High Iodine Urinary Concentration Is Associated with High TSH Levels but Not with Nutrition Status in Schoolchildren of Northeastern Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Participants
2.2. Anthropometry and Biochemical Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zimmermann, M.B. The importance of Adequate Iodine during Pregnancy and Infancy. World Rev. Nutr. Diet. 2016, 115, 118–124. [Google Scholar] [PubMed]
- Glinoer, D. The regulation of thyroid function during normal pregnancy: Importance of the iodine nutrition status. Best Pr. Res. Clin. Endocrinol. Metab. 2004, 18, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Pretell, E.A.; Pearce, E.N.; Moreno, S.A.; Dary, O.; Kupka, R.; Gizak, M.; Gorstein, J.; Grajeda, R.; Zimmermann, M.B. Elimination of iodine deficiency disorders from the Americas: A public health triumph. Lancet Diabetes Endocrinol. 2017, 5, 412–414. [Google Scholar] [CrossRef]
- Galicia, L.; Grajeda, R.; de Romaña, D.L. Nutrition situation in Latin America and the Caribbean: Current scenario, past trends, and data gaps. Rev. Panam. Salud Publica 2016, 40, 104–113. [Google Scholar] [PubMed]
- Leung, A.M.; Braverman, L.E. Consequences of excess iodine. Nat. Rev. Endocrinol. 2014, 10, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Indicators of Impact. In Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers, 3rd ed.; WHO Library Cataloguing-in-Publication Data: Geneva, Switzerland, 2007; pp. 28–43. Available online: https://apps.who.int/iris/handle/10665/43781 (accessed on 14 October 2021).
- Krela-Kaźmierczak, I.; Czarnywojtek, A.; Skoracka, K.; Rychter, A.; Ratajczak, A.; Szymczak-Tomczak, A.; Ruchała, M.; Dobrowolska, A. Is There an Ideal Diet to Protect against Iodine Deficiency? Nutrients 2021, 13, 513. [Google Scholar] [CrossRef] [PubMed]
- Lisco, G.; De Tullio, A.; Giagulli, V.A.; De Pergola, G.; Triggiani, V. Interference on Iodine Uptake and Human Thyroid Function by Perchlorate-Contaminated Water and Food. Nutrients 2020, 12, 1669. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Villa, L.; García-Solís, P.; Solís-S, J.C.; García-Gutiérrez, D.G.; Pérez-Mora, V.A.; Robles-Osorio, L.; Sampson-Zaldívar, E. High Iodine and Salt Intakes and Obesity do not Modify the Thyroid Function in Mexican Schoolchildren. Biol. Trace Element Res. 2016, 172, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Shamah-Levy, T.; Vielma-Orozco, E.; Heredia-Hernández, O.; Romero-Martínez, M.; Mojica-Cuevas, J.; Cuevas-Nasu, L.; Santanella-Castell, J.A.; Rivera-Dommarco, J. Consumidores de grupos de alimentos recomendables y no recomendables para uso cotidiano. In Encuesta Nacional de Salud y Nutrición 2018–2019: Resultados Nacionales, 1st ed.; Oropeza, A.C., Reveles, F., Eds.; Instituto Nacional de Salud Pública: Cuernavaca, México, 2020; p. 220. Available online: https://ensanut.insp.mx/encuestas/ensanut2018/doctos/informes/ensanut_2018_informe_final.pdf (accessed on 14 October 2021).
- Vela-Amieva, M.; Gamboa-Cardiel, S.; Pérez-Andrade, M.E.; Ortíz-Cortés, J.; González-Contreras, C.R.; Ortega-Velázquez, V. Epidemiology of congenital hypothyroidism in Mexico. Salud Publica Mexico 2004, 46, 141–148. [Google Scholar] [CrossRef]
- Rendón-Macías, M.E.; Morales-García, I.; Huerta-Hernández, E.; Silva-Batalla, A.; Villasís-Keever, M.A. Birth prevalence of congenital hypothyroidism in Mexico. Paediatr. Périnat. Epidemiol. 2008, 22, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Trejo, M.A.; Vela-Amieva, M.; Ibarra-González, I.; De Cosío-Farías, A.P.; Herrera-Pérez, L.A.; Caamal-Parra, G.; Bolaños-Córdova, L.E.; García-Flores, E.P. Congenital hypothyroidism birth prevalence. Acta Pediatr. Mexico 2018, S1, 5S–13S. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). Examination Protocol. 3.4.3 Standing Height. 3.4.4 Weight. 3.4.8 Abdominal (Waist) Circumference. National Health and Nutrition Examination Survey Data; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention: Hyattsville, MD, USA, 2017; pp. 3-6–3-9, 3-20–3-21. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/manuals/2017_Anthropometry_Procedures_Manual.pdf (accessed on 14 October 2021).
