The Consumption of Food-Based Iodine in the Immediate Pre-Pregnancy Period in Madrid Is Insufficient. San Carlos and Pregnancy Cohort Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design and Ethic Statement
2.2. Participants
2.3. AΠssessment of Food-Based Iodine Consumption
2.4. Data Collection
2.5. Follow-Up during Gestation
2.6. Biochemical Data
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Escobar, G.M.; Obregon, M.J.; Del Rey, F.E. Role of thyroid hormone during early brain development. Eur. J. Endocrinol. 2004, 151, U25–U37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, G.R. Neurodevelopmental and neurophysiological actions of thyroid hormone. J. Neuroendocr. 2008, 20, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.N.; Lazarus, J.H. Hypothyroidism in pregnancy. Endocrinol. Metab. Clin. N. Am. 2019, 48, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Korevaar, T.I.M.; Medici, M.; Visser, T.J.; Peeters, R.P. Thyroid disease in pregnancy: New insights in diagnosis and clinical management. Nat. Rev. Endocrinol. 2017, 13, 610–622. [Google Scholar] [CrossRef]
- Krassas, G.E.; Poppe, K.; Glinoer, D. Thyroid function and human reproductive health. Endocr. Rev. 2010, 31, 702–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Spek, A.H.; Fliers, E.; Boelen, A. The classic pathways of thyroid hormone metabolism. Mol. Cell. Endocrinol. 2017, 458, 29–38. [Google Scholar] [CrossRef]
- Andersson, M.; Karumbunathan, V.; Zimmermann, M.B. Global Iodine status in 2011 and trends over the past decade. J. Nutr. 2012, 142, 744–750. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers, 3rd ed.; World Health Organization: Geneva, Switzerland, 2007; pp. 1–108. ISBN 978-92-4-159582-7. [Google Scholar]
- Zimmermann, M.B.; Andersson, M. Global endocrinology: Global perspectives in endocrinology: Coverage of iodized salt programs and Iodine status in 2020. Eur. J. Endocrinol. 2021, 185, R13–R21. [Google Scholar] [CrossRef]
- Bath, S.C.; Steer, C.D.; Golding, J.; Emmett, P.; Rayman, M.P. Effect of inadequate Iodine status in UK pregnant women on cognitive outcomes in their children: Results from the avon longitudinal study of parents and children (ALSPAC). Lancet 2013, 382, 331–337. [Google Scholar] [CrossRef]
- Hynes, K.L.; Otahal, P.; Hay, I.; Burgess, J. Mild Iodine deficiency during pregnancy is associated with reduced educational outcomes in the offspring: 9-year follow-up of the gestational Iodine cohort. J. Clin. Endocrinol. Metab. 2013, 98, 1954–1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murcia, M.; Espada, M.; Julvez, J.; Llop, S.; Lopez-Espinosa, M.-J.; Vioque, J.; Basterrechea, M.; Riaño-Galan, I.; González-Safont, L.; Alvarez-Pedrerol, M.; et al. Iodine intake from supplements and diet during pregnancy and child cognitive and motor development: The INMA mother and child cohort study. J. Epidemiol. Community Health 2018, 72, 216–222. [Google Scholar] [CrossRef]
- Zimmermann, M.B. Iodine deficiency. Endocr. Rev. 2009, 30, 376–408. [Google Scholar] [CrossRef] [Green Version]
- Choudhry, H. Nasrullah Iodine consumption and cognitive performance: Confirmation of adequate consumption. Food Sci. Nutr. 2018, 6, 1341–1351. [Google Scholar] [CrossRef]
- Toloza, F.J.K.; Motahari, H.; Maraka, S. Consequences of severe Iodine deficiency in pregnancy: Evidence in humans. Front. Endocrinol. 2020, 11. [Google Scholar] [CrossRef]
