Nutritional Status, Selected Nutrients Intake and Their Relationship with the Concentration of Ghrelin and Adiponectin in Patients with Diabetic Nephropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometric Measurements
2.2. Blood Tests
2.3. Dietary Assessment
2.4. Statistical Analysis
3. Results
3.1. Anthropometric and Blood Parameters, Nutrients Intake
3.2. Correlations of Ghrelin and Adiponectin with Other Parameters Tested
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Gubina, N.V.; Kupnovytska, I.H.; Mishchuk, V.H.; Markiv, H.D. Ghrelin levels and decreased kidney function in patients with early stages of chronic kidney disease against the background of obesity. J. Med. Life 2020, 13, 530–535. [Google Scholar]
- Kramer, H. Diet and chronic kidney disease. Adv. Nutr. 2019, 10, S367–S379. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Bhutani, J.; O’Keefe, J.H. Added sugars drive chronic kidney disease and its consequences: A comprehensive review. J. Insul. Resist. 2016, 1, a3. [Google Scholar] [CrossRef] [Green Version]
- Dornas, W.C.; de Lima, W.G.; Pedrosa, M.L.; Silva, M.E. Health implications of high-fructose intake and current research. Adv. Nutr. 2015, 6, 729–737. [Google Scholar] [CrossRef] [Green Version]
- Vieira, F.O.; de Oliveira Leal, V.; Barcza Stockler-Pinto, M.; de Faria Barros, A.; Borges, N.A.; Lobo, J.C.; Mafra, D. Fructose intake: Is there an association with uric acid levels in nondialysis-dependent chronic kidney disease patients? Nutr. Hosp. 2015, 31, 772–777. [Google Scholar]
- Arslan, S.; Sanlier, N. Relationship between daily dietary fructose intake, body composition and biochemical parameters patients with type 2 diabetes. J. Hum. Sci. 2016, 13, 2642–2655. [Google Scholar] [CrossRef] [Green Version]
- Kretowicz, M.; Johnson, R.J.; Ishimoto, T.; Nakagawa, T.; Manitius, J. The impact of fructose on renal function and blood pressure. Int. J. Nephrol. 2011, 2011, 315879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donderski, R.; Miśkowiec-Wiśniewska, I.; Kretowicz, M.; Grajewska, M.; Manitius, J.; Kamińska, A.; Junik, R.; Joanna Siódmiak, J.; Stefańska, A.; Odrowąż-Sypniewska, G.; et al. The fructose tolerance test in patients with chronic kidney disease and metabolic syndrome in comparison to healthy control. BMC Nephrol. 2015, 16, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livesey, G.; Taylor, R. Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: Meta-analyses and meta-regression models of intervention studies. Am. J. Clin. Nutr. 2008, 88, 1419–1437. [Google Scholar]
- Stanhope, K.L.; Peter, J.; Havel, P.J. Fructose consumption: Recent results and their potential implications. Ann. N. Y. Acad. Sci. 2010, 1190, 15–24. [Google Scholar] [CrossRef]
- Przybyciński, J.; Dziedziejko, V.; Puchałowicz, K.; Domański, L.; Pawlik, A. Adiponectin in chronic kidney disease. Int. J. Mol. Sci. 2020, 21, 9375. [Google Scholar] [CrossRef]
- Heidari, M.; Nasri, P.; Nasri, H. Adiponectin and chronic kidney disease; a review on recent findings. J. Nephropharmacol. 2015, 4, 63–68. [Google Scholar]
- Christou, G.A.; Kiortsis, D.N. The role of adiponectin in renal physiology and development of albuminuria. J. Endocrinol. 2014, 221, R49–R61. [Google Scholar] [CrossRef] [Green Version]
