Advanced Quantitative Lipoprotein Characteristics Do Not Relate to Healthy Dietary Patterns in Adults from a Mediterranean Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical Data
2.3. Dietary Pattern Assessment
2.4. Advanced Lipoprotein Profile
2.5. Statistical Analyses
3. Results
3.1. Dietary Intake of the Study Subjects
3.2. Advanced Lipoprotein Profile and Mediterranean Diet
3.3. Advanced Lipoprotein Profile and Healthy Eating Pattern
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frahnow, T.; Osterhoff, M.A.; Hornemann, S.; Kruse, M.; Surma, M.A.; Klose, C.; Simons, K.; Pfeiffer, A.F.H. Heritability and responses to high fat diet of plasma lipidomics in a twin study. Sci. Rep. 2017, 7, 3750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clouet-Foraison, N.; Gaie-Levrel, F.; Gillery, P.; Delatour, V. Advanced lipoprotein testing for cardiovascular diseases risk assessment: A review of the novel approaches in lipoprotein profiling. Clin. Chem. Lab. Med. 2017, 55, 1453–1464. [Google Scholar] [CrossRef]
- O’Donnell, V.B.; Ekroos, K.; Liebisch, G.; Wakelam, M. Lipidomics: Current state of the art in a fast moving field. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1466. [Google Scholar] [CrossRef] [PubMed]
- Mallol, R.; Amigó, N.; Rodríguez, M.A.; Heras, M.; Vinaixa, M.; Plana, N.; Rock, E.; Ribalta, J.; Yanes, O.; Masana, L.; et al. Liposcale: A novel advanced lipoprotein test based on 2D diffusion-ordered 1H NMR spectroscopy. J. Lipid Res. 2015, 56, 737–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeljkovic, A.; Vekic, J.; Spasojevic-Kalimanovska, V.; Jelic-Ivanovic, Z.; Bogavac-Stanojevic, N.; Gulan, B.; Spasic, S. LDL and HDL subclasses in acute ischemic stroke: Prediction of risk and short-term mortality. Atherosclerosis 2010, 210, 548–554. [Google Scholar] [CrossRef]
- Jones, P.J.H.; MacKay, D.S.; Senanayake, V.K.; Pu, S.; Jenkins, D.J.A.; Connelly, P.W.; Lamarche, B.; Couture, P.; Kris-Etherton, P.M.; West, S.G.; et al. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans. Atherosclerosis 2015, 238, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Damasceno, N.R.T.; Sala-Vila, A.; Cofán, M.; Pérez-Heras, A.M.; Fitó, M.; Ruiz-Gutiérrez, V.; Martínez-González, M.-Á.; Corella, D.; Arós, F.; Estruch, R.; et al. Mediterranean diet supplemented with nuts reduces waist circumference and shifts lipoprotein subfractions to a less atherogenic pattern in subjects at high cardiovascular risk. Atherosclerosis 2013, 230, 347–353. [Google Scholar] [CrossRef]
- Hernáez, Á.; Castañer, O.; Goday, A.; Ros, E.; Pintó, X.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Arós, F.; Serra-Majem, L.; et al. The Mediterranean Diet decreases LDL atherogenicity in high cardiovascular risk individuals: A randomized controlled trial. Mol. Nutr. Food Res. 2017, 61, 1601015. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, E.; Ruiz-Nava, J.; Santamaria-Fernandez, S.; Fernandez-Garcia, J.C.; Vargas-Candela, A.; Yahyaoui, R.; Tinahones, F.J.; Bernal-Lopez, M.R.; Gomez-Huelgas, R. Implications of the Mediterranean diet and physical exercise on the lipid profile of metabolically healthy obese women as measured by nuclear magnetic resonance spectroscopy (1H NMR). Chem. Phys. Lipids 2018, 213, 68–75. [Google Scholar] [CrossRef]
- Goulet, J.; Lamarche, B.; Charest, A.; Nadeau, G.; Lapointe, A.; Desroches, S.; Lemieux, S. Effect of a nutritional intervention promoting the Mediterranean food pattern on electrophoretic characteristics of low-density lipoprotein particles in healthy women from the Québec City metropolitan area. Br. J. Nutr. 2004, 92, 285–293. [Google Scholar] [CrossRef]
