Selection of Probiotics in the Prevention of Respiratory Tract Infections and Their Impact on Occupational Health: Scoping Review
Abstract
:1. Introduction
1.1. Respiratory Tract Infections
1.2. Probiotics
- The microorganism in question must have been scientifically proven to be a safe species that is supported by sufficient evidence of general beneficial effect in humans.
- Evidence of its viability as a microorganism should be available in human studies conducted.
2. Materials and Methods
2.1. Design
2.2. Data Collection Source
2.3. Information Processing
2.4. Final Selection of Articles
2.5. Assessment of Methodological Quality
2.6. Data Extraction
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Occupational Health [Internet]. Available online: https://www.who.int/westernpacific/health-topics/occupational-health (accessed on 4 October 2021).
- Benavides, F.G.; Delclós, J.; Serra, C. Estado de bienestar y salud pública: El papel de la salud laboral. Gac. Sanit. 2018, 32, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Seguridad y Salud en el Trabajo [Internet]. Available online: https://www.ilo.org/global/standards/subjects-covered-by-international-labour-standards/occupational-safety-and-health/lang--es/index.htm (accessed on 6 February 2021).
- Comisión Europea. Marco Estratégico de la UE en Materia de Salud y Seguridad en el Trabajo 2021–2027 [Internet]. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/HTML/?uri=CELEX:52021DC0323&from=EN (accessed on 4 October 2021).
- World Health Organization. WHO|Global Alliance against Chronic Respiratory Diseases [Internet]. Available online: http://www.who.int/gard/en/ (accessed on 4 October 2021).
- User, S. Forum of International Respiratory Societies Releases “The Global Impact of Respiratory Disease” [Internet]. FIRS. Available online: https://www.firsnet.org/news-and-events/news-article/59-forum-of-international-respiratory-societies-releases-the-global-impact-of-respiratory-disease (accessed on 4 October 2021).
- Chan, C.K.Y.; Tao, J.; Chan, O.S.; Li, H.-B.; Pang, H. Preventing Respiratory Tract Infections by Synbiotic Interventions: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Darbandi, A.; Asadi, A.; Ghanavati, R.; Afifirad, R.; Emamie, A.D.; Kakanj, M.; Talebi, M. The effect of probiotics on respiratory tract infection with special emphasis on COVID-19: Systemic review 2010–20. Int. J. Infect. Dis. 2021, 105, 91–104. [Google Scholar] [CrossRef]
- FAO; WHO. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation; FAO Food and Nutrition Paper; Food and Agriculture Organization of the United Nations: Rome, Italy; World Health Organization: Geneva, Switzerland, 2006; 50p. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.E.; Lehtoranta, L.; Lehtinen, M.J. Short-term probiotic supplementation enhances cellular immune function in healthy elderly: Systematic review and meta-analysis of controlled studies. Nutr. Res. 2018, 64, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hajavi, J.; Esmaeili, S.-A.; Varasteh, A.; Vazini, H.; Atabati, H.; Mardani, F.; Momtazi, A.A.; Hashemi, M.; Sankian, M.; Sahebkar, A. The immunomodulatory role of probiotics in allergy therapy. J. Cell. Physiol. 2018, 234, 2386–2398. [Google Scholar] [CrossRef]
- Hao, Q.; Dong, B.R.; Wu, T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst. Rev. 2015, CD006895. [Google Scholar] [CrossRef] [PubMed]
- Mahooti, M.; Miri, S.M.; Abdolalipour, E.; Ghaemi, A. The immunomodulatory effects of probiotics on respiratory viral infections: A hint for COVID-19 treatment? Microb. Pathog. 2020, 1, 104452. [Google Scholar] [CrossRef]