- Perri, A.; Vizza, D.; Lofaro, D.; Gigliotti, P.; Leone, F.; Brunelli, E.; Malivindi, R.; De Amicis, F.; Romeo, F.; De Stefano, R.; et al. Adiponectin is expressed and secreted by renal tubular epithelial cells. J. Nephrol. 2013, 26, 1049–1054. [Google Scholar] [CrossRef]
- Kahlmann, V.; Manansala, M.; Moor, C.C.; Shahrara, S.; Wijsenbeek, M.S.; Sweiss, N.J. COVID-19 infection in patients with sarcoidosis: Susceptibility and clinical outcomes. Curr. Opin. Pulm. Med. 2021, 27, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Izadi, V.; Azadbakht, L. Specific dietary patterns and concentrations of adiponectin. J. Res. Med. Sci. 2015, 20, 178–184. [Google Scholar]
- Janiszewska, J.; Ostrowska, J.; Szostak-Wegierek, D. The influence of nutrition on adiponectin—A narrative review. Nutrients 2021, 13, 1394. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, N.; Pike, M.M.; Alsouqi, A.; Headley, S.A.E.; Tuttle, K.; Evans, E.E.; Milch, C.M.; Moody, K.A.; Germain, M.; Lipworth, L.; et al. Effects of diet and exercise on adipocytokine levels in patients with moderate to severe chronic kidney disease. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Bae, E.H.; Ma, S.K.; Chae, D.W.; Choi, K.H.; Kim, Y.S.; Hwang, Y.H.; Ahn, C.; Kim, S.W. Association of serum adiponectin level with albuminuria in chronic kidney disease patients. Clin. Exp. Nephrol. 2016, 20, 443–449. [Google Scholar] [CrossRef]
- Song, S.H.; Oh, T.R.; Choi, H.S.; Kim, C.S.; Ma, S.K.; Oh, K.H.; Ahn, C.; Kim, S.W.; Bae, E.H. High serum adiponectin as a biomarker of renal dysfunction: Results from the KNOW-CKD study. Sci Rep. 2020, 10, 5598. [Google Scholar] [CrossRef]
- Yoshimoto, A.; Mori, K.; Sugawara, A.; Mukoyama, M.; Yahata, K.; Suganami, T.; Takaya, K.; Hosoda, H.; Kojima, M.; Kangawa, K.; et al. Plasma ghrelin and desacyl ghrelin concentrations in renal failure. J. Am. Soc. Nephrol. 2002, 13, 2748–2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Khashab, S.O.; Behiry, M.E. Adiponectin and ghrelin: Nutritional regulatory role in chronic kidney disease patients. Egypt. J. Intern. Med. 2019, 31, 99–105. [Google Scholar] [CrossRef]
- Boniecka, I.; Jeznach -Steinhagen, A.; Szostak-Węgierek, D.; Rymarz, A.; Niemczyk, S. Ghrelin and its role in chronic kidney disease. Przegląd Lekarski. 2019, 76, 118–121. [Google Scholar]
- Lv, Y.; Liang, T.; Wang, G.; Li, Z. Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Biosci. Rep. 2018, 38, BSR20181061. [Google Scholar] [CrossRef]
- Suzuki, H.; Asakawa, A.; Amitani, H.; Nakamura, N.; Inui, A. Ghrelin and cachexia in chronic kidney disease. Pediatr. Nephrol. 2013, 8, 521–526. [Google Scholar] [CrossRef]
- Małgorzewicz, S.; Ciechanowski, K.; Kozłowska, L.; Krzanowska, K.; Krzanowski, M.; Kaczkan, M.; Borek, P.; Jankowska, M.; Rutkowski, B.; Dębska-ślizień, A. Zasady żywienia w przewlekłej chorobie nerek—Stanowisko Grupy Roboczej Polskiego Towarzystwa Nefrologicznego. Forum Nefrol. 2019, 12, 240–278. [Google Scholar]
- Wright, M.; Southcott, E.; MacLaughlin, H.; Wineberg, S. Clinical practice guideline on undernutrition in chronic kidney disease. BMC Nephrol. 2019, 20, 370. [Google Scholar] [CrossRef] [PubMed]
- Anupama, S.H.; Abraham, G.; Alex, M.; Vijayan, M.; Subramanian, K.K.; Fernando, E.; Nagarajan, V.; Nageshwara Rao, P.K. A multicenter study of malnutrition status in chronic kidney disease stages I-V-D from different socioeconomic groups. Saudi J. Kidney Dis. Transpl. 2020, 31, 614–623. [Google Scholar]
