Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture
Abstract
:1. Introduction
2. Physiology of Puberty
3. Materials and Methods
4. Pesticides and Disrupted Puberty Onset or Sexual Maturation
4.1. Early Puberty Onset or Accelerated Puberty/Sexual Maturation
4.1.1. Animal Studies
4.1.2. Human Studies
4.2. Late Puberty Onset or Delay in Puberty Progression/Sexual Maturation
4.2.1. Animal Studies
4.2.2. Human Studies
5. Discussion
Mechanisms of Endocrine-Disrupting Action of Pesticides in Puberty Physiology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/RP/visualize (accessed on 23 July 2021).
- Wyckhuys, K.A.G.; Aebi, A.; Bijleveld van Lexmond, M.F.I.J.; Bojaca, C.R.; Bonmatin, J.-M.; Furlan, L.; Guerrero, J.A.; Mai, T.V.; Pham, H.V.; Sanchez-Bayo, F.; et al. Resolving the Twin Human and Environmental Health Hazards of a Plant-Based Diet. Environ. Int. 2020, 144, 106081. [Google Scholar] [CrossRef]
- Olisah, C.; Okoh, O.O.; Okoh, A.I. Occurrence of Organochlorine Pesticide Residues in Biological and Environmental Matrices in Africa: A Two-Decade Review. Heliyon 2020, 6, e03518. [Google Scholar] [CrossRef]
- Pesticide Evaluations: Regulations and Guidance | EFSA. Available online: https://www.efsa.europa.eu/en/applications/pesticides/regulationsandguidance (accessed on 16 November 2021).
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public. Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [Green Version]
- State of the Science of Endocrine Disrupting Chemicals. Available online: https://www.who.int/publications-detail-redirect/state-of-the-science-of-endocrine-disrupting-chemicals-summary (accessed on 26 July 2021).
- Louis, G.M.B.; Gray, L.E.; Marcus, M.; Ojeda, S.R.; Pescovitz, O.H.; Witchel, S.F.; Sippell, W.; Abbott, D.H.; Soto, A.; Tyl, R.W.; et al. Environmental Factors and Puberty Timing: Expert Panel Research Needs. Pediatrics 2008, 121, S192–S207. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.R. Comparing Postnatal Development of Gonadal Hormones and Associated Social Behaviors in Rats, Mice, and Humans. Endocrinology 2018, 159, 2596–2613. [Google Scholar] [CrossRef]
- Marshall, W.A.; Tanner, J.M. Variations in Pattern of Pubertal Changes in Girls. Arch. Dis. Child. 1969, 44, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Marshall, W.A.; Tanner, J.M. Variations in the Pattern of Pubertal Changes in Boys. Arch. Dis. Child. 1970, 45, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Muir, A. Precocious Puberty. Pediatr. Rev. 2006, 27, 373–381. [Google Scholar] [CrossRef]
- Bodicoat, D.H.; Schoemaker, M.J.; Jones, M.E.; McFadden, E.; Griffin, J.; Ashworth, A.; Swerdlow, A.J. Timing of Pubertal Stages and Breast Cancer Risk: The Breakthrough Generations Study. Breast Cancer Res. BCR 2014, 16, R18. [Google Scholar] [CrossRef] [Green Version]
- Oltmann, S.C.; Garcia, N.; Barber, R.; Huang, R.; Hicks, B.; Fischer, A. Can We Preoperatively Risk Stratify Ovarian Masses for Malignancy? J. Pediatr. Surg. 2010, 45, 130–134. [Google Scholar] [CrossRef]
- Bonilla, C.; Lewis, S.J.; Martin, R.M.; Donovan, J.L.; Hamdy, F.C.; Neal, D.E.; Eeles, R.; Easton, D.; Kote-Jarai, Z.; Al Olama, A.A.; et al. Pubertal Development and Prostate Cancer Risk: Mendelian Randomization Study in a Population-Based Cohort. BMC Med. 2016, 14, 66. [Google Scholar] [CrossRef] [Green Version]
- Galvao, T.F.; Silva, M.T.; Zimmermann, I.R.; Souza, K.M.; Martins, S.S.; Pereira, M.G. Pubertal Timing in Girls and Depression: A Systematic Review. J. Affect. Disord. 2014, 155, 13–19. [Google Scholar] [CrossRef]
- Kaltiala-Heino, R.; Koivisto, A.-M.; Marttunen, M.; Fröjd, S. Pubertal Timing and Substance Use in Middle Adolescence: A 2-Year Follow-up Study. J. Youth Adolesc. 2011, 40, 1288. [Google Scholar] [CrossRef]
- Noll, J.G.; Trickett, P.K.; Long, J.D.; Negriff, S.; Susman, E.J.; Shalev, I.; Li, J.C.; Putnam, F.W. Childhood Sexual Abuse and Early Timing of Puberty. J. Adolesc. Health 2017, 60, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Day, F.R.; Elks, C.E.; Murray, A.; Ong, K.K.; Perry, J.R.B. Puberty Timing Associated with Diabetes, Cardiovascular Disease and Also Diverse Health Outcomes in Men and Women: The UK Biobank Study. Sci. Rep. 2015, 5, 11208. [Google Scholar] [CrossRef] [Green Version]
- Charalampopoulos, D.; McLoughlin, A.; Elks, C.E.; Ong, K.K. Age at Menarche and Risks of All-Cause and Cardiovascular Death: A Systematic Review and Meta-Analysis. Am. J. Epidemiol. 2014, 180, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Palmert, M.R.; Dunkel, L. Delayed Puberty. Available online: https://www.nejm.org/doi/10.1056/NEJMcp1109290 (accessed on 16 October 2020).