- WHO Secretariat; Andersson, M.; De Benoist, B.; Delange, F.; Zupan, J. Prevention and control of Iodine deficiency in pregnant and lactating women and in children less than 2-years-old: Conclusions and recommendations of the technical consultation. Public Health Nutr. 2007, 10, 1606–1611. [Google Scholar] [CrossRef] [Green Version]
- Moleti, M.; Di Bella, B.; Giorgianni, G.; Mancuso, A.; De Vivo, A.; Alibrandi, A.; Trimarchi, F.; Vermiglio, F. Maternal thyroid function in different conditions of Iodine nutrition in pregnant women exposed to mild-moderate Iodine deficiency: An observational study. Clin. Endocrinol. 2011, 74, 762–768. [Google Scholar] [CrossRef]
- Candido, A.C.; Morais, N.D.S.D.; Dutra, L.V.; Pinto, C.A.; Franceschini, S.D.C.C.; Alfenas, R.D.C.G. Insufficient Iodine intake in pregnant women in different regions of the world: A systematic review. Arch. Endocrinol. Metab. 2019, 63, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Pedrerol, M.; Ribas, N.; García, R.; Rodriguez, A.; Soriano, D.; Guxens, M.; Mendez, M.; Sunyer, J. Iodine sources and Iodine levels in pregnant women from an area without known Iodine deficiency. Clin. Endocrinol. 2010, 72, 81–86. [Google Scholar] [CrossRef]
- Zimmermann, M.; Trumbo, P.R. Lodine. Adv. Nutr. 2013, 4, 262–264. [Google Scholar] [CrossRef]
- Fuge, R.; Johnson, C.C. Iodine and human health, the role of environmental geochemistry and diet, a review. Appl. Geochem. 2015, 63, 282–302. [Google Scholar] [CrossRef]
- Haldimann, M.; Alt, A.; Blanc, A.; Blondeau, K. Iodine content of food groups. J. Food Compos. Anal. 2005, 18, 461–471. [Google Scholar] [CrossRef]
- van der Reijden, O.L.; Zimmermann, M.B.; Galetti, V. Iodine in dairy milk: Sources, concentrations and importance to human health. Best Pr. Res. Clin. Endocrinol. Metab. 2017, 31, 385–395. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; Food and Drug Administration (FDA); Office of Dietary Supplements, NIH. USDA, FDA, ODS-NIH Database for the Iodine Content of Common Foods Release (2020). Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/Iodine/ (accessed on 11 October 2021).
- Herrick, K.A.; Perrine, C.G.; Aoki, Y.; Caldwell, K.L. Iodine status and consumption of key iodine sources in the U.S. population with special attention to reproductive age women. Nutrients 2018, 10, 874. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guideline: Fortification of Food-Grade Salt with Iodine for the Prevention and Control of Iodine Deficiency Disorders; World Health Organization: Geneva, Switzerland, 2014; pp. 1–43. ISBN 978-92-4-150792-9. [Google Scholar]
- WHO. Iodine Status Worldwide: WHO Global Database on Iodine Deficiency; World Health Organization: Geneva, Switzerland, 2004; pp. 1–58. ISBN 92-4-159200-1. [Google Scholar]
- Ministerio de Sanidad y consume, Sociedad Española de Endocrinología y Nutrición (SEEN). Déficit de Yodo en España. Situación Actual. Available online: https://www.mscbs.gob.es/profesionales/saludPublica/prevPromocion/maternoInfantil/docs/yodoSEEN.pdf (accessed on 17 October 2021).
- Iodine Global Network (IGN). Global Scorecard of Iodine Nutrition in 2021. Available online: https://www.ign.org/cm_data/IGN_Global_Scorecard_2021_7_May_2021.pdf (accessed on 11 November 2021).
