Differences in Dietary Patterns among the Polish Elderly: A Challenge for Public Health
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Sample
2.2. Questionnaire
- Self-reported financial situation—the following two questions addressed this matter: “How do you assess your financial situation?”, with the following answers: below average (1 point); average (2 points); above average (3 points), and “How do you evaluate the situation of your household?”, with the following answers: I have to save to meet my basic needs (1 point); it is enough for my needs, but I have to save for larger purchases (2 points); it is enough for me without saving (3 points).
- Family financial assistance—the following question was asked: “Do you obtain financial assistance from your family including the family you live with?”, with the following answers: no, although I have financial problems (1 point); yes, because I have financial problems (2 points); there is no such need because my financial situation is satisfactory (3 points); yes, although I have no financial problems (4 points).
- Social financial assistance was addressed by the question “Do you obtain social assistance related to finances?”, with the following answers: no, although I have financial problems (1 point); yes, because I have financial problems (2 points); there is no such need because my financial situation is satisfactory (3 points); yes, although I have no financial problems (4 points).
- Education—the following question was asked: “What is your education?”, with the following answers: primary (1 point); vocational (2 points); secondary (3 points); higher education (4 points).
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Study Sample
3.2. Dietary Patterns
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Białecka-Dębek, A.; Pietruszka, B. The association between hydration status and cognitive function among free-living elderly volunteers. Aging Clin. Exp. Res. 2019, 31, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Dean, M.; Raats, M.M.; Grunert, K.G.; Lumbers, M. Factors influencing eating a varied diet in old age. Public Health Nutr. 2009, 12, 2421–2427. [Google Scholar] [CrossRef] [Green Version]
- Von Ruesten, A.; Steffen, A.; Floegel, A.; van der A, D.L.; Masala, G.; Tjønneland, A.; Halkjaer, J.; Palli, D.; Wareham, N.J.; Loos, R.J.F.; et al. Trend in obesity prevalence in European adult cohort populations during follow-up since 1996 and their predictions to 2015. PLoS ONE 2011, 6, e27455. [Google Scholar] [CrossRef] [PubMed]
- Wądołowska, L. Żywieniowe Podłoże Zagrożeń Zdrowia w Polsce; Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego w Olsztynie: Olsztyn, Poland, 2010. [Google Scholar]
- Michels, K.B.; Schulze, M.B. Can dietary patterns help us detect diet–disease associations? Nutr. Res. Rev. 2005, 18, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.K. Dietary patterns: Biomarkers and chronic disease risk. Appl. Physiol. Nutr. Metab. 2010, 35, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Wirfält, E.; Drake, I.; Wallström, P. What do review papers conclude about food and dietary patterns? Food Nutr. Res. 2013, 57, 20523. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Tucker, K.L. Dietary patterns, approaches, and multicultural perspective. Appl. Physiol. Nutr. Metab. 2010, 35, 211–218. [Google Scholar] [CrossRef]
- Imamura, F.; Micha, R.; Khatibzadeh, S.; Fahimi, S.; Shi, P.; Powles, J.; Mozaffarian, D. Dietary quality among men and women in 187 countries in 1990 and 2010: A systematic assessment. Lancet Glob. Health 2015, 3, e132–e142. [Google Scholar] [CrossRef] [Green Version]