- Khan, A.A.; Mundra, P.A.; Straznicky, N.E.; Nestel, P.J.; Wong, G.; Tan, R.; Huynh, K.; Ng, T.W.; Mellett, N.A.; Weir, J.M.; et al. Weight Loss and Exercise Alter the High-Density Lipoprotein Lipidome and Improve High-Density Lipoprotein Functionality in Metabolic Syndrome. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Valkama, A.J.; Meinilä, J.M.; Koivusalo, S.B.; Lindström, J.; Rönö, K.; Stach-Lempinen, B.; Eriksson, J.G. Diet quality as assessed by the Healthy Food Intake Index and relationship with serum lipoprotein particles and serum fatty acids in pregnant women at increased risk for gestational diabetes. Br. J. Nutr. 2018, 120, 914–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amigó, N.; Akinkuolie, A.O.; Chiuve, S.E.; Correig, X.; Cook, N.R.; Mora, S. Habitual Fish Consumption, n-3 Fatty Acids, and Nuclear Magnetic Resonance Lipoprotein Subfractions in Women. J. Am. Heart Assoc. 2020, 9, e014963. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Moorthy, M.V.; Demler, O.V.; Hu, F.B.; Ridker, P.M.; Chasman, D.I.; Mora, S. Assessment of Risk Factors and Biomarkers Associated with Risk of Cardiovascular Disease Among Women Consuming a Mediterranean Diet. JAMA Netw. Open 2018, 1, e185708. [Google Scholar] [CrossRef] [Green Version]
- Millar, S.R.; Harrington, J.M.; Perry, I.J.; Phillips, C.M. Protective lifestyle behaviours and lipoprotein particle subclass profiles in a middle-to older-aged population. Atherosclerosis 2020, 314, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, M.B.; Falguera, M.; Marsal, J.R.; Rubinat, E.; Alcubierre, N.; Castelblanco, E.; Granado-Casas, M.; Miró, N.; Molló, À.; Mata-Cases, M.; et al. Prevalence, clinical features and risk assessment of pre-diabetes in Spain: The prospective Mollerussa cohort study. BMJ Open 2017, 7, e015158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcubierre, N.; Rubinat, E.; Traveset, A.; Martinez-Alonso, M.; Hernandez, M.; Jurjo, C.; Mauricio, D. A prospective cross-sectional study on quality of life and treatment satisfaction in type 2 diabetic patients with retinopathy without other major late diabetic complications. Health Qual. Life Outcomes 2014, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Granado-Casas, M.; Alcubierre, N.; Martín, M.; Real, J.; Ramírez-Morros, A.M.; Cuadrado, M.; Alonso, N.; Falguera, M.; Hernández, M.; Aguilera, E.; et al. Improved adherence to Mediterranean Diet in adults with type 1 diabetes mellitus. Eur. J. Nutr. 2019, 58, 2271–2279. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO STEPS Surveillance Manual; WHO Press: Geneva, Switzerland, 2017; pp. 180–194. [Google Scholar]
- Seidell, J.C.; Flegal, K.M. Assessing obesity: Classification and epidemiology. Br. Med. Bull. 1997, 53, 238–252. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, M.S.; Morabia, A.; Sloutskis, D. Definition and prevalence of sedentarism in an urban population. Am. J. Public Health 1999, 89, 862–867. [Google Scholar] [CrossRef] [Green Version]
- Cabrera de León, A.; del Rodríguez-Pérez, M.C.; Rodríguez-Benjumeda, L.M.; Anía-Lafuente, B.; Brito-Díaz, B.; Muros de Fuentes, M.; Almeida-González, D.; Batista-Medina, M.; Aguirre-Jaime, A. Sedentary lifestyle: Physical activity duration versus percentage of energy expenditure. Rev. Española Cardiol. 2007, 60, 244–250. [Google Scholar]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Vioque, J.; Navarrete-Muñoz, E.-M.; Gimenez-Monzó, D.; García-de-la-Hera, M.; Granado, F.; Young, I.S.; Ramón, R.; Ballester, F.; Murcia, M.; Rebagliato, M.; et al. Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area. Nutr. J. 2013, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCullough, M.L.; Feskanich, D.; Stampfer, M.J.; Giovannucci, E.L.; Rimm, E.B.; Hu, F.B.; Spiegelman, D.; Hunter, D.J.; Colditz, G.A.; Willett, W.C. Diet quality and major chronic disease risk in men and women: Moving toward improved dietary guidance. Am. J. Clin. Nutr. 2002, 76, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- US Department of Agriculture Agricultural Research Service. USDA National Nutrient Database for Standard Reference. Available online: https://www.ars.usda.gov/ (accessed on 2 October 2021).