- Apetrii, M.; Timofte, D.; Voroneanu, L.; Covic, A. nutrition in chronic kidney disease-The role of proteins and specific diets. Nutrients 2021, 13, 956. [Google Scholar] [CrossRef]
- Gebretsadik, G.G.; Mengistu, Z.D.; Molla, B.W.; Desta, H.T. Patients with chronic kidney disease are not well adhered to dietary recommendations: A cross-sectional study. BMC Nutr. 2020, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Iorember, F.M. Malnutrition in chronic kidney disease. Front. Pediatr. 2018, 6, 161. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Fouque, D. Nutritional management of chronic kidney disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Akchurin, O.M. Malnutrition in chronic kidney disease. Pediatr. Clin. N. Am. 2019, 66, 247–267. [Google Scholar] [CrossRef]
- Ko, G.J.; Kalantar-Zadeh, K.; Goldstein-Fuchs, J.; Rhee, C.M. Dietary approaches in the management of diabetic patients with kidney disease. Nutrients 2017, 9, 824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- KDOQI. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am. J. Kidney 2007, 49, S12–S154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, C.A.M.; Nguyen, H.A. Nutrition education in the care of patients with chronic kidney disease and end-stage renal disease. Semin. Dial. 2018, 31, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Goldstein-Fuchs, J.; Kalantar-Zadeh, K. Nutrition intervention for advanced stages of diabetic kidney disease. Diabetes Spectr. 2015, 28, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Rysz, J.; Franczyk, B.; Ciałkowska-Rysz, A.; Gluba-Brzózka, A. The effect of diet on the survival of patients with chronic kidney disease. Nutrients 2017, 9, 495. [Google Scholar] [CrossRef] [Green Version]
- Therrien, M.; Byham-Gray, L.; Beto, J. A review of dietary intake studies in maintenance dialysis patients. J. Ren. Nutr. 2015, 25, 329–338. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI clinical practice guideline for nutrition in CKD: 2020 update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Cuppari, L. The 2020 updated KDOQI clinical practice guidelines for nutrition in chronic kidney disease. Blood Purif. 2021, 50, 667–671. [Google Scholar] [CrossRef]
- Włodarek, D.; Głąbska, D.; Rojek-Trębicka, J. Assessment of diet in chronic kidney disease female predialysis patients. Ann. Agric. Environ. Med. 2014, 21, 829–834. [Google Scholar] [CrossRef]
- Levey, A.; Bosch, J.; Lewis, J. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of diet in renal disease study group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Król, E.; Rutkowski, B. Przewlekła choroba nerek—Klasyfikacja, epidemiologia i diagnostyka. Forum. Nefrol. 2008, 1, 1–6. [Google Scholar]
- World Health Organization (WHO). Report of a WHO Consultation on Obesity. Obesity: Preventing and Managing the Global Epidemic; World Health Organization: Geneva, Switzerland, 1997; Available online: https://apps.who.int/iris/handle/10665/63854?locale-attribute=es& (accessed on 14 September 2021).
- WHO. Waist Circumference and Waist–Hip Ratio: REPORT of a WHO Expert Consultation, Geneva, 8–11 December 2008; WHO: Geneva, Switzerland, 2011; Available online: https://www.who.int/publications/i/item/9789241501491 (accessed on 14 September 2021).