- Gubbels, J.S.; van Assema, P.; Kremers, S.P. Physical activity, sedentary behavior, and dietary patterns among children. Curr. Nutri. Rep. 2013, 2, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Krusińska, B.; Hawrysz, I.; Słowińska, M.A.; Wądołowska, L.; Biernacki, M.; Czerwińska, A.; Gołota, J.J. Dietary patterns and breast or lung cancer risk: A pooled analysis of 2 case-control studies in north-eastern Poland. Adv. Clin. Exp. Med. 2017, 26, 1367–1375. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.L.; Mitchell, D.C.; Still, C.D.; Jensen, G.L.; Tucher, K.L.; Smiciklas-Wright, H. A dietary screening questionnaire identifies dietary patterns in older adults. J. Nutr. 2007, 137, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Harrington, J.M.; Dahly, D.L.; Fitzgerald, A.P.; Gilthorpe, M.S.; Perry, I.J. Capturing changes in dietary patterns among older adults: A lartent class analysis of on ageing Irish cohort. Public Health Nutr. 2014, 17, 2674–2689. [Google Scholar] [CrossRef] [Green Version]
- De Jonge, E.A.L.; Rivadeneira, F.; Erler, N.S.; Hofman, A.; Uitterlinden, A.G.; Franco, O.H.; Kiefte-de Jong, J.C. Dietary patterns in an elderly population and their relation with bone mineral density: The Rotterdam Study. Eur. J. Nutr. 2018, 57, 61–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Q.; Sable, C.M.; Brooks-Wilson, A.; Murphy, R.A. Dietary patterns in the healthy oldest old in the healthy aging study and the Canadian longitudinal study of aging: A cohort study. BMC Geriatr. 2020, 20, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.H.; Martins, B.A.; Okada, K.; Matsushita, E.; Uno, C.; Satake, S.; Kuzuya, M. A 3-year prospective cohort study of dietary patterns and frailty risk among comunity-dwelling older adults. Clin. Nutr. 2021, 40, 229–236. [Google Scholar] [CrossRef]
- Seo, A.R.; Hwang, T.Y. Relationship between dietary patterns and cardiovascular disease risk in Korean older adults. Int. J. Environ. Res. Public Health 2021, 18, 3703. [Google Scholar] [CrossRef]
- Gaona-Pineda, E.B.; Martínez-Tapia, B.; Arango-Angarita, A.; En Sp, M.; Valenzuela-Bravo, D.; Gómez-Acosta, L.M.; Shamah-Levy, T.; Rodriguez-Ramirez, S. Consumo de grupos de alimentos yfactores sociodemográficos en población mexicana. Salud Publica Mex. 2018, 60, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Tepayo, S.; Rodriquez-Ramires, S.; Unar-Monguia, M.; Shamah-Levy, T. Trends in the dietary patterns of Mexican adults by sociodemographic charakteristics. Nutr. J. 2020, 19, 51. [Google Scholar] [CrossRef]
- Czarnocińska, J.; Jeżewska-Zychowicz, M.; Babicz-Zielińska, E.; Kowalkowska, J.; Wądołowska, L. Postawy Względem Żywności, Żywienia i Zdrowia a Zachowania Żywieniowe Dziewcząt i Młodych Kobiet w Polsce; UWM Press: Olsztyn, Poland, 2013; pp. 23–53. [Google Scholar]
- Wang, J.; Chen, T.; Han, B. Does co-residence with adult children associate with better psychological well-beingd among the oldest old in China? Aging Ment. Health 2014, 18, 232–239. [Google Scholar] [CrossRef]
- Rodrigues, P.R.M.; Monteiro, L.S.; Cunha, D.B.; Sichieri, R.; Pereira, R.A. Adult food consumption by household composition: An analysis of the first National Dietary Survey, Brazil, 2008–2009. Public Health Nutr. 2020, 23, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Fujin, Y.; Zhigang, X.; Xu, T. Do living arrangements matter?—Evidence from eating behaviors of the elderly in rural China. J. Econ. Ageing 2021, 19, 100307. [Google Scholar]
