The Effects of 6 Weeks of Tribulus terrestris L. Supplementation on Body Composition, Hormonal Response, Perceived Exertion, and CrossFit® Performance: A Randomized, Single-Blind, Placebo-Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Hormone Determination in Peripheral Blood
2.3. CrossFit Training
2.4. Dietary Evaluation
2.5. Evaluation of Sports Performance
2.6. Determination of Perceived Exertion
2.7. Blinding
2.8. Statistical Analysis
3. Results
3.1. Dietary Evaluation
3.2. Body Composition
3.3. Workouts of the Day (WODs), Hormonal Response, and Rate Perceived Exertion (RPE)
4. Discussion
4.1. TT Does Not Alter Body Composition
4.2. TT on CrossFit® Performance
4.3. TT Unchanged Rate Perceived Exertion
4.4. TT on Hormonal Behavior
4.5. TT Extract Components
4.6. Limitations
5. Conclusions
6. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dietary Supplements in the Time of COVID-19—Health Professional Fact Sheet. 2021; pp. 1–85. Available online: https://ods.od.nih.gov/factsheets/COVID19-HealthProfessional/ (accessed on 26 July 2021).
- Dietary Supplements Market Size & Trends Report, 2021–2028. 2021; pp. 1–8. Available online: https://www.grandviewresearch.com/industry-analysis/dietary-supplements-market (accessed on 26 July 2021).
- Knapik, J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Lieberman, H.R. Prevalence of Dietary Supplement Use by Athletes: Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Baltazar-Martins, G.; de Souza, D.B.; Aguilar-Navarro, M.; Muñoz-Guerra, J.; del Mar Plata, M.; Del Coso, J. Prevalence and patterns of dietary supplement use in elite Spanish athletes. J. Int. Soc. Sport Nutr. 2019, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Aljaloud, S.O.; Ibrahim, S.A. Use of dietary supplements among professional athletes in Saudi Arabia. J. Nutr. Metab. 2013, 2013, 245349. [Google Scholar] [CrossRef]
- Halabchi, F.; Shab-Bidar, S.; Selk-Ghaffari, M. Prevalence of Supplement Consumption in Iranian Athletes: A Systematic Review and Meta-Analysis. Int. J. Prev. Med. 2021, 12, 32. [Google Scholar]
- Fernández-Lázaro, D. Ergogenic Strategies for Optimizing Performance and Health in Regular Physical Activity Participants: Evaluation of the Efficacy of Compressive Cryotherapy, Exposure to Intermittent Hypoxia at Rest and Sectorized Training of the Inspiratory Muscles. Ph.D. Thesis, University of León, León, Spain, 2020. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=286163&info=resumen&idioma=SPA (accessed on 17 July 2021).
- Williams, M. Dietary Supplements and Sports Performance: Herbals. J. Int. Soc. Sport Nutr. 2006, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sellami, M.; Slimeni, O.; Pokrywka, A.; Kuvačić, G.; Hayes, L.D.; Milic, M.; Padulo, J. Herbal medicine for sports: A review. J. Int. Soc. Sport Nutr. 2018, 15, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chhatre, S.; Nesari, T.; Somani, G.; Kanchan, D.; Sathaye, S. Phytopharmacological overview of Tribulus terrestris. Pharmacogn. Rev. 2014, 8, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qureshi, A.; Naughton, D.P.; Petroczi, A. A systematic review on the herbal extract Tribulus terrestris and the roots of its putative aphrodisiac and performance enhancing effect. J. Diet. Suppl. 2014, 11, 64–79. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Du, Y.; Meng, H.; Dong, Y.; Li, L. A review of traditional pharmacological uses, phytochemistry, and pharmacological activities of Tribulus terrestris. Chem. Cent. J. 2017, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Heidari, M.R.; Mehrabani, M.; Pardakhty, A.; Khazaeli, P.; Zahedi, M.J.; Yakhchali, M.; Vahedian, M. The analgesic effect of Tribulus terrestris extract and comparison of gastric ulcerogenicity of the extract with indomethacine in animal experiments. Ann. N. Y. Acad. Sci. 2007, 1095, 418–427. [Google Scholar] [CrossRef]
- Talemi, M.N.P.E.; Ardakani, S.M.P.; Roozbeh, B. Tribulus Terrestris may decrease muscle damage markers following a high-intensity resistance exercise: A pilot study. Int. J. Vitam. Nutr. Res. 2021, 91, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, S.; Ezzat, W.; Elshaer, R.E.; Abd El-Lateef, A.S.; Mohammad HM, F.; Elkazaz, A.Y.; Toraih, E.; Zaitone, S.A. Standardized Tribulus terrestris extract protects against rotenoneinduced oxidative damage and nigral dopamine neuronal loss in mice. J. Physiol. Pharmacol. 2018, 69, 979–994. [Google Scholar]
- Glassman, G. Understanding CrossFit. East Val. Crossfit Newsl. 2007, 1–115. Available online: http://journal.crossfit.com/2007/04/understanding-crossfit-by-greg.tpl (accessed on 18 July 2021).