- Chan, Y.-M.; Feld, A.; Jonsdottir-Lewis, E. Effects of the Timing of Sex-Steroid Exposure in Adolescence on Adult Health Outcomes. J. Clin. Endocrinol. Metab. 2019, 104, 4578–4586. [Google Scholar] [CrossRef]
- Cutler, G.B., Jr.; Glenn, M.; Bush, M.; Hodgen, G.D.; Graham, C.E.; Loriaux, D.L. Adrenarche: A Survey of Rodents, Domestic Animals, and Primates. Endocrinology 1978, 103, 2112–2118. [Google Scholar] [CrossRef] [Green Version]
- Antoniou-Tsigkos, A.; Macut, D.; Mastorakos, G. Physiopathology, Diagnosis, and Treatment of Secondary Female Hypogonadism. In Hypothalamic-Pituitary Diseases; Casanueva, F.F., Ghigo, E., Eds.; Endocrinology; Springer International Publishing: Cham, Switzerland, 2018; pp. 247–287. ISBN 978-3-319-44444-4. [Google Scholar]
- Alotaibi, M.F. Physiology of Puberty in Boys and Girls and Pathological Disorders Affecting Its Onset. J. Adolesc. 2019, 71, 63–71. [Google Scholar] [CrossRef]
- Ye, X.; Li, F.; Zhang, J.; Ma, H.; Ji, D.; Huang, X.; Curry, T.E.; Liu, W.; Liu, J. Pyrethroid Insecticide Cypermethrin Accelerates Pubertal Onset in Male Mice via Disrupting Hypothalamic–Pituitary–Gonadal Axis. Environ. Sci. Technol. 2017, 51, 10212–10221. [Google Scholar] [CrossRef]
- Martínez-Ibarra, A.; Morimoto, S.; Cerbón, M.; Prado-Flores, G. Effects on the Reproductive Parameters of Two Generations of Rattus Norvegicus Offspring from Dams Exposed to Heptachlor during Gestation and Lactation. Environ. Toxicol. 2016, 32, 856–868. [Google Scholar] [CrossRef]
- Roepke, T.A.; Yang, J.A.; Yasrebi, A.; Mamounis, K.J.; Oruc, E.; Zama, A.M.; Uzumcu, M. Regulation of Arcuate Genes by Developmental Exposures to Endocrine-Disrupting Compounds in Female Rats. Reprod. Toxicol. 2016, 62, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Masutomi, N.; Shibutani, M.; Takagi, H.; Uneyama, C.; Takahashi, N.; Hirose, M. Impact of Dietary Exposure to Methoxychlor, Genistein, or Diisononyl Phthalate during the Perinatal Period on the Development of the Rat Endocrine/Reproductive Systems in Later Life. Toxicology 2003, 192, 149–170. [Google Scholar] [CrossRef]
- Gray, L.E.; Ostby, J.; Ferrell, J.; Rehnberg, G.; Linder, R.; Cooper, R.; Goldman, J.; Slott, V.; Laskey, J. A Dose-Response Analysis of Methoxychlor-Induced Alterations of Reproductive Development and Function in the Rat. Fundam. Appl. Toxicol. 1989, 12, 92–108. [Google Scholar] [CrossRef]
- Martini, M.; Froment, P.; Franceschini, I.; Pillon, D.; Guibert, E.; Cahier, C.; Mhaouty-Kodja, S.; Keller, M. Perinatal Exposure to Methoxychlor Affects Reproductive Function and Sexual Behavior in Mice. Front. Endocrinol. 2020, 11, 639. [Google Scholar] [CrossRef]
- Rasier, G.; Parent, A.-S.; Gérard, A.; Lebrethon, M.-C.; Bourguignon, J.-P. Early Maturation of Gonadotropin-Releasing Hormone Secretion and Sexual Precocity after Exposure of Infant Female Rats to Estradiol or Dichlorodiphenyltrichloroethane. Biol. Reprod. 2007, 77, 734–742. [Google Scholar] [CrossRef] [Green Version]
- Heinrichs, W.L.; Gellert, R.J.; Bakke, J.L.; Lawrence, N.L. DDT Administered to Neonatal Rats Induces Persistent Estrus Syndrome. Science 1971, 173, 902. [Google Scholar] [CrossRef]
- Gellert, R.J.; Heinrichs, W.L.; Swerdloff, R. Effects of Neonatally Administered DDT Homologs on Reproductive Function in Male and Female Rats. Neuroendocrinology 1974, 16, 84–94. [Google Scholar] [CrossRef]
- Maranghi, F.; Rescia, M.; Macrì, C.; Di Consiglio, E.; De Angelis, G.; Testai, E.; Farini, D.; De Felici, M.; Lorenzetti, S.; Mantovani, A. Lindane May Modulate the Female Reproductive Development through the Interaction with ER-β: An in Vivo-in Vitro Approach. Chem. Biol. Interact. 2007, 169, 1–14. [Google Scholar] [CrossRef]
- Rollerova, E.; Wsolova, L.; Urbancikova, M. Neonatal Exposure to Herbicide Acetochlor Alters Pubertal Development in Female Wistar Rats. Toxicol. Mech. Methods 2011, 21, 406–417. [Google Scholar] [CrossRef]
- Mathias, F.T.; Romano, R.M.; Sleiman, H.K.; de Oliveira, C.A.; Romano, M.A. Herbicide Metolachlor Causes Changes in Reproductive Endocrinology of Male Wistar Rats. ISRN Toxicol. 2012, 2012, 130846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBirney, M.; King, S.E.; Pappalardo, M.; Houser, E.; Unkefer, M.; Nilsson, E.; Sadler-Riggleman, I.; Beck, D.; Winchester, P.; Skinner, M.K. Atrazine Induced Epigenetic Transgenerational Inheritance of Disease, Lean Phenotype and Sperm Epimutation Pathology Biomarkers. PLoS ONE 2017, 12, e0184306. [Google Scholar] [CrossRef] [PubMed]
- Romano, M.A.; Romano, R.M.; Santos, L.D.; Wisniewski, P.; Campos, D.A.; de Souza, P.B.; Viau, P.; Bernardi, M.M.; Nunes, M.T.; de Oliveira, C.A. Glyphosate Impairs Male Offspring Reproductive Development by Disrupting Gonadotropin Expression. Arch. Toxicol. 2012, 86, 663–673. [Google Scholar] [CrossRef]