- Miller, V.; Yusuf, S.; Chow, C.K.; Dehghan, M.; Corsi, D.J.; Lock, K.; Popkin, B.; Rangarajan, S.; Khatib, R.; Lear, S.A.; et al. Availability, affordability, and consumption of fruits and vegetables in 18 countries across income levels: Findings from the prospective urban rural epidemiology (PURE) study. Lancet Glob. Health 2016, 4, e695–e703. [Google Scholar] [CrossRef] [Green Version]
- Flores, M.; Macias, N.; Rivera, M.; Lozada, A.; Rivera-Dommarco, J.; Tucker, K.L. Dietary patterns in Mexican adults are associated with risk of being overweight or obese. J. Nutr. 2010, 140, 1869–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayén, A.L.; Marques-Vidal, P.; Paccaud, F.; Bovet, P.; Stringhini, S. Socioeconomic determinants of dietary patterns in low- and middle-income countries: A systematic review. Am. J. Clin. Nutr. 2014, 100, 1520–1531. [Google Scholar] [CrossRef] [Green Version]
- Hinnig, P.F.; Monteiro, J.S.; de Assis, M.; Levy, R.B.; Peres, M.A.; Perazi, F.M.; Porporatti, A.L.; Canto, G.L. Dietary patterns of children and adolescents from high, Medium and Low Human Development Countries and Associated Socioeconomic Factors: A Systematic Review. Nutrients 2018, 10, 436. [Google Scholar] [CrossRef] [Green Version]
- Andrade, G.C.; Da Costa Louzada, M.L.; Azeredo, C.M.; Ricardo, C.Z.; Martins, A.P.B.; Levy, R.B. Out-of-home food consumers in Brazil: What do they eat? Nutrients 2018, 10, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Short, S.E. Household context and subjective well-being among the oldest old in China. J. Fam. Issues 2008, 29, 1379–1403. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Lucas, H.; Meng, Q.; Zhang, Y. Associations between living arrangements and health-related quality of life of urban elderly people: A study from China. Qual. Life Res. 2011, 20, 359–369. [Google Scholar] [CrossRef]
- Quine, S.; Morrell, S. Food insecurity in community-dselling older Australians. Public Health Nutr. 2007, 9, 219–224. [Google Scholar] [CrossRef]
- Bae, S.; Urrutia-Rojas, X.; Patel, D.; Migala, W.M.; Rivers, P.A.; Singh, K.P. Comparison of health behaviors among single-and multiple-member households. Am. J. Health Behav. 2007, 32, 514–525. [Google Scholar] [CrossRef]
- Sheahan, S.L.; Fields, B. Sodium dietary restriction knowledge, beliefs, and decision-making behavior of older females. J. Am. Acad. Nurse Pract. 2008, 20, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Hunter, W.; McNaughton, S.; Crawford, D.; Ball, K. Does food planning mediate the association between living arrangements and fruit and vegetable consumption among women aged 40 years and older? Appetite 2010, 54, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, L. Cigarette smoking and alkohol consumption among Chinese older adults do living arrangements matter? Int. J. Environ. Res. Public Health 2015, 12, 2411–2436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GUS 2020. Wstępne Szacunki Produktu Krajowego Brutto w Przekroju Regionów 2019. Available online: file:///C:/Users/User/Downloads/wstepne_szacunki_pkb_w_przekroju_regionow_w_2019_r_2.pdf (accessed on 27 May 2021).
- Kwestionariusz do Badania Poglądów i Zwyczajów Zywieniowych Oraz Procedura Opracowania Danych (KomPAN®): Wersja Polskojęzyczna [Dietary Habits and Nutrition Beliefs Questionnaire and the Manual for Developing of Nutritional Data (KomPAN)]; Committee of Human Nutrition Science of the Polish Academy of Science: Warsaw, Poland, 2014; Available online: http://www.knozc.pan.pl/ (accessed on 25 May 2017).