- Vila, L.; Lucas, A.; Donnay, S.; de la Vieja, A.; Wengrovicz, S.; Santiago, P.; Bandrés, O.; Velasco, I.; Garcia-Fuentes, E.; Ares, S.; et al. Iodine nutrition status in Spain needs for the future. Endocrinol. Diabetes Y Nutr. 2020, 67, 61–69. [Google Scholar] [CrossRef]
- Rego-Iraeta, A.; Pérez-Fdez, R.; Cadarso-Suárez, C.; Tomé, M.; Fdez-Mariño, A.; Mato, J.; Botana, M.; Solache, I. Iodine nutrition in the adult population of galicia (Spain). Thyroid 2007, 17, 161–167. [Google Scholar] [CrossRef]
- Olmedo, P.; García, E.; Gutiérrez, C.; Serrano, M.; Moreno, M.; Ureña, T.; Santiago, P. Assessment of Iodine nutritional status in the general population in the province of Jaén. Endocrinol. Nutr. 2015, 62, 373–379. [Google Scholar] [CrossRef]
- Vila, L.; Serra-Prat, M.; de Castro, A.; Palomera, E.; Casamitjana, R.; Legaz, G.; Barrionuevo, C.; Muñoz, J.A.; García, A.J.; Lal-Trehan, S.; et al. Iodine nutritional status in pregnant women of two historically different Iodine-deficient areas of Catalonia, Spain. Nutrition 2011, 27, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Vila, L. Prevention and control of Iodine deficiencies in Spain. Rev. Esp. Salud Pública 2008, 82, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Soriguer, F.; García-Fuentes, E.; Gutierrez-Repiso, C.; Rojo-Martínez, G.; Velasco, I.; Goday, A.; Bosch-Comas, A.; Bordiú, E.; Calle, A.; Carmena, R.; et al. Iodine intake in the adult population. [email protected] study. Clin. Nutr. 2012, 31, 882–888. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Andersson, M. Assessment of Iodine nutrition in populations: Past, present, and future. Nutr. Rev. 2012, 70, 553–570. [Google Scholar] [CrossRef]
- FACUA-Consumidores En Acción. Available online: https://www.facua.org/ (accessed on 17 November 2021).
- Ruiz-Gracia, T.; Duran, A.; Fuentes, M.; Rubio, M.A.; Runkle, I.; Carrera, E.F.; Torrejón, M.J.; Bordiú, E.; del Valle, L.; de la Torre, N.G.; et al. Lifestyle patterns in early pregnancy linked to gestational diabetes mellitus diagnoses when using IADPSG criteria. The St Carlos gestational study. Clin. Nutr. 2016, 35, 699–705. [Google Scholar] [CrossRef]
- Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. Informe Del Consumo de Alimentación En España. 2016; pp. 1–225. Available online: https://www.mapa.gob.es/images/es/informe_del_consumo_de_alimentos_en_espana_2016_web_tcm30-419484 (accessed on 17 November 2021).
- Mataix Verdú, F.J. Tabla de Composición de Alimentos, 5th ed.; Editorial Universidad de Granada: Granada, Spain, 2011; ISBN 9788433849809. [Google Scholar]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A short screener is valid for assessing mediterranean diet adherence among older spanish men and women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsen, M.H.; Andersen, L.F.; Dahl, L.; Norberg, N.; Hjartåker, A. New Iodine food composition database and updated calculations of Iodine intake among Norwegians. Nutrients 2018, 10, 930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. J. Am. Diet Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- Abel, M.H.; Caspersen, I.H.; Sengpiel, V.; Jacobsson, B.; Meltzer, H.M.; Magnus, P.; Alexander, J.; Brantsæter, A.L. Insufficient maternal Iodine intake is associated with subfecundity, reduced foetal growth, and adverse pregnancy outcomes in the Norwegian mother, father and child cohort study. BMC Med. 2020, 18, 211. [Google Scholar] [CrossRef] [PubMed]