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC Growth Charts for the United States: Methods and Development; Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2002; Volume 246, pp. 1–190. Available online: https://www.cdc.gov/nchs/data/series/sr_11/sr11_246.pdf (accessed on 14 October 2021).
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents? an IDF consensus report. Pediatric Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Romero, L.M.; Barquera, S.; Campos, I.; García, E.; Arellano, S.; González, A.; Díaz, E.; Flores, M. Concentraciones Séricas de Hormona Estimulante de la Tiroides (TSH) en Niños, Adolescentes y Adultos Mexicanos; Resultados de la ENSANUT 2006; Instituto Nacional de Salud Pública: Cuernavaca, Mexico, 2012; pp. 5–22. Available online: https://insp.mx/images/stories/Centros/cinys/Docs/concentraciones_sericas_TSH.pdf (accessed on 14 October 2021).
- Shalitin, S.; Yackobovitch-Gavan, M.; Phillip, M. Prevalence of Thyroid Dysfunction in Obese Children and Adolescents before and after Weight Reduction and Its Relation to Other Metabolic Parameters. Horm. Res. 2009, 71, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Wolff, J.; Chaikoff, I.L. Plasma inorganic iodide as a homeostatic regulator of thyroid function. J. Biol. Chem. 1948, 174, 555–564. [Google Scholar] [CrossRef]
- Eng, P.H.K.; Cardona, G.R.; Fang, S.-L.; Previti, M.; Alex, S.; Carrasco, N.; Chin, W.W.; Braverman, L.E. Escape from the Acute Wolff-Chaikoff Effect Is Associated with a Decrease in Thyroid Sodium/Iodide Symporter Messenger Ribonucleic Acid and Protein 1. Endocrinology 1999, 140, 3404–3410. [Google Scholar] [CrossRef] [PubMed]
- Pramyothin, P.; Leung, A.M.; Pearce, E.N.; Malabanan, A.O.; Braverman, L.E. A Hidden Solution. N. Eng. J. Med. 2011, 365, 2123–2127. [Google Scholar] [CrossRef]
- Tajiri, J.; Higashi, K.; Morita, M.; Umeda, T.; Sato, T. Studies of Hypothyroidism in Patients with High Iodine Intake. J. Clin. Endocrinol. Metab. 1986, 63, 412–417. [Google Scholar] [CrossRef]
- Konno, N.; Yuri, K.; Taguchi, H.; Miura, K.; Taguchi, S.; Hagiwara, K.; Murakami, S. Screening for thyroid diseases in an iodine sufficient area with sensitive thyrotrophin assays, and serum thyroid autoantibody and urinary iodide determinations. Clin. Endocrinol. 1993, 38, 273–281. [Google Scholar] [CrossRef]
- Konno, N.; Makita, H.; Yuri, K.; Iizuka, N.; Kawasaki, K. Association between dietary iodine intake and prevalence of subclinical hypothyroidism in the coastal regions of Japan. J. Clin. Endocrinol. Metab. 1994, 78, 393–397. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Aeberli, I.; Andersson, M.; Assey, V.; Yorg, J.A.J.; Jooste, P.; Jukić, T.; Kartono, D.; Kusić, Z.; Pretell, E.; et al. Thyroglobulin Is a Sensitive Measure of Both Deficient and Excess Iodine Intakes in Children and Indicates No Adverse Effects on Thyroid Function in the UIC Range of 100–299 μg/L: A UNICEF/ICCIDD Study Group Report. J. Clin. Endocrinol. Metab. 2013, 98, 1271–1280. [Google Scholar] [CrossRef]
All (n = 274) | Female (n = 136) | Male (n = 138) | p Value | |
---|---|---|---|---|
Age (yr) * | 9 (7–10) | 9 (7–10) | 9 (7–10) | 0.3669 |
UIC ( μg/L ) * | 442 (290–671) | 444 (265–669) | 432 (293–682) | 0.3595 |
TSH ( μUI/mL ) * | 4.1 (3.8–4.5) | 4.1 (3.8–4.7) | 4.0 (3.8–4.3) | 0.0133 |
Prevalence (%) of TSH > 5 ( μ UI/mL) ** | 5.3 (5.0–6.1) | 5.1 (5.0–6.0) | 5.9 (5.1–7.8) | 0.1038 |
TSH ( μ UI/mL), 90th pctl | 4.9 | 5.0 | 4.8 | - |