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Człapka-Matyasik, M.; Galiński, G.; Jezewska-Zychowicz, M.; Bronkowska, M.; Dlugosz, A.; Loboda, D.; Wyka, J. Reproducibility of a Questionnaire for Dietary Habits, Lifestyle and Nutrition Knowledge Assessment (KomPAN®) in Polish Adolescents and Adults. Nutrients 2018, 10, 1845. [Google Scholar] [CrossRef] [Green Version]
- Wądołowska, L.; Kowalkowska, J.; Lonnie, M.; Czarnocinska, J.; Jeżewska-Zychowicz, M.; Babicz-Zielinska, E. Associations between physical activity patterns and dietary patterns in a representative sample of Polish girls aged 13–21 years: A cross-sectional study (GEBaHealth Project). BMC Public Health 2016, 16, 698. [Google Scholar] [CrossRef] [Green Version]
- Czarnocińska, J.; Wądołowska, L.; Łonnie, M.; Kowalkowska, J.; Jeżewska-Zychowicz, M.; Babicz-Zielińska, E. Regional and socioeconomic variations in dietary patterns in a representative sample of youn polish females: A cross-sectional study (GEBaHealth project). Nutr. J. 2020, 19, 26. [Google Scholar] [CrossRef]
- Stanisz, A. Przystępny kurs Statystyki. Tom 3. Analizy Wielowymiarowe; Wydawnictwo StatSoft: Kraków, Poland, 2007. [Google Scholar]
- Milte, C.M.; McNaughton, S.A. Dietary patterns and successful ageing: A systematic review. Eur. J. Nutr. 2016, 55, 423–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesse-Guyot, E.; Andreeva, V.A.; Jeandel, C.; Ferry, M.; Herzberg, S.; Galan, P. A healthy dietary pattern at midlife is associated with subsequent cognitive performance. J. Nutr. 2012, 142, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Buys, N.; Shen, S. Dietary patterns and cardiovascular disease-related risks in Chinese older adults. Front. Public Health 2013, 1, 48. [Google Scholar] [CrossRef] [Green Version]
- Kiviniemi, M.; Orom, H.; Giovino, G.A. Race/ethnicity, psychological distress, and fruit/vegetable consumption. The nature of the distress-behavior relation differs by race/ethnicity. Appetite 2011, 56, 737–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madeira, T.; Severo, M.; Oliveira, A.; Clara, J.G.; Lopes, C. The association between dietary patterns and nutritional status in community-dwelling older adults—the PEN-3S study. Eur. J. Clin. Nutr. 2021, 75, 521–530. [Google Scholar] [CrossRef]
- Parrott, M.D.; Shatenstein, B.; Ferland, G.; Payette, H.; Morais, J.A.; Belleville, S.; Kergoat, M.J.; Gaudreau, P.; Greenwood, C.E. Relationship between diet quality and cognition depends on socioeconomic position in healthy older adults. J. Nutr. 2013, 143, 1767–1773. [Google Scholar] [CrossRef]
- D’Amico, D.; Parrott, M.D.; Greenwood, C.E.; Ferland, G.; Gaudreau, P.; Belleville, S.; Laurin, D.; Anderson, N.D.; Kergoat, M.J.; Morais, J.A.; et al. Sex differences in the relationship between dietary pattern adherence and cognitive function among older adults: Findings from the NuAge study. Nutr. J. 2020, 19, 58. [Google Scholar] [CrossRef]
- Li, L.W.; Zhang, J.; Liang, J. Health among the oldest-old in China: Which living arrangements make a difference? Soc. Sci. Med. 2009, 68, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Q.; Treiman, D.J. Living arrangements of the elderly in China and consequences for their emotional weel-being. Chin. Siciol. Rev. 2015, 47, 255–286. [Google Scholar] [CrossRef]
- Wunderlich, S.; Brusca, J.; Johnson-Austin, M.; Bai, Y.; O’ Malley, M. Eating behaviors of older adults participating in government-sponsored programs with different demographic backgrounds. Glob. J. Health Sci. 2012, 4, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.A.; Murphy, S.P.; Neuhaus, J.M. Living arrangements and eating behaviors of older adults in the United States. J. Gerontol. 1988, 43, S96–S98. [Google Scholar] [CrossRef]
