. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, J.; Lange, B.; Frick, J.-S.; Sauer, H.; Zimmermann, K.; Schwiertz, A.; Rusch, K.; Klosterhalfen, S.; Enck, P. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur. J. Clin. Nutr. 2012, 66, 53–60. [Google Scholar] [CrossRef]
- Kabeerdoss, J.; Devi, R.S.; Mary, R.R.; Ramakrishna, B.S. Faecal microbiota composition in vegetarians: Comparison with omnivores in a cohort of young women in southern India. Br. J. Nutr. 2012, 108, 953–957. [Google Scholar] [CrossRef] [Green Version]
- Talamini, R.; Polesel, J.; Montella, M.; Dal Maso, L.; Crispo, A.; Tommasi, L.G.; Izzo, F.; Crovatto, M.; La Vecchia, C.; Franceschi, S. Food groups and risk of hepatocellular carcinoma: A multicenter case-control study in Italy. Int. J. Cancer 2006, 119, 2916–2921. [Google Scholar] [CrossRef]
- Braga, C.; La Vecchia, C.; Negri, E.; Franceschi, S. Attributable risks for hepatocellular carcinoma in northern Italy. Eur. J. Cancer 1997, 33, 629–634. [Google Scholar] [CrossRef]
- Yu, M.C.; Yuan, J.-M. Environmental factors and risk for hepatocellular carcinoma. Gastroenterology 2004, 127, S72–S78. [Google Scholar] [CrossRef]
- Negri, E.; La Vecchia, C.; Franceschi, S.; D’Avanzo, B.; Parazzini, F. Vegetable and fruit consumption and cancer risk. Int. J. Cancer 1991, 48, 350–354. [Google Scholar] [CrossRef]
- La Vecchia, C.; Negri, E.; Decarli, A.; D’Avanzo, B.; Franceschi, S. Risk factors for hepatocellular carcinoma in northern Italy. Int. J. Cancer 1988, 42, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Sauvaget, C.; Nagano, J.; Hayashi, M.; Spencer, E.; Shimizu, Y.; Allen, N. Vegetables and fruit intake and cancer mortality in the Hiroshima/Nagasaki Life Span Study. Br. J. Cancer 2003, 88, 689–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansoor, T.A.; Ramalho, R.M.; Luo, X.; Ramalhete, C.; Rodrigues, C.M.P.; Ferreira, M.-J.U. Isoflavones as apoptosis inducers in human hepatoma HuH-7 cells. Phytother. Res. 2011, 25, 1819–1824. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Knaze, V.; Luján-Barroso, L.; Romieu, I.; Scalbert, A.; Slimani, N.; Hjartåker, A.; Engeset, D.; Skeie, G.; Overvad, K.; et al. Differences in dietary intakes, food sources and determinants of total flavonoids between Mediterranean and non-Mediterranean countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br. J. Nutr. 2013, 109, 1498–1507. [Google Scholar] [CrossRef]
- Fedirko, V.; Lukanova, A.; Bamia, C.; Trichopolou, A.; Trepo, E.; Nöthlings, U.; Schlesinger, S.; Aleksandrova, K.; Boffetta, P.; Tjønneland, A.; et al. Glycemic index, glycemic load, dietary carbohydrate, and dietary fiber intake and risk of liver and biliary tract cancers in Western Europeans. Ann. Oncol. 2013, 24, 543–553. [Google Scholar] [CrossRef]
- Zhang, W.; Xiang, Y.-B.; Li, H.-L.; Yang, G.; Cai, H.; Ji, B.-T.; Gao, Y.-T.; Zheng, W.; Shu, X.-O. Vegetable-based dietary pattern and liver cancer risk: Results from the Shanghai women’s and men’s health studies. Cancer Sci. 2013, 104, 1353–1361. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, D.; Feng, N.; Chen, G.; Liu, J.; Chen, G.; Zhu, Y. Increased intake of vegetables, but not fruit, reduces risk for hepatocellular carcinoma: A meta-analysis. Gastroenterology 2014, 147, 1031–1042. [Google Scholar] [CrossRef] [Green Version]
- Kuper, H.; Tzonou, A.; Lagiou, P.; Mucci, L.A.; Trichopoulos, D.; Stuver, S.O.; Trichopoulou, A. Diet and hepatocellular carcinoma: A case-control study in Greece. Nutr. Cancer 2000, 38, 6–12. [Google Scholar] [CrossRef]
- Hadziyannis, S.; Tabor, E.; Kaklamani, E.; Tzonou, A.; Stuver, S.; Tassopoulos, N.; Mueller, N.; Trichopoulos, D. A case-control study of hepatitis B and C virus infections in the etiology of hepatocellular carcinoma. Int. J. Cancer 1995, 60, 627–631. [Google Scholar] [CrossRef]
- Muto, Y.; Sato, S.; Watanabe, A.; Moriwaki, H.; Suzuki, K.; Kato, A.; Kato, M.; Nakamura, T.; Higuchi, K.; Nishiguchi, S.; et al. Overweight and obesity increase the risk for liver cancer in patients with liver cirrhosis and long-term oral supplementation with branched-chain amino acid granules inhibits liver carcinogenesis in heavier patients with liver cirrhosis. Hepatol. Res. 2006, 35, 204–214. [Google Scholar] [CrossRef]
- Kobayashi, M.; Ikeda, K.; Arase, Y.; Suzuki, Y.; Suzuki, F.; Akuta, N.; Hosaka, T.; Murashima, N.; Saitoh, S.; Someya, T.; et al. Inhibitory effect of branched-chain amino acid granules on progression of compensated liver cirrhosis due to hepatitis C virus. J. Gastroenterol. 2008, 43, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Hayaishi, S.; Chung, H.; Kudo, M.; Ishikawa, E.; Takita, M.; Ueda, T.; Kitai, S.; Inoue, T.; Yada, N.; Hagiwara, S.; et al. Oral branched-chain amino acid granules reduce the incidence of hepatocellular carcinoma and improve event-free survival in patients with liver cirrhosis. Dig. Dis. 2011, 29, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, J.; Shimizu, M.; Shiraki, M.; Shirakami, Y.; Sakai, H.; Terakura, Y.; Takai, K.; Tsurumi, H.; Tanaka, T.; Moriwaki, H. Dietary supplementation with branched-chain amino acids suppresses diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BL/KsJ-db/db mice. Cancer Sci. 2010, 101, 460–467. [Google Scholar] [CrossRef] [PubMed]