- Ye, X.; Pan, W.; Zhao, S.; Zhao, Y.; Zhu, Y.; Liu, J.; Liu, W. Relationships of Pyrethroid Exposure with Gonadotropin Levels and Pubertal Development in Chinese Boys. Environ. Sci. Technol. 2017, 51, 6379–6386. [Google Scholar] [CrossRef]
- Croes, K.; Hond, E.D.; Bruckers, L.; Govarts, E.; Schoeters, G.; Covaci, A.; Loots, I.; Morrens, B.; Nelen, V.; Sioen, I.; et al. Endocrine Actions of Pesticides Measured in the Flemish Environment and Health Studies (FLEHS I and II). Environ. Sci. Pollut. Res. 2015, 22, 14589–14599. [Google Scholar] [CrossRef]
- Vasiliu, O.; Muttineni, J.; Karmaus, W. In Utero Exposure to Organochlorines and Age at Menarche. Hum. Reprod. 2004, 19, 1506–1512. [Google Scholar] [CrossRef]
- Ouyang, F.; Perry, M.J.; Venners, S.A.; Chen, C.; Wang, B.; Yang, F.; Fang, Z.; Zang, T.; Wang, L.; Xu, X.; et al. Serum DDT, Age at Menarche, and Abnormal Menstrual Cycle Length. Occup. Environ. Med. 2005, 62, 878–884. [Google Scholar] [CrossRef] [Green Version]
- Den Hond, E.; Dhooge, W.; Bruckers, L.; Schoeters, G.; Nelen, V.; Van De Mieroop, E.; Koppen, G.; Bilau, M.; Schroijen, C.; Keune, H. Internal Exposure to Pollutants and Sexual Maturation in Flemish Adolescents. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 224. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; Tao, F.; Liu, D.; Xu, Y.; Hao, J.; Sun, Y.; Su, P. Effects of Growth Environments and Two Environmental Endocrine Disruptors on Children with Idiopathic Precocious Puberty. Eur. J. Endocrinol. 2012, 166, 803–809. [Google Scholar] [CrossRef] [Green Version]
- Krstevska-Konstantinova, M.; Charlier, C.; Craen, M.; Du Caju, M.; Heinrichs, C.; De Beaufort, C.; Plomteux, G.; Bourguignon, J.P. Sexual Precocity after Immigration from Developing Countries to Belgium: Evidence of Previous Exposure to Organochlorine Pesticides. Hum. Reprod. 2001, 16, 1020–1026. [Google Scholar] [CrossRef]
- Wohlfahrt-Veje, C.; Andersen, H.R.; Schmidt, I.M.; Aksglaede, L.; Sørensen, K.; Juul, A.; Jensen, T.K.; Grandjean, P.; Skakkebæk, N.E.; Main, K.M. Early Breast Development in Girls after Prenatal Exposure to Non-Persistent Pesticides. Int. J. Androl. 2012, 35, 273–282. [Google Scholar] [CrossRef]
- Namulanda, G.; Taylor, E.; Maisonet, M.; Boyd Barr, D.; Flanders, W.D.; Olson, D.; Qualters, J.R.; Vena, J.; Northstone, K.; Naeher, L. In Utero Exposure to Atrazine Analytes and Early Menarche in the Avon Longitudinal Study of Parents and Children Cohort. Environ. Res. 2017, 156, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Pine, M.D.; Hiney, J.K.; Lee, B.; Dees, W.L. The Pyrethroid Pesticide Esfenvalerate Suppresses the Afternoon Rise of Luteinizing Hormone and Delays Puberty in Female Rats. Environ. Health Perspect. 2008, 116, 1243–1247. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Bhagat, S.; Raijiwala, P.; Dighe, V.; Vanage, G. Perinatal Exposure of Pregnant Rats to Cypermethrin Delays Testicular Descent, Impairs Fertility in F1 Male Progeny Leading to Developmental Defects in F2 Generation. Chemosphere 2017, 185, 376–385. [Google Scholar] [CrossRef]
- Singh, D.; Irani, D.; Bhagat, S.; Vanage, G. Cypermethrin Exposure during Perinatal Period Affects Fetal Development and Impairs Reproductive Functions of F1 Female Rats. Sci. Total Environ. 2020, 707, 135945. [Google Scholar] [CrossRef]
- Loeffler, I.K.; Peterson, R.E. Interactive Effects of TCDD Andp, P′-DDE on Male Reproductive Tract Development Inin Uteroand Lactationally Exposed Rats. Toxicol. Appl. Pharmacol. 1999, 154, 28–39. [Google Scholar] [CrossRef]
- Ashby, J.; Lefevre, P.A. The Peripubertal Male Rat Assay as an Alternative to the Hershberger Castrated Male Rat Assay for the Detection of Anti-Androgens, Oestrogens and Metabolic Modulators. J. Appl. Toxicol. JAT 2000, 20, 35–47. [Google Scholar] [CrossRef]
- Kelce, W.R.; Stone, C.R.; Laws, S.C.; Gray, L.E.; Kemppainen, J.A.; Wilson, E.M. Persistent DDT Metabolite p,p′–DDE Is a Potent Androgen Receptor Antagonist. Nature 1995, 375, 581–585. [Google Scholar] [CrossRef]
- Smialowicz, R.J.; Williams, W.C.; Copeland, C.B.; Harris, M.W.; Overstreet, D.; Davis, B.J.; Chapin, R.E. The Effects of Perinatal/Juvenile Heptachlor Exposure on Adult Immune and Reproductive System Function in Rats. Toxicol. Sci. 2001, 61, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Aoyama, H.; Hojo, H.; Takahashi, K.L.; Shimizu-Endo, N.; Araki, M.; Takeuchi-Kashimoto, Y.; Saka, M.; Teramoto, S. Two-Generation Reproduction Toxicity Study in Rats with Methoxychlor. Congenit. Anom. 2012, 52, 28–41. [Google Scholar] [CrossRef]
- Davis, L.K.; Murr, A.S.; Best, D.S.; Fraites, M.J.P.; Zorrilla, L.M.; Narotsky, M.G.; Stoker, T.E.; Goldman, J.M.; Cooper, R.L. The Effects of Prenatal Exposure to Atrazine on Pubertal and Postnatal Reproductive Indices in the Female Rat. Reprod. Toxicol. 2011, 32, 43–51. [Google Scholar] [CrossRef]