- Palma, I.; Farran, P.; Cervera, P. Tablas de Composición de Alimentos por Medidas Caseras de Consumo Habitual en ESPAÑA; CESNID; Mc Graw Hill Interamericana: Barcelona, Spain, 2008. [Google Scholar]
- McCance, R.A.; Robert, A.; Widdowson, E.M.; Elsie, M. McCance and Widdowson’s The Composition of Foods, 6th ed.; McCance, R.A., Ed.; Royal Society of Chemistry: Cambridge, UK, 2002; ISBN 0854044280. [Google Scholar]
- Pintó, X.; Masana, L.; Civeira, F.; Real, J.; Ibarretxe, D.; Candas, B.; Puzo, J.; Díaz, J.L.; Amigó, N.; Esteban, M.; et al. Consensus document of an expert group from the Spanish Society of Arteriosclerosis (SEA) on the clinical use of nuclear magnetic resonance to assess lipoprotein metabolism (Liposcale®). Clínica Investig. Arterioscler. 2020, 32, 219–229. [Google Scholar] [CrossRef]
- Subirana, I.; Sanz, H.; Vila, J. Building Bivariate tables: The compare groups package for R. J. Stat. Softw. 2014, 57, 1–16. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.r-project.org/ (accessed on 10 October 2021).
- Bergeron, N.; Chiu, S.; Williams, P.T.; King, S.M.; Krauss, R.M. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: A randomized controlled trial. Am. J. Clin. Nutr. 2019, 110, 24–33. [Google Scholar] [CrossRef]
- Gomez-Delgado, F.; Katsiki, N.; Lopez-Miranda, J.; Perez-Martinez, P. Dietary habits, lipoprotein metabolism and cardiovascular disease: From individual foods to dietary patterns. Crit. Rev. Food Sci. Nutr. 2021, 61, 1651–1669. [Google Scholar] [CrossRef]
- Hernáez, Á.; Castañer, O.; Elosua, R.; Pintó, X.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Arós, F.; Serra-Majem, L.; Fiol, M.; et al. Mediterranean Diet Improves High-Density Lipoprotein Function in High-Cardiovascular-Risk Individuals: A Randomized Controlled Trial. Circulation 2017, 135, 633–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millar, S.R.; Navarro, P.; Harrington, J.M.; Shivappa, N.; Hébert, J.R.; Perry, I.J.; Phillips, C.M. Comparing dietary score associations with lipoprotein particle subclass profiles: A cross-sectional analysis of a middle-to older-aged population. Clin. Nutr. 2021, 40, 4720–4729. [Google Scholar] [CrossRef] [PubMed]