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the Metabolic Syndrome A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef]
- Ashwell, M.; Gibson, S. Waist-to-height ratio as an indicator of ‘early health risk’: Simpler and more predictive than using a ‘matrix’ based on BMI and waist circumference. BMJ Open 2016, 6, e010159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeznach-Steinhagen, A.; Czerwonogrodzka-Senczyna, A. Wybrane metody oceny stanu odżywienia i sposobu żywienia pacjenta z cukrzycą. In Żywienie osób z Cukrzyca i Chorobami Towarzyszącymi, 1st ed.; Jeznach-Steinhagen, A., Ed.; PZWL Wydawnictwo Lekarskie: Warszawa, Polska, 2020; pp. 11–29. ISBN 978-83-200-6037-9. [Google Scholar]
- Canpolat, N.; Sever, L.; Agbas, A.; Tasdemir, M.; Oruc, C.; Ekmekci, O.B.; Caliskan, S. Leptin and ghrelin in chronic kidney disease: Their associations with protein-energy wasting. Pediatric. Nephrol. 2018, 33, 2113–2122. [Google Scholar] [CrossRef] [PubMed]
- Sahathevan, S.; Khor, B.H.; Ng, H.M.; Gafor, A.H.A.; Mat Daud, Z.A.; Mafra, D.; Karupaiah, T. Understanding development of malnutrition in hemodialysis patients: A narrative review. Nutrients 2020, 12, 3147. [Google Scholar] [CrossRef]
- Sekar, M.; Elumala, R.; Kempanahalli, B.; Manech, K.; Lakkakula Bhaskar, V.K.S.; Periasamy, S. Effect of chronic kidney disease on circulation grelin concentrations. Ann. Rom. Soc. Cell Biol. 2015, 19, 41–46. [Google Scholar]
- World Health Organization. Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015. Available online: https://www.ncbi.nlm.nih.gov/books/NBK285537/ (accessed on 14 September 2021).
- Araszkiewicz, A.; Bandurska-Stankiewicz, E.; Borys, S.; Budzyński, A.; Cyganek, K.; Cypryk, K.; Czech, A.; Czupryniak, L.; Drzewoski, J.; Dzida, G.; et al. 2021 Guidelines on the management of patients with diabetes. A position of Diabetes Poland. Clin. Diabetol. 2021, 10, 1–113. [Google Scholar] [CrossRef]
- Livesey, G.; Taylor, R.; Livesey, H.F.; Buyken, A.E.; Jenkins, D.J.A.; Augustin, L.S.A.; Sievenpiper, J.L.; Barclay, A.W.; Liu, S.; Wolever, T.M.S.; et al. Dietary glycemic index and load and the risk of type 2 diabetes: A systematic review and updated meta-analyses of prospective cohort studies. Nutrients 2019, 11, 1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haring, B.; Selvin, E.; Liang, M.; Coresh, J.; Grams, M.E.; Petruski-Ivleva, N.; Steffen, L.M.; Rebholz, C.M. Dietary protein sources and risk for incident chronic kidney disease: Results from the Atherosclerosis Risk in Communities (ARIC) study. J. Ren. Nutr. 2017, 27, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Wojtasik, A.; Wożniak, A.; Stoś, K. Składniki mineralne. In Normy Żywienia Dla Populacji Polski I Ich Zastosowanie; Jarosz, M., Rychlik, E., Stoś, K., Charzewska, J., Eds.; Narodowy Instytut Zdrowia Publicznego—Państwowy Zakład Higieny: Warszawa, Polska, 2020; p. 273. ISBN 978-83-65870-28-5. [Google Scholar]