- Diosady, L.L.; Alberti, J.O.; Mannar, M.G.V.; Fitzgerald, S. Stability of Iodine in iodized salt used for correction of Iodine-deficiency disorders. II. Food Nutr. Bull. 1998, 19, 240–250. [Google Scholar] [CrossRef]
- Dold, S.; Zimmermann, M.B.; Jukic, T.; Kusic, Z.; Jia, Q.; Sang, Z.; Quirino, A.; Luis, T.O.L.S.; Fingerhut, R.; Kupka, R.; et al. Universal salt iodization provides sufficient dietary iodine to achieve adequate iodine nutrition during the first 1000 days: A cross-sectional multicenter study. J. Nutr. 2018, 148, 587–598. [Google Scholar] [CrossRef]
- Gargari, S.S.; Fateh, R.; Bakhshali-Bakhtiari, M.; Saleh, M.; Mirzamoradi, M.; Bakhtiyari, M. Maternal and neonatal outcomes and determinants of Iodine deficiency in third trimester of pregnancy in an Iodine sufficient area. BMC Pregnancy Childbirth 2020, 20, 174–179. [Google Scholar] [CrossRef]
- Zimmermann, M.B. The effects of Iodine deficiency in pregnancy and infancy. Paediatr. Périnat. Epidemiol. 2012, 26, 108–117. [Google Scholar] [CrossRef]
- Tehrani, F.R.; Nazarpour, S.; Behboudi-Gandevani, S. Isolated maternal hypothyroxinemia and adverse pregnancy outcomes: A systematic review. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 102057. [Google Scholar] [CrossRef]
- Cleary-Goldman, J.; Malone, F.D.; Messerlian, G.; Sullivan, L.; Canick, J.; Porter, T.F.; Luthy, D.; Gross, S.; Bianchi, D.W.; D′Alton, M.E. Maternal thyroid hypofunction and pregnancy outcome. Obstet. Gynecol. 2008, 112, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Dosiou, C.; Medici, M. Management of endocrine disease: Isolated maternal hypothyroxinemia during pregnancy: Knowns and unknowns. Eur. J. Endocrinol. 2017, 176, R21–R38. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Liu, A.; Sun, H.; Li, C.; Yu, X.; Fan, C.; Shan, Z.; Teng, W.; Li, Y.; Li, Y. The impact of isolated maternal hypothyroxinemia during the first and second trimester of gestation on pregnancy outcomes: An intervention and prospective cohort study in China. J. Endocrinol. Investig. 2018, 42, 599–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, E.K.; Pearce, E.N.; Brent, G.A.; Brown, R.S.; Chen, H.; Dosiou, C.; Grobman, W.A.; Laurberg, P.; Lazarus, J.; Mandel, S.J.; et al. 2017 Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid 2017, 27, 315–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pop, V.J.; Brouwers, E.P.; Wijnen, H.; Oei, G.; Essed, G.G.; Vader, H.L. Low concentrations of maternal thyroxin during early gestation: A risk factor of breech presentation? BJOG Int. J. Obstet. Gynaecol. 2004, 111, 925–930. [Google Scholar] [CrossRef]
- Yang, X.; Yu, M.Y.; Zhang, C.; Zhang, Y.; Chen, M.Z.; Dubois, L.; Huang, H.-F.; Fraser, W.D.; Fan, J. The association between isolated maternal hypothyroxinemia in early pregnancy and preterm birth. Thyroid 2020, 30, 1724–1731. [Google Scholar] [CrossRef]
- Runkle, I.; de Miguel, M.P.; Barabash, A.; Cuesta, M.; Diaz, Á.; Duran, A.; Familiar, C.; García de la Torre, N.; Herraiz, M.A.; Izquierdo, N.; et al. Early levothyroxine treatment for subclinical hypothyroidism or hypothyroxinemia in pregnancy: The st carlos gestational and thyroid protocol. Front. Endocrinol. 2021, 12, 743057. [Google Scholar] [CrossRef]