- Pichler, G.; Amigo, N.; Tellez-Plaza, M.; Pardo-Cea, M.A.; Dominguez-Lucas, A.; Marrachelli, V.G.; Monleon, D.; Martin-Escudero, J.C.; Ascaso, J.F.; Chaves, F.J.; et al. LDL particle size and composition and incident cardiovascular disease in a South-European population: The Hortega-Liposcale Follow-up Study. Int. J. Cardiol. 2018, 264, 172–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Harchaoui, K.; Arsenault, B.J.; Franssen, R.; Després, J.-P.; Hovingh, G.K.; Stroes, E.S.G.; Otvos, J.D.; Wareham, N.J.; Kastelein, J.J.P.; Khaw, K.-T.; et al. High-density lipoprotein particle size and concentration and coronary risk. Ann. Intern. Med. 2009, 150, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, S.A.E.; Averill, M.M.; Delaney, J.A.C.; Lemaitre, R.N.; Howard, B.V.; Fretts, A.M. Associations of diet quality and blood serum lipoprotein levels in a population at high risk for diabetes: The Strong Heart Family Study. Eur. J. Clin. Nutr. 2020, 74, 1084–1090. [Google Scholar] [CrossRef]
- Kebbe, M.; Gao, M.; Perez-Cornago, A.; Jebb, S.A.; Piernas, C. Adherence to international dietary recommendations in association with all-cause mortality and fatal and non-fatal cardiovascular disease risk: A prospective analysis of UK Biobank participants. BMC Med. 2021, 19, 134. [Google Scholar] [CrossRef] [PubMed]
- Bédard, A.; Corneau, L.; Lamarche, B.; Dodin, S.; Lemieux, S. Sex Differences in the Impact of the Mediterranean Diet on LDL Particle Size Distribution and Oxidation. Nutrients 2015, 7, 3705–3723. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, M.I.H.; de Almeida-Pititto, B.; Bensenor, I.M.; Toth, P.P.; Jones, S.R.; Blaha, M.J.; Lotufo, P.A.; Kulkarni, K.R.; Ferreira, S.R.G. Changes in lipoprotein subfractions following menopause in the Longitudinal Study of Adult Health (ELSA-Brasil). Maturitas 2019, 130, 32–37. [Google Scholar] [CrossRef]
- Puig-Jové, C.; Castelblanco, E.; Falguera, M.; Hernández, M.; Soldevila, B.; Julián, M.T.; Teis, A.; Julve, J.; Barranco-Altirriba, M.; Franch-Nadal, J.; et al. Perfil lipoproteico avanzado en individuos con metabolismo glucémico normal y alterado. Rev. Española Cardiol. 2021, in press. [Google Scholar] [CrossRef]
Characteristics | aMED | aHEI | ||||||
---|---|---|---|---|---|---|---|---|
T1 (0–4) | T2 (4) | T3 (5–9) | p | T1 (20–38) | T2 (38–44) | T3 (44–68) | p | |
(N = 540) | (N = 234) | (N = 368) | (N = 426) | (N = 369) | (N = 347) | |||
Age (years) | 48.3 (12.7) | 51.6 (13.0) | 52.7 (12.1) | <0.001 | 47.0 (12.2) | 49.7 (12.4) | 55.3 (12.2) | <0.001 |
Sex (women) | 291 (53.9) | 122 (52.1) | 218 (59.2) | 0.158 | 206 (48.4) | 203 (55.0) | 222 (64.0) | <0.001 |
Educational level | 0.238 | 0.323 | ||||||
Undergraduate | 453 (84.8) | 187 (82.0) | 294 (80.6) | 204 (81.9) | 363 (81.5) | 295 (85.5) | ||