- Kerry, R.G.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.-S.; Das, G. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef] [Green Version]
- Di Stadio, A.; Ishai, R.; Gambacorta, V.; Korsch, F.; Ricci, G.; della Volpe, A.; Bernitsas, E. Nutraceuticals as immune-stimulating therapy to fight COVID-19. Combination of elements to improve the efficacy. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9182–9187. [Google Scholar]
- Lenoir-Wijnkoop, I.; Gerlier, L.; Bresson, J.-L.; Le Pen, C.; Berdeaux, G. Public Health and Budget Impact of Probiotics on Common Respiratory Tract Infections: A Modelling Study. PLoS ONE 2015, 10, e0122765. [Google Scholar] [CrossRef]
- Lenoir-Wijnkoop, I.; Merenstein, D.; Korchagina, D.; Broholm, C.; Sanders, M.E.; Tancredi, D. Probiotics Reduce Health Care Cost and Societal Impact of Flu-Like Respiratory Tract Infections in the USA: An Economic Modeling Study. Front. Pharmacol. 2019, 10, 980. [Google Scholar] [CrossRef]
- Wanden-Berghe, C.; Sanz-Valero, J. Systematic reviews in nutrition: Standardized methodology. Br. J. Nutr. 2012, 107 (Suppl. S2), S3–S7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 Explanation and Elaboration: Updated guidelines for reporting parallel group randomised trials. BMJ 2010, 24, 340:c869. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 29, 372:n71. [Google Scholar] [CrossRef]
- Ahrén, I.L.; Hillman, M.; Nordström, E.A.; Larsson, N.; Niskanen, T.M. Fewer Community-Acquired Colds with Daily Consumption of Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2. A Randomized, Placebo-Controlled Clinical Trial. J. Nutr. 2021, 151, 214–222. [Google Scholar]
- Zhang, H.; Miao, J.; Su, M.; Liu, B.Y.; Liu, Z. Effect of fermented milk on upper respiratory tract infection in adults who lived in the haze area of Northern China: A randomized clinical trial. Pharm. Biol. 2021, 59, 647–652. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, X.; Xiang, X.; Liu, W.; Fang, Y.; Chen, H.; Tang, F.; Guo, H.; Chen, D.; Hu, X.; et al. Oropharyngeal Probiotic ENT-K12 Prevents Respiratory Tract Infections Among Frontline Medical Staff Fighting Against COVID-19: A Pilot Study. Front. Bioeng. Biotechnol. 2021, 9, 646184. [Google Scholar] [CrossRef]
- Chong, H.-X.; Yusoff, N.A.A.; Hor, Y.Y.; Lew, L.C.; Jaafar, M.H.; Choi, S.-B.; Yusoff, M.S.; Wahid, N.; Bin Abdullah, M.F.I.L.; Zakaria, N.; et al. Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. J. Dairy Sci. 2019, 102, 4783–4797. [Google Scholar] [CrossRef]
- Kinoshita, T.; Maruyama, K.; Suyama, K.; Nishijima, M.; Akamatsu, K.; Jogamoto, A.; Katakami, K.; Saito, I. The effects of OLL1073R-1 yogurt intake on influenza incidence and immunological markers among women healthcare workers: A randomized controlled trial. Food Funct. 2019, 10, 8129–8136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yeh, C.; Jin, Z.; Ding, L.; Liu, B.Y.; Zhang, L.; Dannelly, H.K. Prospective study of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate. Synth. Syst. Biotechnol. 2018, 3, 113–120. Available online: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01465457/full (accessed on 4 October 2021). [CrossRef] [PubMed]
- Hor, Y.-Y.; Lew, L.C.; Lau, A.S.-Y.; Ong, J.-S.; Chuah, L.-O.; Lee, Y.Y.; Choi, S.-B.; Rashid, F.; Wahid, N.; Sun, Z.; et al. Probiotic Lactobacillus casei Zhang (LCZ) alleviates respiratory, gastrointestinal & RBC abnormality via immuno-modulatory, anti-inflammatory & anti-oxidative actions. J. Funct. Foods 2018, 44, 235–245. [Google Scholar] [CrossRef]
- Jespersen, L.; Tarnow, I.; Eskesen, D.; Morberg, C.M.; Michelsen, B.; Bügel, S.; Dragsted, L.O.; Rijkers, G.T.; Calder, P.C. Effect of Lactobacillus paracasei subsp. paracasei, L. casei 431 on immune response to influenza vaccination and upper respiratory tract infections in healthy adult volunteers: A randomized, double-blind, placebo-controlled, parallel-group study. Am. J. Clin. Nutr. 2015, 101, 1188–1196. [Google Scholar] [CrossRef] [Green Version]