N | 2523 |
---|---|
Age | 32.64 ± 5.19 |
Family history of: Type 2 diabetes/MetS(>2 components) | 113 (4.5%)/560 (22.2%) |
History of Prior Miscarriage | 838 (33.2%) |
Ethnicity: Caucasian/Hispanic | 1530 (60.6%)/789 (31.3%) |
Primiparous/multiparous | 1081 (42.8%)/1432 (56.7%) |
University or Technical degree | 1646 (65.3%) |
Works outside of the home | 1969 (78%) |
Smoker: until pregnancy/currently | 320 (12.7%)/208 (8.2%) |
BW (kg) | 63.8 ± 11.4 |
BMI (kg/m2) | 24.14 ± 4.09 |
SBP (mmHg) | 108.83 ± 10.34 |
DBP (mmHg) | 67.17 ± 8.79 |
FSG (mg/dL) | 80.31 ± 6.07 |
FSI (mlU/L) | 18.29 ± 21.15 |
HOMA-IR | 3.65 ± 4.28 |
Cholesterol (mg/dL) | 173.02 ± 30.96 |
Triglycerides (mg/dL) | 81.48 ± 37.83 |
TSH (µIU/mL) | 2.04 ± 1.53 |
FT4 (pg/mL) | 8.64 ± 1.49 |
Pre-pregnancy Nutrition Score | 0.32 ± 3.12 |
Pre-pregnancy MEDAS score | 4.89 ± 1.74 |
Pre-pregnancy Physical activity score | −1.83 ± 0.96 |
Pre-pregnancy supplements: | |
Iodine supplement | 22 (0.9%) |
Folic acid + iodine supplement | 198 (7.8%) |
Pregnancy supplements: | |
Iodine supplement | 127 (5.0%) |
Folic acid + iodine supplement | 1313 (52.0%) |
Use of iodized salt | 1021 (40.5%) |
Iodine Intake < 150 µg/Day | Iodine Intake ≥ 150 µg/Day | p | |
---|---|---|---|
N | 1922 (76.1%) | 602 (23.9%) | |
Age | 32.4 ± 5.3 | 33.4 ± 4.8 | 0.000 |
Miscarriage/GDM History | 670 (34.9%)/61 (3.2%) | 202 (33.5%)/24 (4.0%) | 0.906 |
Caucasian Ethnicity | 1166 (60.7%) | 364 (60.6%) | 0.166 |
Primipary | 820 (42.8%) | 261 (43.5%) | 0.044 |
University degree | 1214 (63.3%) | 432 (71.8%) | 0.003 |
Salaried work | 1496 (77.9%) | 474 (78.7%) | 0.507 |
Family history of MetS | 382 (19.9%) | 121 (21.1%) | 0.792 |
Smoker until/during pregnancy | 255 (13.3%)/171 (8.9%) | 65 (10.8%)/37 (6.1%) | 0.010 |
Body Weight (Kg) | 61.9 ± 11.5 | 61.5 ± 10.4 | 0.465 |
BMI (Kg/m2) | 23.4 ± 4.1 | 23.1 ± 3.8 | 0.073 |
sBP (mm Hg) | 108.9 ± 10.4 | 108.9 ± 10.1 | 0.915 |
dBP (mm Hg) | 67.1 ± 8.9 | 67.3 ± 8.5 | 0.710 |
FSG (mg/dl) | 80 ± 6 | 80 ± 6 | 0.435 |
FPI (µIU/mL) | 18 ± 21 | 18 ± 21 | 0.124 |
HOMA-IR | 3.64 ± 4.30 | 3.69 ± 4.25 | 0.777 |
Total Cholesterol (mg/dl) | 172 ± 30 | 175 ± 33 | 0.914 |
Triglycerides (mg/dl) | 81 ± 34 | 84 ± 46 | 0.092 |
TSH µIU/mLTSH > 2.5 µIU/mL | 2.13 ± 1.41 530 (27.6%) | 2.02 ± 1.41 162 (27.0%) | 0.1660.411 |
FT4 pg/mLFT4 < 7.5 pg/mL | 8.56 ± 1.57 384 (21.4%) | 8.67 ± 1.47 104 (17.3%) | 0.1700.026 |
Use of Iodized salt | 742 (38.6%) | 280 (46.5%) | 0.006 |
Iodine Intake < 150 µg/Day | Iodine Intake ≥ 150 µg/Day | p | |
---|---|---|---|
≥8 servings of vegetable | 406/1922 (21.1%) | 305/602 (50.7%) | 0.000 |
≥2 servings of nuts | 580/1922 (30.2%) | 264/602 (43.9%) | 0.000 |
Consumption of EVOO | 1544/1922 (80.3%) | 541/602 (89.9%) | 0.000 |
≥2 servings of oily fish | 470/1922 (24.5%) | 238/602 (39.5%) | 0.000 |
≥3 servings of canned oily fish | 302/1922 (15.7%) | 219/602 (36.4%) | 0.000 |
≥1 serving of white fish | 1262/1922 (65.7%) | 508/602 (84.4%) | 0.000 |
≥1 serving of shellfish | 168/1922 (8.7%) | 274/602 (45.5%) | 0.000 |
≥2 servings of whole grain cereals | 527/1921 (27.4%) | 217/602 (36.0%) | 0.000 |