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; Souza, H.d.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Filho, C.A.C.; Bottaro, M.; Hernandez, A.J.; et al. Crossfit overview: Systematic review and meta-analysis. Sport Med. 2018, 4, 1–14. [Google Scholar] [CrossRef]
- Glassman, G. What Is CrossFit? CrossFit J. 2004, 56, 1–7. Available online: http://journal.crossfit.com/2004/03/what-is-crossfit-mar-04-cfj.tpl (accessed on 19 July 2021).
- Gogojewicz, A.; Śliwicka, E.; Durkalec-Michalski, K. Assessment of Dietary Intake and Nutritional Status in CrossFit-Trained Individuals: A Descriptive Study. Int. J. Environ. Res. Public Health 2020, 17, 4772. [Google Scholar] [CrossRef] [PubMed]
- de Souza RA, S.; da Silva, A.G.; de Souza, M.F.; Souza LK, F.; Roschel, H.; da Silva, S.F.; Saunders, B. A Systematic Review of CrossFit® Workouts and Dietary and Supplementation Interventions to Guide Nutritional Strategies and Future Research in CrossFit®. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 187–205. [Google Scholar] [CrossRef] [PubMed]
- Pokrywka, A.; Obmiński, Z.; Malczewska-Lenczowska, J.; Fijałek, Z.; Turek-Lepa, E.; Grucza, R. Insights into supplements with Tribulus Terrestris used by athletes. J. Hum. Kinet. 2014, 41, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokoloff, N.C.; Misra, M.; Ackerman, K.E. Exercise, Training, and the Hypothalamic-Pituitary-Gonadal Axis in Men and Women. Front. Horm. Res. 2016, 47, 27–43. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Fernandez-Lazaro, C.I.; Mielgo-Ayuso, J.; Navascués, L.J.; Córdova Martínez, A.; Seco-Calvo, J. The role of selenium mineral trace element in exercise: Antioxidant defense system, muscle performance, hormone response, and athletic performance. A systematic review. Nutrients 2020, 12, 1790. [Google Scholar] [CrossRef]
- Ivanova, S.; Ivanov, K.; Mladenov, R.; Papanov, S.; Ivanova, S.; Obreshkova, D.; Atanasov, P.; Petkova, V. Food supplements with anabolic and androgenic activity-UHPLC analysis of food additives, containing Tribulusterrestris extract. World J. Pharma Res. 2016, 5, 6–13. [Google Scholar]
- Ma, Y.; Guo, Z.; Wang, X. Tribulus terrestris extracts alleviate muscle damage and promote anaerobic performance of trained male boxers and its mechanisms: Roles of androgen, IGF-1, and IGF binding protein-3. J. Sport Health Sci. 2017, 6, 474–481. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Wang, Q.; Wang, X.; Song, L.-N. Effects of Tribulus terrestris saponins on exercise performance in overtraining rats and the underlying mechanisms. Can. J. Physiol. Pharmacol. 2016, 94, 1193–1201. [Google Scholar] [CrossRef]