- Shida, K.; Sato, T.; Iizuka, R.; Hoshi, R.; Watanabe, O.; Igarashi, T.; Miyazaki, K.; Nanno, M.; Ishikawa, F. Daily intake of fermented milk with Lactobacillus casei strain Shirota reduces the incidence and duration of upper respiratory tract infections in healthy middle-aged office workers. Eur. J. Nutr. 2015, 56, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzardini, G.; Eskesen, D.; Calder, P.C.; Capetti, A.; Jespersen, L.; Clerici, M. Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12® and Lactobacillus paracasei ssp. paracasei, L. casei 431® in an influenza vaccination model: A randomised, double-blind, placebo-controlled study. Br. J. Nutr. 2011, 107, 876–884. [Google Scholar] [CrossRef] [Green Version]
- Davidson, L.E.; Fiorino, A.-M.; Snydman, D.R.; Hibberd, P.L. Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: A randomized double-blind placebo-controlled trial. Eur. J. Clin. Nutr. 2011, 65, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Guillemard, E.; Tanguy, J.; Flavigny, A.; De La Motte, S.; Schrezenmeir, J. Effects of consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114 001 on common respiratory and gastrointestinal infections in shift workers in a randomized controlled trial. J. Am. Coll. Nutr. 2010, 29, 455–468. [Google Scholar] [CrossRef]
- Berggren, A.; Ahrén, I.L.; Larsson, N.; Önning, G. Randomised, double-blind and placebo-controlled study using new probiotic lactobacilli for strengthening the body immune defence against viral infections. Eur. J. Nutr. 2010, 50, 203–210. [Google Scholar] [CrossRef]
- Tubelius, P.; Stan, V.; Zachrisson, A. Increasing work-place healthiness with the probiotic Lactobacillus reuteri: A randomised, double-blind placebo-controlled study. Environ. Health Glob. Access Sci. Source 2005, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- de Vrese, M.; Winkler, P.; Rautenberg, P.; Harder, T.; Noah, C.; Laue, C.; Ott, S.; Hampe, J.; Schreiber, S.; Heller, K.; et al. Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. bifidum MF 20/5 on common cold episodes: A double blind, randomized, controlled trial. Clin. Nutr. Edinb. Scotl. 2005, 24, 481–491. [Google Scholar] [CrossRef]
- Meng, H.; Lee, Y.; Ba, Z.; Peng, J.; Lin, J.; Boyer, A.S.; Fleming, J.A.; Furumoto, E.J.; Roberts, R.F.; Kris-Etherton, P.M.; et al. Consumption of Bifidobacterium animalis subsp. lactis BB-12 impacts upper respiratory tract infection and the function of NK and T cells in healthy adults. Mol. Nutr. Food Res. 2016, 60, 1161–1171. [Google Scholar] [CrossRef]
- Smith, T.J.; Rigassio-Radler, D.; Denmark, R.; Haley, T.; Touger-Decker, R. Effect of Lactobacillus rhamnosus LGG® and Bifidobacterium animalis ssp. lactis BB-12® on health-related quality of life in college students affected by upper respiratory infections. Br. J. Nutr. 2013, 109, 1999–2007. [Google Scholar] [CrossRef] [Green Version]
- West, N.P.; Horn, P.L.; Pyne, D.; Gebski, V.; Lahtinen, S.J.; Fricker, P.A.; Cripps, A.W. Probiotic supplementation for respiratory and gastrointestinal illness symptoms in healthy physically active individuals. Clin. Nutr. 2014, 33, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Franco-López, A.; Sanz-Valero, J.; Culebras, J.M. El factor de impacto ya no es el patrón oro; la declaración de San Francisco sobre evaluación de la investigación. J. Negat. No Posit. Results JONNPR 2017, 2, 173–176. [Google Scholar]
