The Association between Fat Taste Sensitivity, Eating Habits, and Metabolic Health in Menopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Fat Taste Thresholds Test
2.3. Anthropometric Measurements
2.4. Biochemical Analysis
2.5. Physical Activity (PA) Estimation
2.6. Dietary Assessment
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hammond, C.B. Menopause and Hormone Replacement Therapy: An Overview. Obstet. Gynecol. 1996, 87, 2S–15S. [Google Scholar] [CrossRef]
- Ko, S.-H.; Kim, H.-S. Menopause-Associated Lipid Metabolic Disorders and Foods Beneficial for Postmenopausal Women. Nutrients 2020, 12, 202. [Google Scholar] [CrossRef] [Green Version]
- Babaei, P.; Mehdizadeh, R.; Ansar, M.M.; Damirchi, A. Effects of Ovariectomy and Estrogen Replacement Therapy on Visceral Adipose Tissue and Serum Adiponectin Levels in Rats. Menopause Int. 2010, 16, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Pontzer, H.; Yamada, Y.; Sagayama, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Daily Energy Expenditure through the Human Life Course. Science 2021, 373, 808–812. [Google Scholar] [CrossRef]
- Santosh, P.; Nidhi, S.; Sumita, K.; Farzan, R.; Bharati, D.; Ashok, K. Oral Findings in Postmenopausal Women Attending Dental Hospital in Western Part of India. J. Clin. Exp. Dent. 2013, 5, e8–e12. [Google Scholar] [CrossRef]
- Delilbasi, C.; Cehiz, T.; Akal, U.K.; Yilmaz, T. Evaluation of Gustatory Function in Postmenopausal Women. Br. Dent. J. 2003, 194, 447–449. [Google Scholar] [CrossRef]
- Saluja, P.; Shetty, V.; Dave, A.; Arora, M.; Hans, V.; Madan, A. Comparative Evaluation of the Effect of Menstruation, Pregnancy and Menopause on Salivary Flow Rate, PH and Gustatory Function. J. Clin. Diagn. Res. JCDR 2014, 8, ZC81–ZC85. [Google Scholar] [CrossRef]
- Dahir, N.S.; Calder, A.N.; McKinley, B.J.; Liu, Y.; Gilbertson, T.A. Sex Differences in Fat Taste Responsiveness Are Modulated by Estradiol. Am. J. Physiol.-Endocrinol. Metab. 2021, 320, E566–E580. [Google Scholar] [CrossRef]
- Curtis, K.S.; Stratford, J.M.; Contreras, R.J. Estrogen Increases the Taste Threshold for Sucrose in Rats. Physiol. Behav. 2005, 86, 281–286. [Google Scholar] [CrossRef]
- Costanzo, A.; Orellana, L.; Nowson, C.; Duesing, K.; Keast, R. Fat Taste Sensitivity Is Associated with Short-Term and Habitual Fat Intake. Nutrients 2017, 9, 781. [Google Scholar] [CrossRef] [Green Version]
- Haryono, R.Y.; Sprajcer, M.A.; Keast, R.S.J. Measuring Oral Fatty Acid Thresholds, Fat Perception, Fatty Food Liking, and Papillae Density in Humans. JoVE J. Vis. Exp. 2014, 88, e51236. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Ruiz, N.R.; López-Díaz, J.A.; Wall-Medrano, A.; Jiménez-Castro, J.A.; Angulo, O. Oral Fat Perception Is Related with Body Mass Index, Preference and Consumption of High-Fat Foods. Physiol. Behav. 2014, 129, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.E.; Feinle-Bisset, C.; Golding, M.; Delahunty, C.; Clifton, P.M.; Keast, R.S.J. Oral Sensitivity to Fatty Acids, Food Consumption and BMI in Human Subjects. Br. J. Nutr. 2010, 104, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Tucker, R.M.; Kaiser, K.A.; Parman, M.A.; George, B.J.; Allison, D.B.; Mattes, R.D. Comparisons of Fatty Acid Taste Detection Thresholds in People Who Are Lean vs. Overweight or Obese: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0169583. [Google Scholar] [CrossRef]