- Rogerson, S.; Riches, C.J.; Jennings, C.; Weatherby, R.P.; Meir, R.A.; Marshall-Gradisnik, S.M. The effect of five weeks of Tribulus terrestris supplementation on muscle strength and body composition during preseason training in elite rugby league players. J. Strength Cond. Res. 2007, 21, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Neychev, V.K.; Mitev, V.I. The aphrodisiac herb Tribulus terrestris does not influence the androgen production in young men. J. Ethnopharmacol. 2005, 101, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.A.; Vukovich, M.D.; Reifenrath, T.A.; Uhl, N.L.; Parsons, K.A.; Sharp, R.L.; King, D.S. Effects of Anabolic Precursors on Serum Testosterone Concentrations and Adaptations to Resistance Training in Young Men. Int. J. Sport Nutr. Exerc. Metab. 2000, 10, 340–359. [Google Scholar] [CrossRef] [PubMed]
- Alonso Lebrero, E.; Manuel Barat Baviera, J.; Pilar Conchello Moreno, M.; Estruch Riba, R.; Antonia Ferrús Pérez, M.; Font Pérez, G.; Guix Arnau, S.; Hardisson de la Torre, A.; Jos Gallego, A.; Marcos Sánchez, A.; et al. Section of Food Safety and Nutrition Report Approved by the Section of Food Safety and Nutrition of the Scientific Committee on Plenary Session Working Group. 2015, pp. 1–44. Available online: https://ec.europa.eu/food/horizontal-topics/expert-groups/scientific-committees/scientific-committee-food-archive_en (accessed on 19 July 2021).
- Dixon, C.B.; Ramos, L.; Fitzgerald, E.; Reppert, D.; Andreacci, J.L. The effect of acute fluid consumption on measures of impedance and percent body fat estimated using segmental bioelectrical impedance analysis. Eur. J. Clin. Nutr. 2009, 63, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Lázaro, D. Ergogenic Strategies for Optimizing Performance and Health in Regular Physical Activity Participants: Evaluation of the Efficacy of Compressive Cryotherapy, Exposure to Intermittent Hypoxia at Rest and Sectorized Lung Training. Ph.D. Thesis, University of León, León, Spain, 2020. Available online: https://dialnet.unirioja.es/servlet/dctes?codigo=286163 (accessed on 30 April 2021).
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Soto del Valle, M.; Adams, D.P.; Gutiérrez-Abejón, E.; Seco-Calvo, J. Impact of Optimal Timing of Intake of Multi-Ingredient Performance Supplements on Sports Performance, Muscular Damage, and Hormonal Behavior across a Ten-Week Training Camp in Elite Cyclists: A Randomized Clinical Trial. Nutrients 2021, 13, 3746. [Google Scholar] [CrossRef]
- Milasius, K.; Dadeliene, R.; Skernevicius, J. The influence of the Tribulus terrestris extract on the parameters of the functional preparedness and athletes’ organism homeostasis. Fiziol. Zh. 2009, 55, 89–96. [Google Scholar]
- Kumar, T. Effect of Tribulus terrestris (Gokshura) on muscle gain in male body builders of Bangalore Urban district. IJPNPE 2019, 4, 1337–1341. [Google Scholar]
- Antonio, J.; Uelmen, J.; Rodriguez, R.; Earnest, C. The effects of Tribulus terrestris on body composition and exercise performance in resistance-trained males. Int. J.Sport Nutr. Exerc. Metab. 2000, 10, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Poprzecki, S.; Zebrowska, A.; Cholewa, J. Ergogenic effects of Tribulus terrestris supplementation in men. J. Hum. Kinet. 2005, 13, 41–50. [Google Scholar]