Graduate or higher | 81 (15.2) | 41 (18.0) | 71 (19.5) | 76 (18.1) | 67 (18.5) | 50 (14.5) | ||
Tobacco exposure | 294 (54.5) | 114 (48.7) | 188 (51.1) | 0.001 | 263 (61.7) | 184 (49.9) | 149 (42.9) | <0.001 |
Regular physical activity | 326 (61.0) | 144 (63.2) | 259 (70.8) | 0.010 | 254 (61.1) | 249 (67.8) | 226 (65.5) | 0.129 |
BMI (kg/m2) | 27.0 (5.2) | 28.0 (5.5) | 27.1 (5.0) | 0.047 | 26.5 (4.8) | 27.6 (5.6) | 27.9 (5.1) | <0.001 |
Waist (cm) | 94.9 (13.3) | 97.3 (14.3) | 94.0 (13.2) | 0.013 | 93.8 (13.3) | 96.0 (13.9) | 95.7 (13.2) | 0.054 |
SBP (mmHg) | 126.0 (17.7) | 128.0 (20.0) | 128.0 (18.1) | 0.044 | 124.0 (17.2) | 127.0 (19.0) | 130.0 (18.6) | <0.001 |
DBP (mmHg) | 76.5 (9.7) | 76.1 (10.4) | 75.8 (10.1) | <0.001 | 76.2 (9.2) | 77.2 (10.2) | 75.3 (10.6) | 0.043 |
Hypertension | 112 (20.7) | 72 (30.8) | 111 (30.2) | 0.001 | 71 (16.7) | 95 (25.7) | 129 (37.2) | <0.001 |
Dyslipidemia | 133 (24.6) | 89 (38.0) | 126 (34.2) | <0.001 | 96 (22.5) | 106 (28.7) | 146 (42.1) | <0.001 |
HbA1c (mmol/mol) | 43.8 (14.3) | 49.3 (16.1) | 48.6 (15.0) | <0.001 | 42.5 (13.1) | 46.2 (14.3) | 51.6 (16.7) | <0.001 |
HbA1c (%) | 6.2 (1.3) | 6.7 (1.5) | 6.6 (1.4) | <0.001 | 6.0 (1.2) | 6.4 (1.3) | 6.9 (1.5) | <0.001 |
Total cholesterol (mg/dL) | 192.0 (36.1) | 191.0 (35.8) | 194.0 (36.8) | 0.657 | 193.0 (35.6) | 190.0 (36.2) | 194.0 (37.0) | 0.336 |
HDL-cholesterol (mg/dL) | 58.0 (16.4) | 57.6 (15.2) | 59.6 (15.2) | 0.214 | 58.8 (16.1) | 58.5 (16.4) | 57.9 (14.9) | 0.724 |
LDL-cholesterol (mg/dL) | 114.0 (30.0) | 112.0 (31.1) | 116.0 (31.8) | 0.419 | 114.0 (30.0) | 113.0 (31.2) | 116.0 (31.4) | 0.506 |
Triglycerides (mg/dL) | 108.0 (97.0) | 111.0 (73.8) | 101.0 (58.8) | 0.295 | 107.0 (104) | 102.0 (68.7) | 110.0 (61.9) | 0.477 |
NMR Variable | aMED | aHEI | ||||||
---|---|---|---|---|---|---|---|---|
T1 (0–4) | T2 (4) | T3 (5–9) | p | T1 (20–38) | T2 (38–44) | T3 (44–68) | p | |
(N = 540) | (N = 234) | (N = 368) | (N = 426) | (N = 369) | (N = 347) | |||
VLDL-P number (nmol/L) | ||||||||
Total | 49.7 (41.4) | 52.2 (41.2) | 45.2 (30.7) | 0.189 | 48.1 (42.3) | 47.4 (36.5) | 51.0 (34.8) | 0.454 |
Large | 1.2 (0.9) | 1.3 (0.8) | 1.1 (0.6) | 0.113 | 1.2 (0.9) | 1.2 (0.8) | 1.2 (0.7) | 0.752 |
Medium | 4.9 (6.0) | 5.0 (5.6) | 4.4 (3.3) | 0.192 | 4.9 (6.7) | 4.7 (4.7) | 4.8 (3.4) | 0.824 |
Small | 43.5 (35.2) | 45.9 (35.7) | 39.7 (27.3) | 0.189 | 42.0 (35.5) | 41.6 (31.8) | 45.0 (31.1) | 0.385 |
VLDL-P composition (mg/dL) | ||||||||