- Rayner, J.L.; Enoch, R.R.; Fenton, S.E. Adverse Effects of Prenatal Exposure to Atrazine During a Critical Period of Mammary Gland Growth. Toxicol. Sci. 2005, 87, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Rayner, J.L.; Enoch, R.R.; Wolf, D.C.; Fenton, S.E. Atrazine-Induced Reproductive Tract Alterations after Transplacental and/or Lactational Exposure in Male Long-Evans Rats. Toxicol. Appl. Pharmacol. 2007, 218, 238–248. [Google Scholar] [CrossRef]
- Stanko, J.P.; Enoch, R.R.; Rayner, J.L.; Davis, C.C.; Wolf, D.C.; Malarkey, D.E.; Fenton, S.E. Effects of Prenatal Exposure to a Low Dose Atrazine Metabolite Mixture on Pubertal Timing and Prostate Development of Male Long-Evans Rats. Reprod. Toxicol. 2010, 30, 540–549. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, B.G.; Chen, H.; Folmer, J.; Liu, J.; Papadopoulos, V.; Zirkin, B.R. Gestational Exposure to Atrazine: Effects on the Postnatal Development of Male Offspring. J. Androl. 2008, 29, 304–311. [Google Scholar] [CrossRef]
- Stoker, T.E.; Laws, S.C.; Guidici, D.L.; Cooper, R.L. The Effect of Atrazine on Puberty in Male Wistar Rats: An Evaluation in the Protocol for the Assessment of Pubertal Development and Thyroid Function. Toxicol. Sci. Off. J. Soc. Toxicol. 2000, 58, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Stoker, T.E.; Guidici, D.L.; Laws, S.C.; Cooper, R.L. The Effects of Atrazine Metabolites on Puberty and Thyroid Function in the Male Wistar Rat. Toxicol. Sci. Off. J. Soc. Toxicol. 2002, 67, 198–206. [Google Scholar] [CrossRef]
- Ashby, J.; Tinwell, H.; Stevens, J.; Pastoor, T.; Breckenridge, C.B. The Effects of Atrazine on the Sexual Maturation of Female Rats. Regul. Toxicol. Pharmacol. 2002, 35, 468–473. [Google Scholar] [CrossRef]
- Laws, S.C.; Ferrell, J.M.; Stoker, T.E.; Schmid, J.; Cooper, R.L. The Effects of Atrazine on Female Wistar Rats: An Evaluation of the Protocol for Assessing Pubertal Development and Thyroid Function. Toxicol. Sci. Off. J. Soc. Toxicol. 2000, 58, 366–376. [Google Scholar] [CrossRef]
- Laws, S.C.; Ferrell, J.M.; Stoker, T.E.; Cooper, R.L. Pubertal Development in Female Wistar Rats Following Exposure to Propazine and Atrazine Biotransformation By-Products, Diamino-S-Chlorotriazine and Hydroxyatrazine. Toxicol. Sci. Off. J. Soc. Toxicol. 2003, 76, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Zorrilla, L.M.; Gibson, E.K.; Stoker, T.E. The Effects of Simazine, a Chlorotriazine Herbicide, on Pubertal Development in the Female Wistar Rat. Reprod. Toxicol. 2010, 29, 393–400. [Google Scholar] [CrossRef]
- Romano, R.M.; Romano, M.A.; Bernardi, M.M.; Furtado, P.V.; Oliveira, C.A. Prepubertal Exposure to Commercial Formulation of the Herbicide Glyphosate Alters Testosterone Levels and Testicular Morphology. Arch. Toxicol. 2010, 84, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Breckenridge, C.B.; Sawhney Coder, P.; Tisdel, M.O.; Simpkins, J.W.; Yi, K.D.; Foradori, C.D.; Handa, R.J. Effect of Age, Duration of Exposure, and Dose of Atrazine on Sexual Maturation and the Luteinizing Hormone Surge in the Female Sprague-Dawley Rat. Birth Defects Res. B. Dev. Reprod. Toxicol. 2015, 104, 204–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manservisi, F.; Lesseur, C.; Panzacchi, S.; Mandrioli, D.; Falcioni, L.; Bua, L.; Manservigi, M.; Spinaci, M.; Galeati, G.; Mantovani, A.; et al. The Ramazzini Institute 13-Week Pilot Study Glyphosate-Based Herbicides Administered at Human-Equivalent Dose to Sprague Dawley Rats: Effects on Development and Endocrine System. Environ. Health 2019, 18, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blystone, C.R.; Furr, J.; Lambright, C.S.; Howdeshell, K.L.; Ryan Bryce, C.; Wilson, V.S.; LeBlanc, G.A.; Gray, L.E., Jr. Prochloraz Inhibits Testosterone Production at Dosages below Those That Affect Androgen-Dependent Organ Weights or the Onset of Puberty in the Male Sprague Dawley Rat. Toxicol. Sci. 2007, 97, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.; Fussell, K.C.; Melching-Kollmuss, S.; Buesen, R.; Gröters, S.; Strauss, V.; Jiang, X.; van Ravenzwaay, B. Investigations on the Dose–Response Relationship of Combined Exposure to Low Doses of Three Anti-Androgens in Wistar Rats. Arch. Toxicol. 2017, 91, 3961–3989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melching-Kollmuss, S.; Fussell, K.C.; Schneider, S.; Buesen, R.; Groeters, S.; Strauss, V.; van Ravenzwaay, B. Comparing Effect Levels of Regulatory Studies with Endpoints Derived in Targeted Anti-Androgenic Studies: Example Prochloraz. Arch. Toxicol. 2017, 91, 143–162. [Google Scholar] [CrossRef]
- Ye, X.; Pan, W.; Zhao, Y.; Zhao, S.; Zhu, Y.; Liu, W.; Liu, J. Association of Pyrethroids Exposure with Onset of Puberty in Chinese Girls. Environ. Pollut. 2017, 227, 606–612. [Google Scholar] [CrossRef]