- Yin, L.; Wang, Q.; Cao, X.; Wang, X. The effects of Tribulus terrestris on the time of exhaustion in rats with high intensity training and its mechanism. J. Shanghai Univ. Sport 2013, 37, 73–77. [Google Scholar]
- Wu, Y.; Yang, H.; Wang, X. The function of androgen/androgen receptor and insulin growth factor-1/insulin growth factor-1 receptor on the effects of Tribulus terrestris extracts in rats undergoing high intensity exercise. Mol. Med. Rep. 2017, 16, 2931–2938. [Google Scholar] [CrossRef] [Green Version]
- Oral, O. Nitric oxide and its role in exercise physiology. J. Sports Med. Phys. Fit. 2021. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Roaiah, M.F.; Elkhayat, Y.I.; GamalEl Din, S.F.; Abd El Salam, M.A. Prospective analysis on the effect of botanical medicine (Tribulus terrestris) on Serum testosterone level and semen parameters in males with unexplained infertility. J. Diet. Suppl. 2017, 14, 25–31. [Google Scholar] [CrossRef]
- Zarrouf, F.A.; Artz, S.; Griffith, J.; Sirbu, C.; Kommor, M. Testosterone and depression: Systematic review and meta-analysis. J. Psychiatr. Pract. 2009, 15, 289–305. [Google Scholar] [CrossRef]
- Wang, X.; Wang, R.; Yin, L.; Liu, G. Effects of Tribulus terrestris on immune function in over-trained rats and its mechanism: The role of glucocorticoid and glucocorticoid receptor. Bioscientifica 2013, 32. [Google Scholar] [CrossRef]
- Singh, S.; Nair, V.; Gupta, Y.K. Evaluation of the aphrodisiac activity of Tribulus terrestris Linn. in sexually sluggish male albino rats. J. Pharmacol. Pharmacother. 2012, 3, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Gauthaman, K.; Ganesan, A.P. The hormonal effects of Tribulus terrestris and its role in the management of male erectile dysfunction–an evaluation using primates, rabbit and rat. Phytomedicine 2008, 15, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sanz, J.M.; Sospedra, I.; Ortiz, C.M.; Baladía, E.; Gil-Izquierdo, A.; Ortiz-Moncada, R. Intended or Unintended Doping? A Review of the Presence of Doping Substances in Dietary Supplements Used in Sports. Nutrients 2017, 9, 1093. [Google Scholar] [CrossRef] [Green Version]
- Walpurgis, K.; Thomas, A.; Geyer, H.; Mareck, U.; Thevis, M. Dietary supplement and food contaminations and their implications for doping controls. Foods 2020, 9, 1012. [Google Scholar] [CrossRef] [PubMed]
- Akhtari, E.; Raisi, F.; Keshavarz, M.; Hosseini, H.; Sohrabvand, F.; Bioos, S.; Kamalinejad, M.; Ghobadi, A. Tribulus terrestris for treatment of sexual dysfunction in women: Randomized double-blind placebo-controlled study. DARU J. Pharm. Sci. 2014, 22, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamenov, Z.; Fileva, S.; Kalinov, K.; Jannini, E.A. Evaluation of the efficacy and safety of Tribulus terrestris in male sexual dysfunction—A prospective, randomized, double-blind, placebo-controlled clinical trial. Maturitas 2017, 99, 20–26. [Google Scholar] [CrossRef]