VLDL-C | 12.2 (11.7) | 12.7 (11.4) | 11.1 (9.71) | 0.236 | 11.7 (11.7) | 11.5 (10.7) | 12.7 (10.6) | 0.431 |
VLDL-TG | 71.7 (63.2) | 75.0 (61.6) | 64.7 (42.8) | 0.189 | 69.6 (66.2) | 68.2 (53.6) | 72.7 (48.1) | 0.613 |
VLDL-P size (nm) | 42.1 (0.2) | 42.1 (0.2) | 42.1 (0.2) | 0.424 | 42.1 (0.2) | 42.1 (0.2) | 42.1 (0.2) | 0.011 |
LDL-P number (nmol/L) | ||||||||
Total | 1302.0 (257.0) | 1324.0 (264.0) | 1343.0 (273.0) | 0.086 | 1308.0 (264.0) | 1311.0 (262.0) | 1343.0 (266.0) | 0.196 |
Large | 183.0 (33.5) | 182.0 (36.8) | 187.0 (36.5) | 0.189 | 184.0 (34.8) | 182.0 (34.5) | 186.0 (36.3) | 0.613 |
Medium | 408.0 (130.0) | 416.0 (138.0) | 434.0 (143.0) | 0.037 | 415.0 (135.0) | 412.0 (134.0) | 428.0 (140.0) | 0.385 |
Small | 710.0 (138.0) | 725.0 (133.0) | 722.0 (136.0) | 0.236 | 708.0 (141.0) | 717.0 (134.0) | 728.0 (134.0) | 0.149 |
LDL-P composition (mg/dL) | ||||||||
LDL-C | 127.0 (25.5) | 128.0 (26.6) | 131.0 (27.8) | 0.101 | 128.0 (26.0) | 127.0 (26.6) | 130.0 (27.0) | 0.385 |
LDL-TG | 16.4 (5.0) | 17.0 (5.2) | 17.5 (5.0) | 0.037 | 16.5 (5.2) | 16.6 (4.9) | 17.7 (5.0) | 0.010 |
LDL-P size (nm) | 21.0 (0.3) | 21.0 (0.3) | 21.0 (0.3) | 0.554 | 21.0 (0.3) | 21.0 (0.3) | 21.0 (0.3) | 0.385 |
HDL-P number (μmol/L) | ||||||||
Total | 29.0 (6.0) | 29.5 (6.1) | 29.9 (5.5) | 0.101 | 29.2 (6.0) | 29.2 (6.0) | 29.9 (6.0) | 0.378 |
Large | 0.3 (0.1) | 0.3 (0.1) | 0.3 (0.1) | 0.037 | 0.3 (0.1) | 0.3 (0.1) | 0.3 (0.1) | 0.002 |
Medium | 9.4 (2.3) | 9.4 (2.4) | 9.6 (2.2) | 0.189 | 9.4 (2.3) | 9.5 (2.4) | 9.6 (2.2) | 0.385 |
Small | 19.4 (4.4) | 19.9 (4.4) | 20.0 (4.0) | 0.101 | 19.6 (4.4) | 19.5 (4.2) | 20.0 (4.1) | 0.385 |
HDL-P composition (mg/dL) | ||||||||
HDL-C | 56.1 (13.6) | 56.6 (13.8) | 57.9 (12.5) | 0.113 | 56.5 (13.1) | 56.7 (13.9) | 57.3 (12.9) | 0.564 |
HDL-TG | 13.7 (4.7) | 14.0 (4.3) | 14.0 (4.6) | 0.355 | 13.5 (4.7) | 13.6 (4.5) | 14.5 (4.4) | 0.029 |
HDL-P size (nm) | 8.2 (0.1) | 8.2 (0.1) | 8.2 (0.1) | 0.688 | 8.2 (0.1) | 8.2 (0.1) | 8.2 (0.1) | 0.860 |
IDL-P composition (mg/dL) | ||||||||
IDL-C | 10.3 (4.8) | 11.3 (5.1) | 11.2 (4.7) | 0.037 | 10.3 (4.8) | 10.5 (4.7) | 11.8 (5.0) | 0.001 |
IDL-TG | 12.0 (3.9) | 12.8 (4.2) | 12.5 (3.9) | 0.086 | 11.9 (3.7) | 12.0 (3.9) | 13.2 (4.2) | <0.001 |
Other atherogenic variables | ||||||||
Non-HDL-P (nmol/L) | 1322.0 (265.0) | 1346.0 (269.0) | 1359.0 (278.0) | 0.113 | 1326.0 (272.0) | 1330.0 (267.0) | 1364.0 (272.0) | 0.190 |
Total-P/HDL-P | 48.5 (14.0) | 48.8 (14.8) | 48.2 (14.2) | 0.784 | 48.3 (13.9) | 48.6 (14.5) | 48.6 (14.3) | 0.824 |