- Harris, R.P.; Helfand, M.; Woolf, S.H.; Lohr, K.N.; Mulrow, C.D.; Teutsch, S.M.; Atkins, D.; Methods Work Group. Third US Preventive Services Task Force Current methods of the U.S. Preventive Services Task Force: A review of the process. Am. J. Prev. Med. 2001, 20, 21–35. [Google Scholar] [CrossRef]
- López, Á.F.; Valero, J.S.; Fernández, J.M.C. Publicar en castellano, o en cualquier otro idioma que no sea inglés, negativo para el factor de impacto y citaciones. J. Negat. No Posit. Results JONNPR 2016, 1, 65–70. [Google Scholar]
- Melián-Fleitas, L.; Franco-Pérez, Á.M.; Sanz Valero, J. Análisis bibliométrico y temático de la producción científica sobre salud laboral relacionada con nutrición, alimentación y dieta, indexada en MEDLINE. Med. Segur. Trab. 2019, 65, 10–23. [Google Scholar] [CrossRef]
- Makino, S.; Ikegami, S.; Kume, A.; Horiuchi, H.; Sasaki, H.; Orii, N. Reducing the risk of infection in the elderly by dietary intake of yoghurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Br. J. Nutr. 2010, 104, 998–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinkai, S.; Toba, M.; Saito, T.; Sato, I.; Tsubouchi, M.; Taira, K.; Kakumoto, K.; Inamatsu, T.; Yoshida, H.; Fujiwara, Y.; et al. Immunoprotective effects of oral intake of heat-killed Lactobacillus pentosus strain b240 in elderly adults: A randomised, double-blind, placebo-controlled trial. Br. J. Nutr. 2012, 109, 1856–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcox, C.; Stuart, B.; Leaver, H.; Lown, M.; Willcox, M.; Moore, M.; Little, P. Effectiveness of the probiotic Streptococcus salivarius K12 for the treatment and/or prevention of sore throat: A systematic review. Clin. Microbiol. Infect. 2019, 25, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Tavares-Silva, E.; Caris, A.; Santos, S.; Ravacci, G.; Thomatieli-Santos, R. Effect of Multi-Strain Probiotic Supplementation on URTI Symptoms and Cytokine Production by Monocytes after a Marathon Race: A Randomized, Double-Blind, Placebo Study. Nutrients 2021, 13, 1478. [Google Scholar] [CrossRef]
- Fonollá, J.; Gracián, C.; Maldonado-Lobón, J.A.; Romero, C.; Bédmar, A.; Carrillo, J.C.; Martín-Castro, C.; Cabrera, A.L.; García-Curiel, J.M.; Rodríguez, C.; et al. Effects of Lactobacillus coryniformis K8 CECT5711 on the immune response to influenza vaccination and the assessment of common respiratory symptoms in elderly subjects: A randomized controlled trial. Eur. J. Nutr. 2017, 58, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Namba, K.; Hatano, M.; Yaeshima, T.; Takase, M.; Suzuki, K. Effects of Bifidobacterium longum BB536 administration on influenza infection, influenza vaccine antibody titer, and cell-mediated immunity in the elderly. Biosci. Biotechnol. Biochem. 2010, 74, 939–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akatsu, H.; Nagafuchi, S.; Kurihara, R.; Okuda, K.; Kanesaka, T.; Ogawa, N.; Kanematsu, T.; Takasugi, S.; Yamaji, T.; Takami, M.; et al. Enhanced vaccination effect against influenza by prebiotics in elderly patients receiving enteral nutrition. Geriatr. Gerontol. Int. 2015, 16, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.-T.; Shih, P.-C.; Liu, S.-J.; Lin, C.-Y.; Yeh, T.-L. Effect of Probiotics and Prebiotics on Immune Response to Influenza Vaccination in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2017, 9, 1175. [Google Scholar] [CrossRef]
- Domingo-Pueyo, A.; Sanz-Valero, J.; Wanden-Berghe, C. Efectos sobre la salud de la exposición laboral al cromo y sus compuestos: Revisión sistemática-[Effects of occupational exposure to chromium and its compounds: A systematic review]. Arch. Prev. Riesgos Labor. 2014, 17, 142–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author (Year) | Design | Country | Participants | Population | Monitoring | Intervention Performed | Results |