- Stewart, J.E.; Newman, L.P.; Keast, R.S.J. Oral Sensitivity to Oleic Acid Is Associated with Fat Intake and Body Mass Index. Clin. Nutr. Edinb. Scotl. 2011, 30, 838–844. [Google Scholar] [CrossRef]
- Chmurzynska, A.; Mlodzik-Czyzewska, M.A.; Galinski, G.; Malinowska, A.M.; Radziejewska, A.; Mikołajczyk-Stecyna, J.; Bulczak, E.; Wiebe, D.J. Polymorphism of CD36 Determines Fat Discrimination but Not Intake of High-Fat Food in 20- to 40-Year-Old Adults. J. Nutr. 2020, 150, 2016–2022. [Google Scholar] [CrossRef] [PubMed]
- Chmurzynska, A.; Mlodzik, M.A. Genetics of Fat Intake in the Determination of Body Mass. Nutr. Res. Rev. 2017, 30, 106–117. [Google Scholar] [CrossRef]
- Tucker, R.M.; Mattes, R.D. Influences of Repeated Testing on Nonesterified Fatty Acid Taste. Chem. Senses 2013, 38, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Graham, C.A.M.; Pilic, L.; King, A.; Nixon, J.E.; Pipe, J.; Holton, J.; Tamba, K.; Hearne, G.; Pedlar, C.R.; Lorente-Cebrián, S.; et al. Genetic Differences in Fat Taste Sensitivity and Dietary Intake in a UK Female Cohort. Food Qual. Prefer. 2021, 92, 104202. [Google Scholar] [CrossRef]
- Vignini, A.; Borroni, F.; Sabbatinelli, J.; Pugnaloni, S.; Alia, S.; Taus, M.; Ferrante, L.; Mazzanti, L.; Fabri, M. General Decrease of Taste Sensitivity Is Related to Increase of BMI: A Simple Method to Monitor Eating Behavior. Dis. Markers 2019, 2019, e2978026. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, E.E.; Dikmen, D. Association between Fat Taste Sensitivity and Diet Quality in Healthy Male Turkish Adults. Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Keast, R.S.J.; Azzopardi, K.M.; Newman, L.P.; Haryono, R.Y. Impaired Oral Fatty Acid Chemoreception Is Associated with Acute Excess Energy Consumption. Appetite 2014, 80, 1–6. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.; et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Galinski, G.; Dlugosz, A.; Loboda, D.; Czlapka-Matyasik, M. Data-Driven Dietary Patterns and Diet Quality Scores: Reproducibility and Consistency in Sex and Age Subgroups of Poles Aged 15–65 Years. Nutrients 2020, 12, 3598. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Archer, N.; Duesing, K.; Hannan, G.; Keast, R. Mechanism of Fat Taste Perception: Association with Diet and Obesity. Prog. Lipid Res. 2016, 63, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Tucker, R.M.; Edlinger, C.; Craig, B.A.; Mattes, R.D. Associations Between BMI and Fat Taste Sensitivity in Humans. Chem. Senses 2014, 39, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harnischfeger, F.; Dando, R. Obesity-Induced Taste Dysfunction, and Its Implications for Dietary Intake. Int. J. Obes. 2021, 45, 1644–1655. [Google Scholar] [CrossRef]