Anthropometric Parameter | Mean ± SD | Median | Min. | Max. |
---|---|---|---|---|
Height (cm) | 164.69 ± 8.29 | 165.00 | 143.00 | 185.00 |
Body mass (kg) | 83.51 ± 19.53 | 78.00 | 42.50 | 136.00 |
BMI (kg/m2) | 30.68 ± 6.40 | 29.36 | 16.81 | 50.56 |
Waist circumference (cm) | 104.20 ± 14.39 | 100.00 | 68.00 | 150.00 |
Hip circumference (cm) | 108.74 ± 13.32 | 106.00 | 100.0 | 13.32 |
WHR | 0.96 ± 0.07 | 0.95 | 0.81 | 1.11 |
WHtR | 0.63 ± 0.08 | 0.61 | 0.43 | 0.99 |
Lean tissue mass (kg) | 33.80 ± 8.97 | 33.3 | 21.30 | 57.90 |
Lean tissue mass (%) | 42.54 ± 13.03 | 42.40 | 22.30 | 99.80 |
Fat mass (kg) | 35.18 ± 14.20 | 32.40 | 4.20 | 80.00 |
Fat mass (%) | 41.03 ± 9.08 | 41.50 | 7.20 | 58.80 |
Blood Parameters | Mean ± SD | Median | Min | Max |
---|---|---|---|---|
eGFR MDRD (mL/min/1.73 m2) | 27.99 ± 10.49 | 26.33 | 8.82 | 70.89 |
Creatinine (mg/dL) | 2.44 ± 0.93 | 2.30 | 1.00 | 6.900 |
Urea (mg/dL) | 92.64 ± 32.04 | 85.50 | 34.04 | 185.00 |
Total protein (g/dL) | 7.10 ± 0.52 | 7.20 | 6.00 | 8.40 |
Phosphorus (mg/dL) | 3.44 ± 0.73 | 3.40 | 2.20 | 5.40 |
Albumin (g/dL) | 4.16 ± 0.31 | 4.20 | 3.10 | 4.70 |
CRP | 0.65 ± 0.86 | 0.300 | 0.100 | 4.900 |
Lymphocytes (109/L) | 1.72 ± 0.65 | 1.76 | 0.70 | 4.00 |
Total adiponectin (ng/mL) | 2709.74 ± 2433.66 | 1818.34 | 156.27 | 12,832.35 |
Total ghrelin (pg/mL) | 171.45 ± 44.44 | 164.01 | 71.77 | 256.95 |
Nutritional Parameters | Mean ± SD | Median | Min | Max |
---|---|---|---|---|
Energy (kcal) | 1979.67 ± 791.84 | 1935.20 | 820.00 | 5032.00 |
Total protein (g) | 70.55 ± 30.07 | 68.00 | 28.00 | 110.00 |
Vegetable protein (g) | 25.31 ± 10.06 | 22.00 | 8.30 | 62.20 |
Animal protein (g) | 45.24 ± 23.27 | 43.10 | 6.20 | 96.50 |
Fats (g) | 63.48 ± 28,43 | 55.70 | 16.50 | 130.00 |
Carbohydrates (g) | 327.09± 91.49 | 312.00 | 67.90 | 534.70 |
Glucose (g) | 10.45 ± 4.60 | 10.70 | 1.10 | 19.30 |
Fructose (g) | 15.11 ± 7.93 | 12.90 | 1.10 | 30.00 |
Sucrose (g) | 53.62 ± 40.72 | 43.90 | 3.40 | 154.00 |
Fiber | 27.79 ± 8.42 | 29.10 | 13.40 | 50.50 |
Potassium | 3502.57 ± 1057.71 | 3566.50 | 1314.80 | 5500.00 |
Phosphorus | 1276.84 ± 438.17 | 1323.00 | 385.60 | 2145.50 |
Anthropometric Parameters | Adiponectin | Ghrelin | ||||
---|---|---|---|---|---|---|
eGFR MDRD (mL/min/1.73 m2) | eGFR MDRD (mL/min/1.73 m2) | |||||
<30 (N = 37) | >30 (N = 18) | Total (N = 55) | <30 (N = 37) | >30 (N = 18) | Total (N = 55) | |
Body mass | 0.212 | −0.373 | −0.055 | −0.207 | −0.16 | −0.113 |
BMI | 0.225 | −0.233 | 0.007 | −0.074 | −0.031 | −0.040 |
Waist circumference | 0.065 | −0.360 | −0.121 | −0.296 | −0.054 | −0.191 |
Hip circumference | 0.244 | −0.223 | 0.014 | −0.119 | −0.089 | −0.086 |