TSH ( μ UI/mL), 95th pctl | 5.3 | 5.4 | 5.2 | - |
Weight status ** | ||||
Underweight, n (%) | 12 (4.4%) | 5 (3.7%) | 7 (5.1%) | 0.3948 |
Normal weight, n (%) | 151 (55.1%) | 78 (57.4%) | 73 (52.9%) | 0.2678 |
Overweight, n (%) | 51 (18.6%) | 29 (21.3%) | 22 (15.9%) | 0.1613 |
Obese, n (%) | 60 (21.9%) | 24 (17.6%) | 36 (26.1%) | 0.0612 |
Waist circumference ** | ||||
<10th pctl, n (%) | 25 (9.1%) | 5 (3.7%) | 20 (14.5%) | 0.0015 |
10th–90th pctl, n (%) | 188 (68.6%) | 100 (73.5%) | 88 (63.8%) | 0.0535 |
>90th pctl, n (%) | 61 (22.3%) | 31 (22.8) | 30 (21.7%) | 0.4742 |
Age (yr) | UIC (μg/L) * | TSH (μUI/mL) * |
---|---|---|
5–6 (n = 31) | 399 (253–700) a,b | 4.2 (3.9–4.8) a |
7 (n = 56) | 341 (140–522) b | 4.1 (3.8–4.6) a |
8 (n = 36) | 494 (259–694) a,b | 4.1 (3.7–4.4) a |
9 (n = 67) | 415 (292–596) a,b | 4.0 (3.8–4.4) a |
10 (n = 57) | 293 (369–707) a | 4.0 (3.8–4.7) a |
11 (n = 27) | 613 (436–805) a | 4.2 (3.8–4.5) a |
UIC (μg/L) | TSH (μUI/mL) | |
---|---|---|
Weight Status | ||
Underweight (n = 12) | 528 (409–676) | 4.2 (3.8–4.6) |
Normal weight (n = 151) | 412 (257–659) | 4.1 (3.8–4.5) |
Overweight (n = 51) | 408 (246–649) | 4.1 (3.9–4.4) |
Obese (n = 60) | 529 (348–773) | 4.0 (3.7–4.7) |
p value | >0.05 | >0.05 |
Waist Circumference | ||
<10th pctl | 484 (251–603) | 4.2 (3.8–4.6) |
10th–90th pctl | 437 (288–675) | 4.1 (3.8–4.5) |
>90th pctl | 455 (293–692) | 4.0 (3.8–4.7) |
p value | >0.05 | >0.05 |
TSH ≥5 μUI/mL | TSH <5 μUI/mL | OR | CI 95% | p Value | |
---|---|---|---|---|---|
UIC < 100 (μg/L) | 2 (0.7%) | 13 (4.7%) | 1.5 | 0.3–6.5 | 0.4267 |
UIC ≥ 100 (μg/L) | 24 (8.8%) | 235 (85.8%) | |||
UIC ≥ 300 (μg/L) | 21 (7.7%) | 179 (65.3%) | 1.6 | 0.6–4.0 | 0.2450 |
UIC < 300 (μg/L) | 5 (1.8%) | 69 (25.2%) | |||
UIC > median (μg/L) | 18 (6.6%) | 119 (43.4%) | 2.4 | 1.0–5.5 | 0.0309 |
UIC < median (μg/L) | 8 (2.9%) | 129 (47.1%) |
OR | CI 95% | p Value | |
---|---|---|---|
Model 1 | 2.583 | 1.058–6.308 | 0.037 |
Model 2 | 2.813 | 1.134–6.976 | 0.026 |
Model 3 | 2.436 | 0.990–5.995 | 0.053 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Nunez, A.; García-Solís, P.; Ramirez-Garcia, S.G.; Flores-Ramirez, G.; Vela-Amieva, M.; Lara-Díaz, V.J.; Rojas-Martínez, A. High Iodine Urinary Concentration Is Associated with High TSH Levels but Not with Nutrition Status in Schoolchildren of Northeastern Mexico. Nutrients 2021, 13, 3975. https://doi.org/10.3390/nu13113975
Gonzalez-Nunez A, García-Solís P, Ramirez-Garcia SG, Flores-Ramirez G, Vela-Amieva M, Lara-Díaz VJ, Rojas-Martínez A. High Iodine Urinary Concentration Is Associated with High TSH Levels but Not with Nutrition Status in Schoolchildren of Northeastern Mexico. Nutrients. 2021; 13(11):3975. https://doi.org/10.3390/nu13113975
Chicago/Turabian StyleGonzalez-Nunez, Aidy, Pablo García-Solís, Silvia G. Ramirez-Garcia, German Flores-Ramirez, Marcela Vela-Amieva, Victor J. Lara-Díaz, and Augusto Rojas-Martínez. 2021. "High Iodine Urinary Concentration Is Associated with High TSH Levels but Not with Nutrition Status in Schoolchildren of Northeastern Mexico" Nutrients 13, no. 11: 3975. https://doi.org/10.3390/nu13113975
APA StyleGonzalez-Nunez, A., García-Solís, P., Ramirez-Garcia, S. G., Flores-Ramirez, G., Vela-Amieva, M., Lara-Díaz, V. J., & Rojas-Martínez, A. (2021). High Iodine Urinary Concentration Is Associated with High TSH Levels but Not with Nutrition Status in Schoolchildren of Northeastern Mexico. Nutrients, 13(11), 3975. https://doi.org/10.3390/nu13113975