- Sergeyev, O.; Burns, J.S.; Williams, P.L.; Korrick, S.A.; Lee, M.M.; Revich, B.; Hauser, R. The Association of Peripubertal Serum Concentrations of Organochlorine Chemicals and Blood Lead with Growth and Pubertal Development in a Longitudinal Cohort of Boys: A Review of Published Results from the Russian Children’s Study. Rev. Environ. Health 2017, 32, 83–92. [Google Scholar] [CrossRef]
- Bapayeva, G.; Issayeva, R.; Zhumadilova, A.; Nurkasimova, R.; Kulbayeva, S.; Tleuzhan, R. Organochlorine Pesticides and Female Puberty in South Kazakhstan. Reprod. Toxicol. 2016, 65, 67–75. [Google Scholar] [CrossRef]
- Grandjean, P.; Grønlund, C.; Kjær, I.M.; Jensen, T.K.; Sørensen, N.; Andersson, A.-M.; Juul, A.; Skakkebæk, N.E.; Budtz-Jørgensen, E.; Weihe, P. Reproductive Hormone Profile and Pubertal Development in 14-Year-Old Boys Prenatally Exposed to Polychlorinated Biphenyls. Reprod. Toxicol. Elmsford N 2012, 34, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Saiyed, H.; Dewan, A.; Bhatnagar, V.; Shenoy, U.; Shenoy, R.; Rajmohan, H.; Patel, K.; Kashyap, R.; Kulkarni, P.; Rajan, B.; et al. Effect of Endosulfan on Male Reproductive Development. Environ. Health Perspect. 2003, 111, 1958–1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attfield, K.R.; Pinney, S.M.; Sjödin, A.; Voss, R.W.; Greenspan, L.C.; Biro, F.M.; Hiatt, R.A.; Kushi, L.H.; Windham, G.C. Longitudinal Study of Age of Menarche in Association with Childhood Concentrations of Persistent Organic Pollutants. Environ. Res. 2019, 176, 108551. [Google Scholar] [CrossRef] [PubMed]
- Wohlfahrt-Veje, C.; Andersen, H.R.; Jensen, T.K.; Grandjean, P.; Skakkebæk, N.E.; Main, K.M. Smaller Genitals at School Age in Boys Whose Mothers Were Exposed to Non-Persistent Pesticides in Early Pregnancy. Int. J. Androl. 2012, 35, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, X.; Huo, X. Anogenital Distance and Its Application in Environmental Health Research. Environ. Sci. Pollut. Res. 2014, 21, 5457–5464. [Google Scholar] [CrossRef]
- Bliatka, D.; Nigdelis, M.P.; Chatzimeletiou, K.; Mastorakos, G.; Lymperi, S.; Goulis, D.G. The Effects of Postnatal Exposure of Endocrine Disruptors on Testicular Function: A Systematic Review and a Meta-Analysis. Hormones 2020, 19, 157–169. [Google Scholar] [CrossRef]
- Rolfo, A.; Nuzzo, A.M.; De Amicis, R.; Moretti, L.; Bertoli, S.; Leone, A. Fetal–Maternal Exposure to Endocrine Disruptors: Correlation with Diet Intake and Pregnancy Outcomes. Nutrients 2020, 12, 1744. [Google Scholar] [CrossRef]
- Crain, D.A.; Janssen, S.J.; Edwards, T.M.; Heindel, J.; Ho, S.; Hunt, P.; Iguchi, T.; Juul, A.; McLachlan, J.A.; Schwartz, J.; et al. Female Reproductive Disorders: The Roles of Endocrine-Disrupting Compounds and Developmental Timing. Fertil. Steril. 2008, 90, 911–940. [Google Scholar] [CrossRef] [Green Version]
- Mastorakos, G.; Karoutsou, E.I.; Mizamtsidi, M.; Creatsas, G. The Menace of Endocrine Disruptors on Thyroid Hormone Physiology and Their Impact on Intrauterine Development. Endocrine 2007, 31, 219–237. [Google Scholar] [CrossRef]
- Sifakis, S.; Androutsopoulos, V.P.; Tsatsakis, A.M.; Spandidos, D.A. Human Exposure to Endocrine Disrupting Chemicals: Effects on the Male and Female Reproductive Systems. Environ. Toxicol. Pharmacol. 2017, 51, 56–70. [Google Scholar] [CrossRef]
- Chen, J.-F.; Chen, H.-Y.; Liu, R.; He, J.; Song, L.; Bian, Q.; Xu, L.-C.; Zhou, J.-W.; Xiao, H.; Dai, G.-D.; et al. Effects of Fenvalerate on Steroidogenesis in Cultured Rat Granulosa Cells. Biomed. Environ. Sci. BES 2005, 18, 108–116. [Google Scholar] [PubMed]
- Golub, M.S.; Hogrefe, C.E.; Germann, S.L.; Lasley, B.L.; Natarajan, K.; Tarantal, A.F. Effects of Exogenous Estrogenic Agents on Pubertal Growth and Reproductive System Maturation in Female Rhesus Monkeys. Toxicol. Sci. 2003, 74, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.L.; Stoker, T.E.; Tyrey, L.; Goldman, J.M.; McElroy, W.K. Atrazine Disrupts the Hypothalamic Control of Pituitary-Ovarian Function. Toxicol. Sci. 2000, 53, 297–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benachour, N.; Séralini, G.-E. Glyphosate Formulations Induce Apoptosis and Necrosis in Human Umbilical, Embryonic, and Placental Cells. Chem. Res. Toxicol. 2009, 22, 97–105. [Google Scholar] [CrossRef]
- Richard Sophie; Moslemi Safa; Sipahutar Herbert; Benachour Nora; Seralini Gilles-Eric Differential Effects of Glyphosate and Roundup on Human Placental Cells and Aromatase. Environ. Health Perspect. 2005, 113, 716–720. [CrossRef] [Green Version]
- Laville, N.; Balaguer, P.; Brion, F.; Hinfray, N.; Casellas, C.; Porcher, J.-M.; Aït-Aïssa, S. Modulation of Aromatase Activity and MRNA by Various Selected Pesticides in the Human Choriocarcinoma JEG-3 Cell Line. Toxicology 2006, 228, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Pang, G.; Ren, F.; Fang, B. Chlorpyrifos-Induced Reproductive Toxicity in Rats Could Be Partly Relieved under High-Fat Diet. Chemosphere 2019, 229, 94–102. [Google Scholar] [CrossRef]