- Bolhuis, D.P.; Costanzo, A.; Newman, L.P.; Keast, R.S. Salt Promotes Passive Overconsumption of Dietary Fat in Humans. J. Nutr. 2016, 146, 838–845. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.E.; Keast, R.S.J. Recent Fat Intake Modulates Fat Taste Sensitivity in Lean and Overweight Subjects. Int. J. Obes. 2012, 36, 834–842. [Google Scholar] [CrossRef] [Green Version]
- Tucker, R.M.; Nuessle, T.M.; Garneau, N.L.; Smutzer, G.; Mattes, R.D. No Difference in Perceived Intensity of Linoleic Acid in the Oral Cavity between Obese and Nonobese Individuals. Chem. Senses 2015, 40, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Asano, M.; Hong, G.; Matsuyama, Y.; Wang, W.; Izumi, S.; Izumi, M.; Toda, T.; Kudo, T.-A. Association of Oral Fat Sensitivity with Body Mass Index, Taste Preference, and Eating Habits in Healthy Japanese Young Adults. Tohoku J. Exp. Med. 2016, 238, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.C.H.; Sakimura, J.; May, D.; Breen, C.; Driggin, E.; Tepper, B.J.; Chung, W.K.; Keller, K.L. Fat Discrimination: A Phenotype with Potential Implications for Studying Fat Intake Behaviors and Obesity. Physiol. Behav. 2012, 105, 470–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowers, M.R.; Wildman, R.P.; Mancuso, P.; Eyvazzadeh, A.D.; Karvonen-Gutierrez, C.A.; Rillamas-Sun, E.; Jannausch, M.L. Change in Adipocytokines and Ghrelin with Menopause. Maturitas 2008, 59, 149–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, H.; Cong, W.; Daimon, C.M.; Wang, R.; Tschöp, M.H.; Sévigny, J.; Martin, B.; Maudsley, S. Altered Lipid and Salt Taste Responsivity in Ghrelin and GOAT Null Mice. PLoS ONE 2013, 8, e76553. [Google Scholar] [CrossRef] [Green Version]
- Calder, A. Modulation of Fat Taste by Diet and Hormones. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2021. [Google Scholar]
- Calder, A.N.; Yu, T.; Dahir, N.S.; Sun, Y.; Gilbertson, T.A. Ghrelin Receptors Enhance Fat Taste Responsiveness in Female Mice. Nutrients 2021, 13, 1045. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, S.; Laureati, M.; Battezzati, A.; Bergamaschi, V.; Cereda, E.; Spadafranca, A.; Vignati, L.; Pagliarini, E. Taste Sensitivity, Nutritional Status and Metabolic Syndrome: Implication in Weight Loss Dietary Interventions. World J. Diabetes 2014, 5, 717–723. [Google Scholar] [CrossRef] [Green Version]
Variables | Fat Hyposensitive n = 22 | Fat Hypersensitive n = 73 | p-Value |
---|---|---|---|
Fat taste perception level (mM) | 8.3 ± 5.5 | 1.1 ± 0.9 | <0.001 |
Age (year) | 57.1 ± 5.7 | 53.9 ± 6.2 | 0.006 |
Perimenopausal (n/%) | 2/8 | 28/38 | <0.001 |
Postmenopausal (n/%) | 20/92 | 45/62 | |
BMI (kg/m2) | 30.5 ± 6.9 | 26.5 ± 5.3 | <0.001 |
BMI distribution (n/%) | <0.001 | ||
BMI < 25 kg/m2 | 6/28 | 35/48 | |
25 kg/m2 ≤ BMI > 30 kg/m2 | 4/18 | 24/33 | |
BMI ≥ 30 kg/m2 | 12/54 | 14/19 | |
Waist circumference (cm) | 106.3 ± 15.5 | 96.3 ± 11.6 | <0.001 |
Fat mass (%) | 42.8 ± 8.2 | 39.0 ± 6.6 | 0.006 |
Fat-free mass (kg) | 44.8 ± 5.4 | 42.7 ± 58.8 | 0.060 |
Trunk fat mass (kg) | 18.5 ± 7.8 | 14.4 ± 6.7 | 0.004 |
SBP (mmHg) | 136.4 ± 20.0 | 128.1 ± 19.0 | 0.030 |
DBP (mmHg) | 88.7 ± 9.9 | 83.0 ± 9.8 | 0.003 |
GLU (mg/dL) | 97.1 ± 17.2 | 90.5 ± 10.8 | 0.011 |
TG (mg/dL) | 145.1 ± 69.3 | 118.9 ± 58.4 | 0.031 |