≥4 servings of fat-free dairy products | 576/1922 (30.0%) | 306/602 (50.8%) | 0.000 |
≥7 servings of low-fat dairy products | 569/1922 (29.6%) | 337/602 (56.0%) | 0.000 |
≥5 servings of full-fat dairy products | 900/1922 (46.8%) | 404/602 (67.1%) | 0.000 |
≥7 servings of fortified dairy products | 248/1921 (12.9%) | 133/602 (22.1%) | 0.000 |
≥2 servings of dairy products | 476/1921 (24.8%) | 409/602 (67.9%) | 0.000 |
≤1 servings of processed red meat | 1583/1922 (82.4%) | 532/601 (88.2%) | 0.000 |
>0 serving of mayonnaise serving | 1265/1921 (65.9%) | 436/602 (72.4%) | 0.001 |
≥6 servings of dark chocolate serving | 70/1922 (3.6%) | 42/602 (7.0%) | 0.001 |
≥150 min of sports activity | 28/1921 (1.5%) | 21/600 (3.5%) | 0.001 |
≥−1 Physical activity Score | 583/1919 (30.4%) | 232/601 (38.6%) | 0.000 |
≥1 Nutrition score | 791/1914 (41.3%) | 404/599 (67.4%) | 0.000 |
≥6 MEDAS score | 574/1832 (31.3%) | 267/570 (46.8%) | 0.000 |
Iodine Intake < 150 µg/Day | Iodine Intake ≥ 150 µg/Day | p | |
---|---|---|---|
History of prior miscarriage | 672/1922 (35.1%) | 201/602 (33.4%) | 0.296 |
Fetal loss < 18 GW in current pregnancy | 68/1922 (4.0%) | 18/602 (3.1%) | 0.042 |
Prematurity | 104/1854 (5.6%) | 28/584 (4.9%) | 0.077 |
Preeclampsia | 28/1854 (1.5%) | 7/584 (1.2%) | 0.374 |
GDM | 367/1854 (19.8%) | 109/584 (18.7%) | 0.326 |
Non-instrumental vaginal delivery | 1118/1854 (60.3%) | 364/584 (62.3%) | 0.230 |
Caesarean section | 402/1854 (21.7%) | 124/584 (21.2%) | 0.764 |
SGA/LGA | 401/1854 (21.6%) | 104/584 (17.8%) | 0.280 |
CMFAO | 747/1922 (38.9%) | 205/602 (34.1%) | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melero, V.; Runkle, I.; Garcia de la Torre, N.; De Miguel, P.; Valerio, J.; del Valle, L.; Barabash, A.; Sanabria, C.; Moraga, I.; Familiar, C.; et al. The Consumption of Food-Based Iodine in the Immediate Pre-Pregnancy Period in Madrid Is Insufficient. San Carlos and Pregnancy Cohort Study. Nutrients 2021, 13, 4458. https://doi.org/10.3390/nu13124458
Melero V, Runkle I, Garcia de la Torre N, De Miguel P, Valerio J, del Valle L, Barabash A, Sanabria C, Moraga I, Familiar C, et al. The Consumption of Food-Based Iodine in the Immediate Pre-Pregnancy Period in Madrid Is Insufficient. San Carlos and Pregnancy Cohort Study. Nutrients. 2021; 13(12):4458. https://doi.org/10.3390/nu13124458
Chicago/Turabian StyleMelero, Verónica, Isabelle Runkle, Nuria Garcia de la Torre, Paz De Miguel, Johanna Valerio, Laura del Valle, Ana Barabash, Concepción Sanabria, Inmaculada Moraga, Cristina Familiar, and et al. 2021. "The Consumption of Food-Based Iodine in the Immediate Pre-Pregnancy Period in Madrid Is Insufficient. San Carlos and Pregnancy Cohort Study" Nutrients 13, no. 12: 4458. https://doi.org/10.3390/nu13124458
APA StyleMelero, V., Runkle, I., Garcia de la Torre, N., De Miguel, P., Valerio, J., del Valle, L., Barabash, A., Sanabria, C., Moraga, I., Familiar, C., Durán, A., Torrejón, M. J., Diaz, J. A., Cuesta, M., Ruiz, J. G., Jiménez, I., Pazos, M., Herraiz, M. A., Izquierdo, N., ... Calle-Pascual, A. L. (2021). The Consumption of Food-Based Iodine in the Immediate Pre-Pregnancy Period in Madrid Is Insufficient. San Carlos and Pregnancy Cohort Study. Nutrients, 13(12), 4458. https://doi.org/10.3390/nu13124458