- Bliatka, D.; Lymperi, S.; Mastorakos, G.; Goulis, D.G. Effect of Endocrine Disruptors on Male Reproduction in Humans: Why the Evidence Is Still Lacking? Andrology 2017, 5, 404–407. [Google Scholar] [CrossRef] [Green Version]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher Antioxidant and Lower Cadmium Concentrations and Lower Incidence of Pesticide Residues in Organically Grown Crops: A Systematic Literature Review and Meta-Analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [Green Version]
- Vigar, V.; Myers, S.; Oliver, C.; Arellano, J.; Robinson, S.; Leifert, C. A Systematic Review of Organic Versus Conventional Food Consumption: Is There a Measurable Benefit on Human Health? Nutrients 2019, 12, 7. [Google Scholar] [CrossRef] [Green Version]
Pesticide Category | Agrochemical Substance | Metabolites |
---|---|---|
Insecticides | ||
Pyrethroids | esfenvalerate, cypermethrin | 3-PBA |
Organochlorines (POPs) | heptachlor, DDT (banned in EU, USA), methoxychlor (banned in USA), endosulfan (banned in EU, USA), lindane, dieldrin, endrin | DDE |
Organophosphates (potential POPs) | chlorpyrifos (banned in EU, USA) | DMP, DMTP, DMDTP, DEP, DETP, DEDTP |
Herbicides | atrazine (banned in EU), propazine, simazine (banned in EU), acetochlor (banned in EU), metolachlor, glyphosate | HA, DACT, DIA, DEA |
Fungicides | prochloraz, vinclozolin (reprotoxic, banned in EU), HCB (banned in EU, USA) |
Publications | Agrochemical Substance | Animal | Period of Exposure | Dosage | Impact on Puberty Landmarks | NOAEL for Reproductive Toxicity |
---|---|---|---|---|---|---|
Insecticides | ||||||
Pyrethroids | ||||||
Postnatal | ||||||
Pine et al., 2008 [48] | Esfenvalerate | Female SD rats | PND 22–VO | 0.5, 1 or 5 mg/kg/day per os | VO delay at 1 and 5 mg/kg/day | 2 mg/kg/day |
Ye et al., 2017 [25] | Cypermethrin | Male CD-1 mice | PND 7–PND 21 | 0.5, 5 or 50μg/kg/day sc | Acceleration of PPS at all dosages | 5 mg/kg/day |
Gestational and Postnatal | ||||||
Singh et al., 2017 [49] | Cypermethrin | Holtzman rats | GD 6–LCD 21 | 1, 10 or 25 mg/kg/day per os | Delay of PPS at 1 and 25 mg/kg/day | 5 mg/kg/day |
Singh et al., 2020 [50] | Cypermethrin | Holtzman rats | GD 6-LCD 21 | 1, 10 or 25 mg/kg/day per os | Delay of VO at 25 mg/kg/day | 5 mg/kg/day |
Organochlorines | ||||||
Gestational | ||||||
Loeffler and Peterson 1999 [51] | DDT | Holtzman rats | GD 14–GD 18 | 1, 10, 50, 100, or 200 mg/kg/day per os | PPS delay at 200 mg/kg/day | n/a |
Maranghi et al., 2007 [34] | Lindane | CD1 mice | GD 6–GD 16 | 15 mg/kg/day per os | VO acceleration | n/a |
Postnatal | ||||||
Rasier et al., 2007 [31] | ο,p′-DDT | Female Wistar rats | PND 6–PND 10 | 10 or 100 mg/kg/day sc | VO acceleration at all dosages, acceleration of first estrus appearance at 10 mg/kg | n/a |
Heinrichs et al., 1971 [32] | ο,p′-DDT | Female SD rats | PND 2–PND 4 | 1 mg/day sc | Acceleration of VO and of first estrus appearance | n/a |
Gellert et al., 1974 [33] | ο,p′-DDT | Female SD rats | PND 2–PND 4 | 0.001, 0.01, 0.1, 0.5, or 1 mg/day sc | Dose-dependent VO acceleration at ≥0.1 mg/day | n/a |
Ashby and Lefevre 2000 [52] | DDE | Male Alderley Park rats | PND 22–55 or PND 36–55 | 100 mg/kg/day per os | PPS delay in the PND 22–55 subgroup | n/a |
Kelce et al., 1995 [53] | Methoxychlor | Male Long–Evans rats | PND 21–PND 57 | 100 mg/kg/day per os | PPS delay | n/a |
Gestational and Postnatal | ||||||
Martinez-Ibarra et al., 2016 [26] | Heptachlor | Wistar rats | F0 generation: GD 12–LCD 21 | 4.5 mg/kg/day per os | F1 generation: VO delay F2 generation: VO acceleration | n/a |
Smialowicz et al., 2001 [54] | Heptachlor | SD rats | GD 12–LCD 7 PND 8–PND 42 | 0, 30, 300, or 3000 μg/kg/day per os | VO delay at 30 μg/kg/day | n/a |
Masutomi et al., 2003 [28] | Methoxychlor | SD rats | GD 15–LCD 10 | 24, 240, or 1200 ppm/day per os | VO acceleration and PPS delay at 1200 ppm | n/a |
Roepke et al., 2016 [27] | Methoxychlor | Fischer CDF rats | Mothers: GD 11–PND 0 Female offspring: PND 0–PND 7 | 75 mg/kg/day intraperitoneally to the pregnant dams, sc to the neonates | VO acceleration | n/a |
Martini et al., 2020 [30] | Methoxychlor | CD1 mice | GD 11–LCD 8 | 20 μg/kg/day per os | Acceleration of VO in female offspring, delay of PPS in male offspring | 5 mg/kg/day |
Postnatal and Adult | ||||||
Gray et al., 1989 [29] | Methoxychlor | Male and female Long–Evans rats | PND 21–PND 80 (males) PND 21–LCD 15 (females) | 25, 50, 100, or 200 mg/kg/day per os | F0 generation: Acceleration of VO and of first estrus appearance at all dosages; PPS delay at 100 or 200 mg/kg/day F1 generation: VO acceleration at all dosages. | n/a |