T-C (mg/dL) | 235.2 ± 41.2 | 220.4 ± 40.4 | 0.062 |
HDL-C (mg/dL) | 60.1 ± 16.0 | 62.3 ± 14.7 | 0.463 |
LDL-C (mg/dL) | 143.6 ± 33.9 | 135.1 ± 34.4 | 0.202 |
Presence of MetS (n/%) | 11/49 | 19/26 | 0.012 |
PA low (n/%) | 8/36 | 20/27 | 0.124 |
PA medium (n/%) | 12/54 | 47/64 | |
PA high (n/%) | 2/10 | 6/9 |
Dependent Variables | Low oral Fat Sensitivity Level (Independent Variable) | p-Value1 | p-Value2 | p-Value3 | ||
---|---|---|---|---|---|---|
Model 1 (Unadjusted) | Model 2 (Adjusted for Age) | Model 3 (Model 2 Plus BMI) | ||||
Eating occasions (times/day) | 0.20 | 0.19 | 0.21 | 0.027 | 0.041 | 0.028 |
Meat and eggs (times/day) | 0.22 | 0.19 | 0.12 | 0.013 | 0.042 | 0.216 |
Fish (times/day) | −0.11 | −0.05 | −0.05 | 0.906 | 0.349 | 0.545 |
Milk and dairy products (times/day) | −0.02 | −0.04 | −0.04 | 0.819 | 0.707 | 0.875 |
Grains (times/day) | −0.01 | −0.04 | −0.01 | 0.910 | 0.633 | 0.923 |
Fruits (times/day) | 0.06 | 0.06 | 0.13 | 0.522 | 0.555 | 0.188 |
Vegetables and legumes (times/day) | 0.04 | 0.05 | 0.07 | 0.643 | 0.571 | 0.514 |
Nuts and seeds (times/day) | −0.02 | 0.01 | 0.04 | 0.801 | 0.919 | 0.685 |
Fats (times/day) | 0.12 | 0.11 | 0.05 | 0.191 | 0.240 | 0.610 |
Sweets (times/day) | ||||||
Snacks and fast food (times/day) | 0.18 | 0.20 | 0.18 | 0.041 | 0.032 | 0.063 |
Sugar-sweetened beverages (times/day) | −0.18 | −0.16 | −1.40 | 0.052 | 0.082 | 0.157 |
Alcoholic beverages (times/day) | 0.002 | 0.02 | 0.01 | 0.982 | 0.872 | 0.915 |
Energy intake (kcal/day) | 0.04 | 0.05 | 0.02 | 0.657 | 0.586 | 0.818 |
Percentage energy from protein | 0.01 | −0.02 | −0.05 | 0.867 | 0.851 | 0.630 |
Percentage energy from fat | −0.15 | −0.12 | −0.09 | 0.099 | 0.172 | 0.346 |
Percentage energy from carbohydrates | 0.13 | 0.12 | 0.18 | 0.130 | 0.187 | 0.217 |
Simple sugars (g/day) | 0.05 | 0.06 | 0.04 | 0.587 | 0.514 | 0.647 |
Dietary fiber (g/day) | 0.09 | 0.07 | 0.07 | 0.333 | 0.416 | 0.478 |
Variables | p | OR (95% CI) * |
---|---|---|
Postmenopausal status | 0.003 | 6.8 (1.9; 24.4) |
BMI value | 0.003 | 1.1 (1.0; 1.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skoczek-Rubińska, A.; Chmurzynska, A.; Muzsik-Kazimierska, A.; Bajerska, J. The Association between Fat Taste Sensitivity, Eating Habits, and Metabolic Health in Menopausal Women. Nutrients 2021, 13, 4506. https://doi.org/10.3390/nu13124506
Skoczek-Rubińska A, Chmurzynska A, Muzsik-Kazimierska A, Bajerska J. The Association between Fat Taste Sensitivity, Eating Habits, and Metabolic Health in Menopausal Women. Nutrients. 2021; 13(12):4506. https://doi.org/10.3390/nu13124506
Chicago/Turabian StyleSkoczek-Rubińska, Aleksandra, Agata Chmurzynska, Agata Muzsik-Kazimierska, and Joanna Bajerska. 2021. "The Association between Fat Taste Sensitivity, Eating Habits, and Metabolic Health in Menopausal Women" Nutrients 13, no. 12: 4506. https://doi.org/10.3390/nu13124506
APA StyleSkoczek-Rubińska, A., Chmurzynska, A., Muzsik-Kazimierska, A., & Bajerska, J. (2021). The Association between Fat Taste Sensitivity, Eating Habits, and Metabolic Health in Menopausal Women. Nutrients, 13(12), 4506. https://doi.org/10.3390/nu13124506