- Infante, M.; Pieri, M.; Lupisella, S.; D’Amore, L.; Bernardini, S.; Fabbri, A.; Iannetta, M.; Andreoni, M.; Morello, M. Low testosterone levels and high estradiol to testosterone ratio are associated with hyperinflammatory state and mortality in hospitalized men with COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5889–5903. [Google Scholar] [PubMed]
Control Group (CG) | Intervention Group (IG) | p | |
---|---|---|---|
Sample size (n) | 15 | 15 | |
Age (years) | 32.9 ± 6.3 | 33.1 ± 5.7 | 0.611 |
Body mass (kg) | 81.2 ± 11.5 | 80.1 ± 10.7 | 0.354 |
Height (cm) | 174.5 ± 3.3 | 175.1 ± 2.7 | 0.871 |
Crossfit® experience (months) | 41.3 ± 17.5 | 42.4 ± 18.32 | 0.651 |
Fran WODs (seconds) | 233 ± 12 | 229 ± 14 | 0.309 |
Group | CG n = 15 | IG n = 15 | p |
---|---|---|---|
Energy (kcal/kg) | 38.3 ± 5.8 | 39.7 ± 5.2 | 0.273 |
Proteins (g) | 145.3 ± 36.9 | 138.3 ± 44.9 | 0.395 |
Fats (g) | 139.3 ± 40.2 | 141.3 ± 42.6 | 0.748 |
Carbohydrates (g) | 340.2 ± 98.6 | 345.6 ± 103.2 | 0.435 |
Ca (mg) | 1036.3 ± 214.1 | 1082.4 ± 193.6 | 0.345 |
Mg (mg) | 542.3 ± 99.2 | 551.1 ± 95.9 | 0.863 |
P (mg) | 2123.6 ± 66.1 | 2076.9 ± 84.3 | 0.583 |
Fe (mg) | 21.1 ± 4.6 | 23.5 ± 5.7 | 0.801 |
Zn (mg) | 13.7 ± 0.8 | 14.7 ± 0.8 | 0.699 |
Vitamin A (µg) | 1859.3 ± 1180.1 | 2002.1 ± 775.2 | 0.659 |
Vitamin E (mg) | 17.0 ± 2.5 | 17.3 ± 1.6 | 0.466 |
Vitamin B1 (mg) | 2.6 ± 0.2 | 2.8 ± 0.6 | 0.526 |
Vitamin B2 (mg) | 2.7 ± 0.2 | 2.7 ± 0.2 | 0.693 |
Vitamin B (mg) | 40.0 ± 7.1 | 37.2 ± 3.9 | 0.815 |
Vitamin B6 (mg) | 4.1 ± 0.7 | 4.3 ± 0.9 | 0.831 |
Vitamin B9 (mg) | 634.2 ± 171.1 | 636.4 ± 169.5 | 0.885 |
Vitamin B12 (µg) | 9.1 ± 3.9 | 9.3 ± 3.1 | 0.877 |
Vitamin C (µg) | 347.1 ± 138.2 | 356.4 ± 119.6 | 0.733 |
Group | T1 | T2 | P(TxG) | η2p |
---|---|---|---|---|
Body Mass (kg) | ||||
CG | 81.2 ± 11.5 | 80.7 ± 10.6 * | 0.741 | 0.117 |
IG | 80.9 ± 10.7 | 79.6 ± 9.3 * | ||
Fat Mass (%) | ||||
CG | 13.2 ± 5.7 | 12.5 ± 6.3 * | 0.236 | 0.098 |
IG | 13.7 ± 2.8 | 12.1 ± 1.8 * | ||
Fat Mass (kg) | ||||
CG | 10.6 ± 2.1 | 9.6 ± 1.3 * | 0.506 | 0.063 |
IG | 11.1 ± 1.9 | 9.3 ± 1.6 * | ||
Free Fat Mass (%) | ||||
CG | 86.8 ± 5.3 | 87.5 ± 6.1 * | 0.356 | 0.081 |
IG | 86.3 ± 2.3 | 87.9 ± 2.3 * | ||
Free Fat Mass (kg) | ||||
CG | 70.9 ± 2.3 | 71.1 ± 1.6 * | 0.478 | 0.056 |
IG | 69.8 ± 1.4 | 70.3 ± 2.3 * |
Test | Group | T1 | T2 | P(TxG) | η2p | |
---|---|---|---|---|---|---|
WODs | Bench Press (kg) | CG | 70.83 ± 10.68 | 76.67 ± 10.80 | 0.033 | 0.346 |
IG | 69.17 ± 11.58 | 80.00 ± 11.40 * | ||||
Squat (kg) | CG | 142.50 ± 28.94 | 149.17 ± 23.11 | 0.496 | 0.048 | |
IG | 128.33 ± 15.71 | 131.67 ± 11.25 | ||||
Dead lift (kg) | CG | 160.83 ± 19.34 | 165.83 ± 18.28 | 0.438 | 0.061 | |