Study | Study Design | Sample Size and Included Patients | Results |
---|---|---|---|
Bianchi et al. [50] | Randomized cross-over study | 8 patients with cirrhosis and grade I or II hepatic encephalopathy (HE) | Patients on vegetable diet had significantly lower venous ammonia levels. Mental status was also significantly improved in patients on vegetable-based protein diet |
Uribe et al. [53] | Single blinded randomized controlled study | 10 patients with cirrhosis and chronic mild HE | Patients on 80 g/day vegetable protein diet showed significant improvement in electroencephalogram (EEG) testing compared to patients on 40 g/day animal protein or 40 g/day vegetable protein diet |
De Burjin et al. [25] | Non-randomized unblinded crossover study | 8 patients with chronic mild HE with history of shunt surgery | The authors evaluated computer-analyzed EEG (CAEEG) in all patients. The peak frequency of CAEEG was lower during the period of animal diet compared to vegetable diet. Most of the patient’s frequency of CAEEG fell below 7 which has been shown in the past to be associated with development of HE |
Greenberger et al. [54] | Case series | 3 patients with history of portosystemic shunt and chronic mild HE on neomycin treatment | The study revealed that vegetable protein diet enhances the effects of lactulose and is better tolerated. One patient, during the period of meat diet, developed stage III hepatic coma and EEG abnormalities |
Fenton et al. [55] | Case Series | 3 patients with portosystemic shunts | Patients had clinical improvement of HE while on vegetable and milk protein diet compared to meat diet |
Keshavarzian et al. [56] | Controlled cross over trial | 6 patients with chronic moderate HE on lactulose therapy | Two patients showed improvement in EEG and clinical performance while on higher amount of vegetable protein diet |
Shaw et al. [57] | Cross over study | 5 patients with decompensated HE secondary to alcohol use or gastrointestinal bleeding | The study did not show any significant differences in outcomes of HE including improvement in clinical symptoms, nitrogen balance or psychometric testing in patients on vegetable or meat diet. Patients on vegetable diet had a lower compliance to the dietary regimen |
Chiarino et al. [58] | Randomized controlled trial | 8 patients with cirrhosis and mild to moderate HE | Patients, while on vegetable protein diet, did not have any improvement in clinical symptoms and EEG findings compared to animal protein diet |
Study | Study Design | Sample Size and Included Patients | Results |
---|---|---|---|
Gluud et al. [86] | Meta-analysis | 16 randomized controlled trials including 827 patients with cirrhosis | No benefit of BCAA in decreasing mortality. BCAA did not provide any additional benefit on HE in patients already on lactulose or neomycin, but found to be beneficial in patients on no pharmacological therapy |
Les et al. [84] | Multicenter randomized double-blind study | 116 patients with cirrhosis treated with either BCAA or maltodextrin for 56 weeks | Patients in BCAA group had improvement in symptoms of minimal HE and muscle mass |
Muto et al [85] | Multicenter, randomized controlled trial | 646 patients with decompensated cirrhosis | The incidence of primary end point significantly decreased in the BCAA group. The primary end point was a composite of death by any cause, development of liver cancer, rupture of esophageal varices, or progress of hepatic failure (event-free survival) |
Horst et al. [83] | Randomized study | 37 hospitalized protein-intolerant patients | BCAA administration achieved positive nitrogen balance without worsening symptoms of HE |
Marchesini et al. [75] | Randomized double-blind study | 64 patients with cirrhosis and chronic HE | Patients who received BCAA showed significant improvement in mental status as compared to those who received casein |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, U.; Jadeja, R.N.; Khara, H.S.; Khurana, S. A Comprehensive Review Evaluating the Impact of Protein Source (Vegetarian vs. Meat Based) in Hepatic Encephalopathy. Nutrients 2021, 13, 370. https://doi.org/10.3390/nu13020370
Iqbal U, Jadeja RN, Khara HS, Khurana S. A Comprehensive Review Evaluating the Impact of Protein Source (Vegetarian vs. Meat Based) in Hepatic Encephalopathy. Nutrients. 2021; 13(2):370. https://doi.org/10.3390/nu13020370
Chicago/Turabian StyleIqbal, Umair, Ravirajsinh N. Jadeja, Harshit S. Khara, and Sandeep Khurana. 2021. "A Comprehensive Review Evaluating the Impact of Protein Source (Vegetarian vs. Meat Based) in Hepatic Encephalopathy" Nutrients 13, no. 2: 370. https://doi.org/10.3390/nu13020370