---|---|---|---|---|---|---|---|
Ahrén (2021) [22] | Randomized, double-blind, placebo-controlled trial multicentric | Germany | 898 M/F: 322/576 Median age: 40.6 years | Healthy men and women | 3 years | Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2 (1 × 109 cfu) | Protects against multiple colds in adults prone to getting colds. |
Zhang (2021) [23] | Randomized, double-blinded placebo-controlled clinical trial | China | 123 M/F: 69/54 Median age 37.2 years | Healthy white-collar workers | 12 weeks | Qingrun yogurt with Bifidobacterium animalis subsp. lactis Bl-04 (2 × 109 cfu), Lactobacillus casei, Lactobacillus bulgaricus and Streptococcus thermophilus | Qingrun yogurt was able to reduce the incidence, duration, and severity of URTIs and improve immune biomarkers. |
Wang (2021) [24] | Randomized controlled clinical trial: Study pilot. Multicentric | China | 193 M/F: 56/137 Median age: 36.1 years | Healthcare workers | 1 month | Streptococcus thermophilus ENT-K12 | ENT-K12 creates a stable URT microbiota for at least 20 days and protects medical staff from URTIs, can reduce the length of sick days, days off work, and days on antibiotics and antivirals. |
Chong (2019) [25] | Randomized double-blind placebo-controlled study | Malaysia | 109 Age: <30 and 30 to 60 years | Healthy men and women | 12 weeks | Lactobacillus plantarum DR7 | DR7 can protect adult populations against URTIs by inducing immunomodulatory and anti-inflammatory effects while promoting mucosal barrier integrity and actions of NK cells. |
Kinoshita (2019) [26] | Randomized controlled open-label study | Japan | F: 961 Median age: 39.3 years | Women health workers | 16 weeks | Lactobacillus delbrueckii subsp. bulgaricus (OLL1073R-1) and Streptococcus thermophilus (1 × 109 cfu) | The probiotic mixture did not show any prevention of influenza and NK cell activity enhancement. However, a significant increase in IFN-γ production was found. |
Zhang (2018) [27] | Randomized double-blind placebo-controlled prospective trial. Single center | China | 134 M/F: 66/68 Median age: 34.3 years | Healthy subjects | 12 weeks | Lactobacillus paracasei ≥ 3 × 107 cfu, L. casei 431® ≥ 3 × 107 cfu and Lactobacillus fermentum PCC® ≥ 3 × 106 cfu | Mix probiotics were safe and effective for fighting the common cold and influenza-like respiratory infections by boosting the immune system. |
Hor (2018) [28] | Randomized, double-blind and placebo-controlled study | Malaysia | 137 M/F: 62/75 Median age: 44.2 years | Healthy adults and elderly | 12 months | Lactobacillus casei Zhang (109 cfu) | LCZ alleviated URTI symptoms in adults, with reduced duration for nasal, pharyngeal, general flu, and total respiratory illness symptoms compared to the placebo. |
Meng (2016) [37] | Randomized, partially blinded, four-period crossover study | USA | 30 M/F: 11/29 Median age: 28 years | Healthy subjects | 4 weeks | (i) YS (ii) YS with BB-12® added prefermentation (PRE); (iii) YS with BB-12® added postfermentation (POST) (iv) one capsule BB-12® | The timing of BB-12 addition to yogurt smoothies in relation to the fermentation process influenced the impact of BB-12 on immune function and cold/flu severity in young healthy adults. |
Jespersen (2015) [29] | Randomized double-blind, placebo-controlled trial multicentric | Denmark/Germany | 1104 M/F: 453/651 Median age: 31.6 years | Healthy men and women with influenza vaccination | 42 days | L. casei 431® (≥109 cfu) | L. casei 431 did not show an effect on antibody titers and influenza A–specific antibodies 3 weeks after influenza vaccination but may reduce the duration of common cold and ILI episodes in healthy adults. |