WHR | −0.239 | −0.299 | −0.260 | −0.382 * | 0.039 | −0.238 |
WHtR | 0.056 | −0.210 | −0.065 | −0.181 | −0.072 | −0.128 |
Lean tissue mass (kg) | −0.191 | −0.376 | −0.259 | −0.342 | 0.111 | −0.206 |
Lean tissue mass (%) | −0.170 | 0.154 | −0.077 | −0.047 | 0.124 | −0.016 |
Fat mass (kg) | 0.276 | −0.319 | 0.070 | −0.100 | −0.082 | −0.074 |
Fat mass (%) | 0.161 | −0.216 | 0.040 | −0.015 | −0.156 | −0.040 |
Energy and Nutrients Intake | Adiponectin | Ghrelin | ||||
---|---|---|---|---|---|---|
eGFR MDRD (ml/min/1.73 m2) | eGFR MDRD (ml/min/1.73 m2) | |||||
<30 (N = 37) | >30 (N = 18) | Total (N = 55) | <30 (N = 37) | >30 (N = 18) | Total (N = 55) | |
Energy | 0.141 | −0.191 | −0.105 | 0.137 | 0.078 | 0.088 |
Protein | 0.202 | −0.348 | −0.020 | 0.073 | 0.467 | 0.204 |
Vegetable protein | 0.001 | −0.271 | −0.067 | 0.115 | 0.610 ** | 0.225 |
Animal protein | 0.238 | −0.394 | −0.013 | 0.021 | 0.322 | 0.122 |
Carbohydrates | 0.109 | −0.283 | −0.043 | 0.184 | 0.565 * | 0.304 * |
Glucose | −0.017 | −0.203 | −0.084 | 0.052 | 0.521 * | 0.196 |
Fructose | −0.046 | −0.280 | −0.123 | 0.021 | 0.329 | 0.112 |
Sucrose | 0.245 | −0.202 | 0.028 | 0.256 | 0.421 | 0.321 * |
Fats | 0.169 | −0.365 | −0.052 | 0.114 | 0.329 | 0.188 |
Fiber | −0.131 | −0.434 | −0.226 | −0.015 | 0.498 * | 0.138 |
Potassium | 0.110 | −0.285 | −0.039 | −0.015 | 0.536 * | 0.164 |
Phosphorus | 0.092 | −0.398 | −0.085 | −0.021 | 0.355 | 0.090 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boniecka, I.; Jeznach-Steinhagen, A.; Michalska, W.; Rymarz, A.; Szostak-Węgierek, D.; Niemczyk, S. Nutritional Status, Selected Nutrients Intake and Their Relationship with the Concentration of Ghrelin and Adiponectin in Patients with Diabetic Nephropathy. Nutrients 2021, 13, 4416. https://doi.org/10.3390/nu13124416
Boniecka I, Jeznach-Steinhagen A, Michalska W, Rymarz A, Szostak-Węgierek D, Niemczyk S. Nutritional Status, Selected Nutrients Intake and Their Relationship with the Concentration of Ghrelin and Adiponectin in Patients with Diabetic Nephropathy. Nutrients. 2021; 13(12):4416. https://doi.org/10.3390/nu13124416
Chicago/Turabian StyleBoniecka, Iwona, Anna Jeznach-Steinhagen, Weronika Michalska, Aleksandra Rymarz, Dorota Szostak-Węgierek, and Stanisław Niemczyk. 2021. "Nutritional Status, Selected Nutrients Intake and Their Relationship with the Concentration of Ghrelin and Adiponectin in Patients with Diabetic Nephropathy" Nutrients 13, no. 12: 4416. https://doi.org/10.3390/nu13124416
APA StyleBoniecka, I., Jeznach-Steinhagen, A., Michalska, W., Rymarz, A., Szostak-Węgierek, D., & Niemczyk, S. (2021). Nutritional Status, Selected Nutrients Intake and Their Relationship with the Concentration of Ghrelin and Adiponectin in Patients with Diabetic Nephropathy. Nutrients, 13(12), 4416. https://doi.org/10.3390/nu13124416