IG | 162.50 ± 9.87 | 170.00 ± 10.49 | ||||
CrossFit® Total (kg) | CG | 374.17 ± 47.48 | 391.67 ± 37.24 | 0.599 | 0.029 | |
IG | 360.00 ± 5.36 | 381.67 ± 30.93 | ||||
Grace Test (s) | CG | 30.17 ± 5.08 | 24.33 ± 4.46 | 0.689 | 0.017 | |
IG | 28.00 ± 6.23 | 22.67 ± 5.92 | ||||
Hormonal Response | Testosterone (ng/dL) | CG | 6.86 ± 2.03 | 5.34 ± 1.56 | 0.011 | 0.495 |
IG | 5.76 ± 0.86 | 5.75 ± 1.24 | ||||
Cortisol (ng/dL) | CG | 17.10 ± 2.69 | 22.15 ± 8.81 | 0.134 | 0.211 | |
IG | 15.17 ± 3.65 | 14.30 ± 5.17 | ||||
Ratio T/C | CG | 0.41 ± 0.13 | 0.27 ± 0.10 | 0.116 | 0.228 | |
IG | 0.39 ± 0.08 | 0.49 ± 0.33 | ||||
RPE | (Borg CR-10) | CG | 7.46 ± 1.23 | 7.55 ± 1.56 | 0.91 | 0.186 |
IG | 7.48 ± 1.31 | 7.56 ± 1.47 |
Test | CG | IG | p | |
---|---|---|---|---|
WODs | Bench Press (kg) | 8.52 ± 5.54 | 19.22 ± 7.15 | 0.044 * |
Squat(kg) | 5.70 ± 8.03 | 3.01 ± 4.96 | 0.501 | |
Dead lift (kg) | 3.32 ± 4.17 | 4.64 ± 2.55 | 0.523 | |
CrossFit® Total (kg) | 5.07 ± 4.61 | 6.19 ± 3.19 | 0.635 | |
Grace Test (s) | −24.73 ± 10.58 | −25.00 ± 10.74 | 0.966 | |
Hormonal Response | Testosterone (ng/dL) | −21.85 ± 11.10 | −0.20 ± 13.63 | <0.001 * |
Cortisol (ng/dL) | 28.65 ± 43.19 | −4.64 ± 30.12 | 0.153 | |
Ratio T/C | −29.07 ± 37.38 | 22.43 ± 69.60 | 0.141 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Lázaro, D.; Mielgo-Ayuso, J.; del Valle Soto, M.; Adams, D.P.; González-Bernal, J.J.; Seco-Calvo, J. The Effects of 6 Weeks of Tribulus terrestris L. Supplementation on Body Composition, Hormonal Response, Perceived Exertion, and CrossFit® Performance: A Randomized, Single-Blind, Placebo-Controlled Study. Nutrients 2021, 13, 3969. https://doi.org/10.3390/nu13113969
Fernández-Lázaro D, Mielgo-Ayuso J, del Valle Soto M, Adams DP, González-Bernal JJ, Seco-Calvo J. The Effects of 6 Weeks of Tribulus terrestris L. Supplementation on Body Composition, Hormonal Response, Perceived Exertion, and CrossFit® Performance: A Randomized, Single-Blind, Placebo-Controlled Study. Nutrients. 2021; 13(11):3969. https://doi.org/10.3390/nu13113969
Chicago/Turabian StyleFernández-Lázaro, Diego, Juan Mielgo-Ayuso, Miguel del Valle Soto, David P. Adams, Jerónimo J. González-Bernal, and Jesús Seco-Calvo. 2021. "The Effects of 6 Weeks of Tribulus terrestris L. Supplementation on Body Composition, Hormonal Response, Perceived Exertion, and CrossFit® Performance: A Randomized, Single-Blind, Placebo-Controlled Study" Nutrients 13, no. 11: 3969. https://doi.org/10.3390/nu13113969
APA StyleFernández-Lázaro, D., Mielgo-Ayuso, J., del Valle Soto, M., Adams, D. P., González-Bernal, J. J., & Seco-Calvo, J. (2021). The Effects of 6 Weeks of Tribulus terrestris L. Supplementation on Body Composition, Hormonal Response, Perceived Exertion, and CrossFit® Performance: A Randomized, Single-Blind, Placebo-Controlled Study. Nutrients, 13(11), 3969. https://doi.org/10.3390/nu13113969