Shida (2015) [30] | Randomized controlled trial | Japan | M: 100 Median age: 40.6 years | Healthy male workers | 4 months | Lactobacillus casei Shirota® (1.0 × 1011 cfu) fermented milk | Fermented milk with LcS may reduce the risk of URTIs in healthy middle-aged office workers. |
Smith (2012) [38] | Randomized double blind placebo-controlled trial | USA | 198 M/F: 47/151 Age: 19 to 25 years | Healthy subjects | 12 weeks | Lactobacillus rhamnosus LGG® and Bifidobacterium animalis ssp. lactis BB-12® (1 × 109 cfu) | Mix probiotics LGG® and BB-12® may be beneficial for mitigating decrements in HRQL during URTI in college students living on campus in residence halls. |
West (2013) [39] | Randomized double-blind placebo-controlled parallel trial | Australia | 465 M/F: 241/224 Median age: 36 years | Healthy subjects | 160 days | Bifidobacterium animalis subsp. lactis Bl-04 (2 × 109 cfu), Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07 (NCFM & Bi-07) (5 × 109 cfu) | Bl-04 appears to be a useful nutritional supplement in reducing the risk of URTI in healthy, physically active adults. |
Rizzardini (2011) [31] | Randomized, double-blind, placebo controlled, four-arm, parallel-group study | Italy | 211 M/F: 93/118 Median age: 29 and 37.3 years | Healthy adults with influenza vaccination | 6 weeks | BB-12® capsule or L. casei 431® drink (1 × 109 cfu) and Fluad® | BB-12 or L. casei 431® significantly increases antigen-specific immune responses in healthy individuals receiving an influenza vaccination. |
Davidson (2011) [32] | Randomized double-blind placebo-controlled pilot study | USA | 42 M/F: 16/26 Median age: 33.5 years | Healthy adults with LAIV | 28 days | Lactobacillus GG (1 × 1010 cfu) and LAIV | Lactobacillus GG®: is potentially an important adjuvant to improve influenza vaccine immunogenicity. |
Guillemard (2010) [33] | Randomized, double-blind, controlled study Single-center | Germany | 1000 M/F: 220/780 Median age: 31.8 years | Healthy men and women | 4 months and 2 weeks | Verum: Lactobacillus casei DN-114 001 (1 × 1010 cfu), Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus | Verum consumption was associated with significant improvement in incidence of CIDs in shift workers. |
Berggren (2010) [34] | Randomized, double-blind, placebo-controlled trial multicentric | Sweden | 272 M/F: 92/180 Median age: 46.5 years | Healthy men and women | 12 weeks | Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2 (1 × 109) cfu | Contributes to the body’s defense against common cold infections p < 0.05. |
De Vrese (2005) [36] | Randomized, double-blind, placebo-controlled intervention study | Germany | 479 M/F: 185/294 Median age: 37 years | Healthy men and women | 8.5 months | Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, Bifidobacterium bifidum MF 20/5 (5 × 107 cfu) (Tribion harmonisTM) | The intake of mix probiotic for at least 3 months significantly shortened common cold episodes by almost 2 days and reduced the severity of symptoms. |
Tubelius (2005) [35] | Randomized, double-blind placebo-controlled study | Sweden | 181 M/F: 65/71 Median age: 44 years | Healthy workers | 80 days | Lactobacillus reuteri protectis (ATCC55730) 1 × 108 cfu | Lactobacillus reuteri is effective to promote workplace healthiness. In the studied population, sick-days caused by respiratory or gastrointestinal diseases could be reduced by 55%. |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | T | % | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ahrén [22] | 1 | 1 | 1 | 1 | 1 | 1 | 0.5 | 1 | 0 | 1 | 1 | 1 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 21.5 | 90 |