Aoyama et al., 2012 [55] | Methoxychlor | Female and male SD rats | From postnatal week 5 and for 18 weeks | 10, 500, or 1500 ppm per os | PPS delay at 500 and 1500 ppm. | 10 ppm |
Herbicides | ||||||
Gestational | ||||||
Davis et al., 2011 [56] | Atrazine | SD rats | GD 14–GD 21 | 1, 5, 20 or 100 mg/kg/day per os | VO delay at 100 mg/kg/day | n/a |
Rayner et al., 2005 [57] | Atrazine | Long–Evans rats | GD 13–15; GD 15–17; GD 17–19; GD 13–19 | 100 mg/kg/day per os | VO delay in the GD13–19-exposed group | n/a |
Rayner et al., 2007 [58] | Atrazine | Long–Evans rats | GD 15–GD 19 | 100 mg/kg per os | PPS delay among offspring exposed in utero and throughout lactation | n/a |
Stanko et al., 2010 [59] | Mixture of atrazine and its metabolites (HA, DACT, DIA, DEA) | Long–Evans rats | GD 15–GD 19 | 0.09, 0.87, or 8.73 mg/kg/day of the mixture or 100 mg/kg/day atrazine per os | PPS delay among offspring exposed to 0.87 or 8.73 mg/kg/day of the mixture or 100 mg/kg/day atrazine | 6.25 mg/kg/day for DACT |
Rosenberg et al., 2008 [60] | Atrazine | SD rats | GD 14–PND 0 | 1, 10, 50, 75, or 100 mg/kg/day per os | PPS delay at 50, 75, or 100 mg/kg | n/a |
Postnatal | ||||||
Stoker et al., 2000 [61] | Atrazine | Male Wistar rats | PND 23–PND 53 | 12.5, 25, 50, 100, 150, or 200 mg/kg/day per os | PPS delay at 12.5, 50, 100, 150, or 200 mg/kg/day | 6.25 mg/kg/day |
Stoker et al., 2002 [62] | Atrazine metabolites (DEA, DIA, DACT) | Male Wistar rats | PND 23–PND 53 | 6.25, 12.5, 25, 50, 100, or 200 mg/kg/day per os in molar equivalent of atrazine | PPS delay in subgroups which received DEA or DIA (at 25, 100, and 200 mg/kg) or DACT (at ≥12.5 mg/kg) | 6.25 mg/kg/day for atrazine and DACT, 12.5 mg/kg/day for DEA and DIA |
Ashby et al., 2002 [63] | Atrazine | Female Wistar and SD rats | PND 21–PND 45 | 10, 30, or 100 mg/kg/day per os | Wistar rats: VO delay at 100 mg/kg/day SD rats: VO delay at 30 or 100 mg/kg/day | 25 mg/kg/day |
Laws et al., 2000 [64] | Atrazine | Female Wistar rats | PND 22–PND 41 | 12.5, 25, 50, 100, or 200 mg/kg per os | VO delay at 50, 100 or 200 mg/kg | 25 mg/kg/day |
Laws et al., 2003 [65] | HA or DACT (Atrazine metabolites) or Propazine | Female Wistar rats | PND 22-PND 41 | 22.8, 45.7, 91.5, or 183 mg/kg / day HA per os16.7, 33.8, 67.5, or 135 mg/kg/day DACT per os 13, 26.7, 53, 106.7, or 213 mg/kg/day propazine per os | VO delay in animals treated with ≥33.8 mg/kg DACT (dose-dependent), or with ≥106.7 mg/kg propazine | 25 mg/kg/day for atrazine, 16.7 mg/kg/day for DACT |
Zorilla et al., 2010 [66] | Simazine | Female Wistar rats | PND 22–42 or PND 22–62 | 12.5, 25, 50, 100, or 200 (not administered to the animals treated only for 21 days) mg/kg/day per os. | VO delay for the subgroups exposed at 25 and 100 mg/kg for 21 days, and the subgroups exposed to ≥25 mg/kg for 41 days. Delay of first estrus appearance for the subgroup exposed at 100 mg/kg for 21 days, or at 100 and 200 mg/kg for 41 days. | n/a |
Rollerova et al., 2011 [35] | Acetochlor | Female Wistar rats | PND 4–PND 7 | 7.68 or 15.36 mg/kg/day sc | VO acceleration at all dosages | n/a |
Mathias et al., 2012 [36] | Metolachlor | Male Wistar rats | PND 23–PND 53 | 5 or 50 mg/kg/day per os | Dose-dependent PPS acceleration | 23.5–26 mg/kg/day |
Romano et al., 2010 [67] | Glyphosate | Male Wistar rats | PND 23–PND 53 | 5 or 50 or 250 mg/kg per os | Dose-dependent PPS delay at 50 or 250 mg/kg | 50 mg/kg/day |
Gestational and Postnatal | ||||||
Breckenridge et al., 2015 [68] | Atrazine | SD rats | F0 generation: GD 0–LCD 21 F1 generation: PND 21–5 post VO days | 6.25, 25, or 50 mg/kg/day per os | VO delay at 25 or 50 mg/kg/day atrazine starting in utero, and at 50 mg/kg/day atrazine starting after weaning | 6.25 mg/kg/day |
Manservisi et al., 2019 [69] | Glyphosate-based herbicide | Female SD rats | F0 generation: GD 6–end of lactation F1 generation: from weaning and for 13 weeks | 175 mg/kg/day per os | Delay of first estrus appearance in F1 generation | 50 mg/kg/day |
Romano et al., 2012 [38] | Glyphosate | Wistar rats | GD 18–LCD 5 | 50 mg/kg/day per os | PPS acceleration | 50 mg/kg/day |
Transgenerational | ||||||
McBirney et al., 2017 [37] | Atrazine | Harlan SD rats | F0 generation: GD 8–GD 14 | 25 mg/kg intraperitoneally | Accelerated puberty onset in F2 generation male and F3 generation female animals | n/a |
Fungicides | ||||||
Postnatal | ||||||
Blystone et al., 2007 [70] | Prochloraz | Male SD rats | PND 23–PND 42; PND 23 –PND 51 | 31.3, 62.5, or 125 mg/kg/day per os | PPS delay at 125 mg/kg/day | 5 mg/kg/day |
Gestational and Postnatal | ||||||
Schneider et al., 2017 [71] | Mixture of vinclozolin/flutamide/prochloraz | Wistar rats | GD 6–LCD 21 and PND 21–puberty onset; PND 21–83 | 0.005/0.00025/0.01, 4/0.025/5 or 20/0.25/30 mg/kg/day per os | PPS delay at 20/0.25/30 mg/kg/day | 4/0.025/5 mg/kg/day |