- Larrieu, S.; Letenneur, L.; Berr, C.; Dartigues, J.F.; Ritchie, K.; Alpérovitch, A.; Tavernier, B.; Barberger-Gateau, P. Sociodemographic differences in dietary habits in a population-based sample of elderly subjects: The 3C study. J. Nutr. Health Aging 2004, 8, 497–502. [Google Scholar]
- Gustafsson, K.; Sidenvall, B. Food-related health perceptions and food habits among older women. J. Adv. Nurs. 2002, 39, 164–173. [Google Scholar] [CrossRef]
- Chen, S.E.; Liu, J.; Binkley, J.K. An exploration of the relationship between income and eating behavior. Agric. Resour. Econ. Rev. 2012, 41, 82–91. [Google Scholar] [CrossRef]
- Elstgeest, L.; Mishra, G.; Dobson, A. Transitions in living arrangements are associated with changes in dietary patterns in young women. J. Nutr. 2012, 142, 1561–1567. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.M.; Newton, R.W.; Ruta, D.A.; MacDonald, T.M.; Morris, A.D. Socioeconomic status, obesity and prevalence of type 1 and type 2 diabetes mellitus. Diabet. Med. 2000, 17, 478–480. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Moura, E.C.; Conde, W.L.; Popkin, B.M. Socioeconomic status and obesity in adult populations of developing countries: A review. Bull. World Health Organ. 2004, 82, 940–946. [Google Scholar] [PubMed]
- Wagner, K.H.; Brath, H. A global view on the development of non communicable diseases. Prev. Med. 2012, 54, S38–S41. [Google Scholar] [CrossRef]
- Dijkstra, S.C.; Neter, J.E.; Brouwer, I.A.; Huisman, M.; Visser, M. Adherence to dietary guidelines for fruit, vegetables and fish among older Dutch adults; the role of education, income and job prestige. J. Nutr. Health Aging 2014, 18, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Giuli, C.; Papa, R.; Mocchegiani, E.; Marcellini, F. Dietary habits and ageing in a sample of italian older people. J. Nutr. Health Aging 2012, 16, 875–879. [Google Scholar] [CrossRef]
- Mullie, P.; Clarys, P.; Hulens, M.; Vansant, G. Dietary patterns and socioeconomic position. Eur. J. Clin. Nutr. 2010, 64, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Giskes, K.; Avendano, M.; Brug, J.; Kunst, A.E. A systematic review of studies on socioeconomic inequalities in dietary intakes associated with weight gain and overweight/obesity conducted among European adults. Obes. Rev. 2010, 11, 413–429. [Google Scholar] [CrossRef]
- Aburto, T.C.; Pedraza, L.S.; Sánchez-Pimienta, T.G.; Batis, C.; Rivera, J.A. Discretionary foods have a high contribution and fruit, vegetables, and legumes have alow contribution to the Total energy intake of the Mexican population. J. Nutr. 2016, 146, 1881S–1887S. [Google Scholar] [CrossRef] [Green Version]
- Bruno-Fiscal, C.; Restrepo-Betancur, L.F.; Mendoza-Guerrero, J.M. Supply of the main sources of energy, protein and fat in Mexico, 1961–2010. Rev. Esp. Nutr. Hum. Diet. 2016, 20, 273. [Google Scholar] [CrossRef] [Green Version]
- Satheannoppakao, W.; Aekplakorn, W.; Pradipasen, M. Fruit and vegetable consumption and its recommended intake associated with sociodemographic factors: Thailand National Health Examination Survey III. Public Health Nutr. 2009, 12, 2192–2198. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M. The nutrition transition: An overview of world patterns of hange. Nutr. Rev. 2004, 62, S140–S143. [Google Scholar] [CrossRef]
- Seematter-Bagnoud, L.; Santos-Eggimann, B.; Nanchen, D.; Blanco, J.M.; Büla, C.; von Gunten, A.; Démonet, J.F.; Henchoz, Y. Older People’s Health-Related Behaviors: Evidence from Three Cohorts of the Lc65+ Study. Behav. Med. 2021, 47, 246–250. [Google Scholar] [CrossRef]