Zhang [23] | 1 | 1 | 1 | 1 | 1 | 0.5 | 0 | 0 | 0 | 1 | 1 | 0.5 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 18 | 75 |
Wang [24] | 0.5 | 1 | 1 | 1 | 1 | 0.5 | 0 | 0 | 0 | 1 | 1 | 0.5 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 18.5 | 77 |
Chong [25] | 1 | 1 | 1 | 1 | 1 | 0.5 | 0.5 | 0.5 | 0 | 0 | 0 | 0.5 | 1 | 0.5 | 1 | 1 | 1 | NA | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 15.5 | 65 |
Kinoshita [26] | 1 | 1 | 1 | 1 | 1 | 0.5 | 0.5 | 1 | 1 | 1 | 1 | 0.5 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 21.5 | 90 |
Zhang [27] | 0.5 | 1 | 1 | 1 | 1 | 0.5 | 0.5 | 1 | 1 | 1 | 1 | 0.5 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 21 | 87 |
Hor [28] | 0 | 1 | 1 | 0.5 | 1 | 0.5 | 0 | 1 | 1 | 1 | 0 | 0.5 | 0 | 0.5 | 1 | 0.5 | 1 | NA | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 13 | 54 |
Meng [37] | 0.5 | 1 | 1 | 1 | 1 | 0.5 | 0.5 | 1 | 1 | 1 | 0.5 | 0.5 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 20.5 | 85 |
Jespersen [29] | 1 | 1 | 1 | 1 | 1 | 0.5 | 0.5 | 1 | 1 | 1 | 0.5 | 1 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 21.5 | 90 |
Shida [30] | 0.5 | 1 | 1 | 1 | 1 | 0.5 | 0.5 | 0.5 | 0 | 1 | 0 | 0.5 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 17.5 | 73 |
Smith [38] | 0.5 | 1 | 1 | 1 | 1 | 0.5 | 0.5 | 1 | 1 | 1 | 0.5 | 0.5 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 20.5 | 85 |
West [39] | 0.5 | 1 | 1 | 1 | 1 | 1 | 0.5 | 1 | 0 | 0 | 0 | 0.5 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 17.5 | 73 |
Rizzardini [31] | 1 | 1 | 1 | 1 | 1 | 0.5 | 0.5 | 1 | 1 | 1 | 0.5 | 0.5 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 21 | 87 |
Davidson [32] | 1 | 1 | 1 | 1 | 1 | 0.5 | 0.5 | 0.5 | 0 | 1 | 0.5 | 0.5 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 19.5 | 81 |
Guillemard [33] | 1 | 1 | 1 | 1 | 1 | 0.5 | 0.5 | 1 | 1 | 1 | 0.5 | 0.5 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 18 | 75 |
Berggren [34] | 1 | 1 | 0.5 | 1 | 1 | 0.5 | 0.5 | 0.5 | 0 | 0 | 0.5 | 0.5 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 15 | 62 |
De Vrese [36] | 1 | 1 | 1 | 1 | 0 | 0.5 | 0.5 | 0.5 | 1 | 1 | 0.5 | 0.5 | 1 | 0.5 | 1 | 1 | 0.5 | NA | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 16.5 | 69 |
Tubelius [35] | 1 | 1 | 1 | 1 | 1 | 0.5 | 0 | 0 | 0 | 1 | 0.5 | 0.5 | 0.5 | 0 | 1 | 0 | 0 | NA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 16 | 67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picó-Monllor, J.A.; Ruzafa-Costas, B.; Núñez-Delegido, E.; Sánchez-Pellicer, P.; Peris-Berraco, J.; Navarro-Lopez, V. Selection of Probiotics in the Prevention of Respiratory Tract Infections and Their Impact on Occupational Health: Scoping Review. Nutrients 2021, 13, 4419. https://doi.org/10.3390/nu13124419
Picó-Monllor JA, Ruzafa-Costas B, Núñez-Delegido E, Sánchez-Pellicer P, Peris-Berraco J, Navarro-Lopez V. Selection of Probiotics in the Prevention of Respiratory Tract Infections and Their Impact on Occupational Health: Scoping Review. Nutrients. 2021; 13(12):4419. https://doi.org/10.3390/nu13124419
Chicago/Turabian StylePicó-Monllor, José Antonio, Beatriz Ruzafa-Costas, Eva Núñez-Delegido, Pedro Sánchez-Pellicer, Javier Peris-Berraco, and Vicente Navarro-Lopez. 2021. "Selection of Probiotics in the Prevention of Respiratory Tract Infections and Their Impact on Occupational Health: Scoping Review" Nutrients 13, no. 12: 4419. https://doi.org/10.3390/nu13124419
APA StylePicó-Monllor, J. A., Ruzafa-Costas, B., Núñez-Delegido, E., Sánchez-Pellicer, P., Peris-Berraco, J., & Navarro-Lopez, V. (2021). Selection of Probiotics in the Prevention of Respiratory Tract Infections and Their Impact on Occupational Health: Scoping Review. Nutrients, 13(12), 4419. https://doi.org/10.3390/nu13124419