Melching-Kolmuss et al., 2017 [72] | Prochloraz | Wistar rats | GD 6–LCD 21 | 0.01, 5, or 30 mg/kg/day per os | PPS delay at 30 mg/kg/day | 5 mg/kg/day |
Publications | Agrochemical Substance | Sex, Number (n), Country | Age (Years) | Biological Matrice /Method | Impact on Puberty Landmarks |
---|---|---|---|---|---|
Insecticides | |||||
Pyrethroids | |||||
Ye et al., 2017 [73] | 3-PBA (nonspecific metabolite) | Girls (n = 305) China | 9–15 | Urine/LC-MS | Positive association between increased concentration and delay in puberty progression tempo and age at menarche |
Ye et al., 2017 [39] | 3-PBA (nonspecific metabolite) | Boys (n = 463) China | 9–16 | Urine/LC-MS | Positive association between increased concentration and acceleration in puberty progression tempo |
Organochlorines | |||||
Sergeyev et al., 2017 [74] | HCB, βHCH, p,p′-DDE | Boys (n = 482) Russia | 8–9 | Serum/GC-MS | Delayed sexual maturation with HCB |
Krstevska-Konstantinova et al., 2001 [45] | p,p′-DDE | Girls and boys (n = 41) Multiethnic immigrants (Asians, Africans, South Americans, Western Europeans) and native Belgians | 7.8–8.3 (mean age at diagnosis) | Serum/GC-MS/MS | Increased risk for idiopathic precocious puberty among immigrants from developing countries to Belgium |
Croes et al., 2015 [40] | HCB, p,p′-DDE | Boys and girls (n = 600) Belgium | 14–15 | Serum/GC-MS | Delayed sexual maturation in girls and accelerated in boys with HCB and delayed sexual maturation in girls with p,p′-DDE |
Bapayeva et al., 2016 [75] | Lindane, dieldrin, endrin, DDT | Girls (n = 517) Kazakstan | 10–17 | Serum/GC-ECD | Delayed sexual maturation |
Vasiliu et al., 2004 [41] | DDE | Women (n = 151) USA | 20–50 | Maternal serum/GC-ECD | Acceleration of menarche |
Ouyang et al., 2005 [42] | DDT | Women (n = 466) China | 20–36 | Serum/GC-ECD | Acceleration of menarche |
DenHond et al., 2011 [43] | HCB, p,p′-DDE | Boys (n = 767) and girls (n = 636) Belgium | 14–15 | Serum/GC-ECD | Accelerated pubertal development in boys |
Grandjean et al., 2012 [76] | p,p′-DDE | Boys (n = 438) Faroe Islands | 14 | Cord blood/GC-ECD | Negative association with pubertal development |
Sayied et al., 2003 [77] | Endosulfan | Boys (n = 117) India | 10–19 | Serum/GC-ECD | Delayed pubertal development |
Attfield et al., 2019 [78] | DDE HCB Transnonaclor | Girls (n = 556) USA (multiracial cohort) | 6–8 (age at enrollment) | Serum/GC-MS | Positive association between organochlorine pesticides concentration in the highest quartile and delayed menarche |
Deng et al., 2012 [44] | p,p′-DDE | Boys (n = 3) and girls (n = 175) China | ~3–9 | Serum/GC-ECD | Positive association between exposure and idiopathic precocious puberty |
Organophosphates | |||||
Croes et al., 2015 [40] | DMP, DMTP, DMDTP, DEDTP | Boys and girls (n = 600) Belgium | 14–15 | Urine/GC-MS | Delayed sexual maturation in boys with methyl metabolites and delayed sexual maturation in girls with ethyl metabolites |
Herbicides | |||||
Namulanda et al., 2017 [47] | Atrazine metabolites | Girls (n = 469) United Kingdom | 8–13 | Maternal urine during pregnancy (collected at 8th-17th week) /LC-MS/MS) | Positive association between maternal urine DACT concentrations and the risk for earlier menarche among prenatally exposed daughters |
Pesticide mixture | |||||
Wohlfahrt-Veje et al., 2012 [46,79] | Various pesticide categories | Boys (n = 94) and girls (n = 83) and Denmark | 6–11 | Indirect assessment (questionnaire) of occupational exposure of female greenhouse workers during their first trimester of pregnancy | Earlier thelarche in prenatally exposed daughters and smaller testicular volumes and penile lengths at 3 months of age and prepubertally in prenatally exposed sons |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakali, A.K.; Bargiota, A.; Fatouros, I.G.; Jamurtas, A.; Macut, D.; Mastorakos, G.; Papagianni, M. Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture. Nutrients 2021, 13, 4184. https://doi.org/10.3390/nu13114184
Sakali AK, Bargiota A, Fatouros IG, Jamurtas A, Macut D, Mastorakos G, Papagianni M. Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture. Nutrients. 2021; 13(11):4184. https://doi.org/10.3390/nu13114184
Chicago/Turabian StyleSakali, Anastasia Konstantina, Alexandra Bargiota, Ioannis G. Fatouros, Athanasios Jamurtas, Djuro Macut, George Mastorakos, and Maria Papagianni. 2021. "Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture" Nutrients 13, no. 11: 4184. https://doi.org/10.3390/nu13114184
APA StyleSakali, A. K., Bargiota, A., Fatouros, I. G., Jamurtas, A., Macut, D., Mastorakos, G., & Papagianni, M. (2021). Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture. Nutrients, 13(11), 4184. https://doi.org/10.3390/nu13114184