- Gutkowska, K. Uwarunkowania wielkości i struktury spożycia żywności w gospodarstwach domowych osób starszych. Żyw. Człow. Metab. 2002, 29, 92–98. [Google Scholar]
- Kołłajtis-Dołowy, A.; Tyska, M. Świadomość żywieniowa ludzi starszych w relacji do ich postaw i zachowań żywieniowych. Żyw. Człow. Metab. 2004, 31, 3–17. [Google Scholar]
- Waśkiewicz, A.; Sygnowska, E. Wpływ poziomu wykształcenia na zachowania zdrowotne i czynniki żywieniowe związane z powstawaniem otyłości–badanie Pol-MONICA bis Warszawa. Zdr. Publ. 2006, 116, 227–231. [Google Scholar]
- Niedźwiedzka, E.; Wądołowska, L. Analiza urozmaicenia spożycia żywności w kontekście statusu socjoekonomicznego polskich osób starszych. Probl. Hig. Epidemiol. 2010, 91, 2–10. [Google Scholar]
- Hardcastle, A.C.; Aucott, L.; Fraser, W.D.; Reid, D.M.; Macdonald, H.M. Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women. Eur. J. Clin. Nutr. 2011, 65, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Joung, H. A dairy and fruit dietary pattern is associated with a reduced likelihood of osteoporosis in Korean postmenopausal women. Br. J. Nutr. 2013, 110, 1926–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, G.; Bennett, K.M.; Hetherington, M.M. Old and alone: Barriers to healthy eating in older men living on their own. Appetite 2004, 43, 269–276. [Google Scholar] [CrossRef] [PubMed]
Variables | N = 437 | (%) |
---|---|---|
Gender | ||
Female | 289 | 66.1 |
Male | 148 | 33.9 |
Age | ||
60–74 years old | 331 | 75.7 |
75 years old or more | 106 | 24.3 |
Place of residence | ||
Rural area | 202 | 46.2 |
City ≤ 100,000 residents | 89 | 20.4 |
City > 100,000 residents | 146 | 33.4 |
Region | ||
Śląskie/Dolnośląskie | 251 | 57.5 |
Świętokrzyskie | 186 | 42.5 |
Household structure | ||
Living alone | 67 | 15.3 |
Living with a partner | 190 | 43.5 |
Living without a partner but with my family | 61 | 14.0 |
Living with a partner and my family | 119 | 27.2 |
SES index | ||
Low | 145 | 33.2 |
Medium | 154 | 35.2 |
High | 138 | 31.6 |
Food Groups | Factor 1 | Factor 2 | Factor 3 |
---|---|---|---|
“Traditional” DP | “Prudent” DP | “Adverse” DP | |
White bread and bakery products, e.g., wheat bread, rye bread, wheat/rye bread, toast bread, bread rolls | 0.638 | −0.096 | 0.075 |
Fried foods (e.g., meat or flour-based foods, such as dumplings, pancakes, etc.) | 0.555 | −0.016 | 0.443 |
Cold meats, smoked sausages, hot dogs | 0.595 | 0.100 | 0.225 |
Potatoes (excluding chips and crisps) | 0.528 | 0.073 | 0.030 |
Buckwheat, oats, wholegrain pasta or other coarse-ground groats | −0.288 | 0.519 | 0.126 |
Fermented milk beverages, e.g., yoghurts, kefir (natural or flavoured) | −0.038 | 0.689 | 0.131 |
Fresh cheese curd products, e.g., cottage cheese, homogenized cheese, fromage frais | −0.012 | 0.593 | 0.022 |
Fruit | 0.120 | 0.633 | −0.296 |
Vegetables | 0.185 | 0.660 | −0.293 |
Vegetable juices or fruit and vegetable juice | −0.156 | 0.556 | 0.329 |
Water, e.g., mineral, tap water | −0.084 | 0.517 | −0.106 |
Sweetened carbonated or still beverages, such as Coca-Cola, Pepsi, Sprite, Fanta, lemonade | 0.095 | −0.046 | 0.539 |
Energy drinks, such as Red Bull, Monster, Rockstar, or other | −0.033 | 0.055 | 0.585 |
Instant soups or ready-made soups, e.g., tinned, jar, concentrates (excluding frozen soup mixes) | 0.195 | 0.004 | 0.619 |
Tinned (jar) meats | 0.238 | −0.016 | 0.643 |
Lard as a bread spread, or as an addition to meals/for frying/for baking, etc. | 0.218 | 0.031 | 0.578 |
Vegetable oils or margarines or mixes of butter and margarines as a bread spread, or as an addition to meals/for frying/for baking | 0.480 | −0.074 | 0.080 |