LDL-P/HDL-P | 46.7 (13.3) | 46.8 (13.9) | 46.6 (13.6) | 0.904 | 46.6 (13.2) | 46.8 (13.8) | 46.8 (13.6) | 0.860 |
NMR Variable | aMED | aHEI | ||
---|---|---|---|---|
Coefficient | p | Coefficient | p | |
VLDL-P number (nmol/L) | ||||
Total | −1.096 (0.620) | 0.407 | −0.254 (0.158) | 0.172 |
Large | −0.027 (0.013) | 0.407 | −0.007 (0.003) | 0.142 |
Medium | −0.156 (0.091) | 0.407 | −0.035 (0.023) | 0.172 |
Small | −0.913 (0.531) | 0.407 | −0.213 (0.136) | 0.172 |
LDL-P number (nmol/L) | ||||
Total | 9.845 (4.645) | 0.611 | 1.010 (1.189) | 0.142 |
Large | 0.807 (0.618) | 0.611 | 0.166 (0.158) | 0.287 |
Medium | 5.503 (2.389) | 0.611 | 0.558 (0.612) | 0.142 |
Small | 3.535 (2.288) | 0.683 | 0.286 (0.585) | 0.210 |
HDL-P number (μmol/L) | ||||
Total | 0.091 (0.095) | 0.625 | −0.016 (0.024) | 0.407 |
Large | 0.001 (0.001) | 0.625 | 0.000 (0.000) | 0.452 |
Medium | 0.013 (0.034) | 0.974 | 0.000 (0.009) | 0.703 |
Small | 0.077 (0.073) | 0.611 | −0.015 (0.019) | 0.389 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojo-López, M.I.; Castelblanco, E.; Real, J.; Hernández, M.; Falguera, M.; Amigó, N.; Julve, J.; Alonso, N.; Franch-Nadal, J.; Granado-Casas, M.; et al. Advanced Quantitative Lipoprotein Characteristics Do Not Relate to Healthy Dietary Patterns in Adults from a Mediterranean Area. Nutrients 2021, 13, 4369. https://doi.org/10.3390/nu13124369
Rojo-López MI, Castelblanco E, Real J, Hernández M, Falguera M, Amigó N, Julve J, Alonso N, Franch-Nadal J, Granado-Casas M, et al. Advanced Quantitative Lipoprotein Characteristics Do Not Relate to Healthy Dietary Patterns in Adults from a Mediterranean Area. Nutrients. 2021; 13(12):4369. https://doi.org/10.3390/nu13124369
Chicago/Turabian StyleRojo-López, Marina Idalia, Esmeralda Castelblanco, Jordi Real, Marta Hernández, Mireia Falguera, Núria Amigó, Josep Julve, Núria Alonso, Josep Franch-Nadal, Minerva Granado-Casas, and et al. 2021. "Advanced Quantitative Lipoprotein Characteristics Do Not Relate to Healthy Dietary Patterns in Adults from a Mediterranean Area" Nutrients 13, no. 12: 4369. https://doi.org/10.3390/nu13124369
APA StyleRojo-López, M. I., Castelblanco, E., Real, J., Hernández, M., Falguera, M., Amigó, N., Julve, J., Alonso, N., Franch-Nadal, J., Granado-Casas, M., & Mauricio, D. (2021). Advanced Quantitative Lipoprotein Characteristics Do Not Relate to Healthy Dietary Patterns in Adults from a Mediterranean Area. Nutrients, 13(12), 4369. https://doi.org/10.3390/nu13124369