Cheese (including processed cheese, blue cheese) | 0.407 | 0.334 | 0.195 |
White meat, e.g., chicken, turkey, rabbit | 0.423 | 0.391 | 0.138 |
Sweets, e.g., confectionary, biscuits, cakes, chocolate bars, cereal bars, other | 0.496 | −0.015 | 0.157 |
Wholemeal bread | −0.409 | 0.434 | 0.058 |
Milk (including flavoured milk, hot chocolate, latte) | 0.203 | 0.457 | 0.186 |
Fish | −0.158 | 0.407 | 0.290 |
Eggs | 0.096 | 0.429 | 0.229 |
Fruit juices | 0.040 | 0.451 | 0.351 |
Fast foods, e.g., potato chips, hamburgers, pizza, hot dogs | −0.016 | 0.029 | 0.480 |
White rice, white pasta, fine-ground groats, e.g., semolina, couscous | 0.182 | 0.303 | 0.231 |
Butter as a bread spread or as an addition to meals/for frying/for baking, etc. | 0.345 | 0.106 | 0.035 |
Red meat, e.g., pork, beef, veal, mutton, lamb, game | 0.353 | 0.063 | 0.316 |
Pulse-based foods, e.g., from beans, peas, soybeans, lentils | −0.336 | 0.356 | 0.139 |
Sweetened hot beverages, such as black tea, coffee, herbal or fruit teas | 0.279 | 0.027 | 0.094 |
Tinned (jar) vegetables, e.g., pickles | 0.157 | 0.258 | 0.315 |
Variance explained (%) | 11.4 | 15.3 | 6.2 |
Total variance explained (%) | 32.9 | ||
Kaiser’s measure of sampling adequacy | 0.798 |
Variables | “Traditional” DP a,* | “Prudent” DP b,* | “Adverse” DP c,* | ||||||
---|---|---|---|---|---|---|---|---|---|
Bottom Tertile | Middle Tertile | Upper Tertile | Bottom Tertile | Middle Tertile | Upper Tertile | Bottom Tertile | Middle Tertile | Upper Tertile | |
Total sample N (%) | 145 (33.2) | 147 (33.6) | 145 (33.2) | 146 (33.4) | 145 (33.2) | 146 (33.4) | 145 (33.2) | 146 (33.4) | 146 (33.4) |
Region | |||||||||
Śląskie/Dolnośląskie | 29.9 | 36.7 | 33.4 | 33.1 | 33.5 | 33.4 | 32.7 | 35.5 | 31.8 |
Świętokrzyskie | 37.6 | 29.6 | 32.8 | 33.9 | 32.8 | 33.3 | 33.9 | 30.6 | 35.5 |
Household structure | |||||||||
Living alone | 28.4 | 29.9 | 41.7 | 37.3 | 32.8 | 29.9 | 37.3 | 38.8 | 23.9 |
Living with a partner | 30.5 | 35.8 | 33.7 | 37.4 | 35.3 | 27.3 | 32.6 | 32.1 | 35.3 |
Living without a partner, but with my family a,b,c,* | 36.1 | 36.1 | 27.8 | 31.1 | 29.5 | 39.4 | 29.5 | 34.4 | 36.1 |
Living with a partner and with my family a,b,c,* | 38.7 | 31.1 | 30.2 | 26.1 | 31.9 | 42.0 | 33.6 | 31.9 | 34.5 |
SES index | |||||||||
Low | 31.8 | 21.9 | 44.7 | 26.3 | 23.7 | 50.0 | 36.8 | 30.7 | 32.5 |
Medium | 27.2 | 41.3 | 31.5 | 26.1 | 39.7 | 34.2 | 32.6 | 35.9 | 31.5 |
High a,b,c,* | 41.0 | 33.1 | 25.9 | 48.9 | 32.4 | 18.7 | 30.9 | 32.4 | 36.7 |
SES variables | |||||||||
Self-reported financial situation | |||||||||
Below average a,b,* | 4.5 | 8.3 | 8.8 | 6.5 | 7.8 | 8.3 | 10.3 | 11.7 | 9.6 |
Average | 74.0 | 77.8 | 80.6 | 72.9 | 81.8 | 78.6 | 81.5 | 74.5 | 76.0 |
Above average a,b,c,* | 21.5 | 13.9 | 10.6 | 20.6 | 10.4 | 13.1 | 8.2 | 13.8 | 14.4 |
Family financial assistance | |||||||||
No, although I have financial problems a,b,c,* | 8.9 | 10.3 | 5.4 | 11.0 | 8.8 | 6.9 | 11.0 | 10.3 | 6.8 |
Yes, because I have financial problems | 6.4 | 7.6 | 2.7 | 9.0 | 6.2 | 4.8 | 8.2 | 7.6 | 11.0 |
There is no such need because my financial situation is satisfactory | 76.7 | 71.0 | 83.7 | 75.2 | 74.7 | 80.0 | 75.3 | 72.4 | 77.4 |
Yes, although I have no financial problems a,b,c,* | 8.0 | 11.1 | 8.2 | 4.8 | 10.3 | 8.3 | 5.5 | 9.7 | 4.8 |
Social financial assistance | |||||||||
No, although I have financial problems a,b,* | 12.1 | 15.2 | 5.4 | 15.2 | 6.9 | 8.9 | 20.5 | 14.5 | 14.4 |
Yes, because I have financial problems | 1.6 | 3.4 | 0.0 | 1.4 | 2.1 | 1.4 | 1.4 | 1.4 | 2.1 |
There is no such need because my financial situation is satisfactory | 85.6 | 80.0 | 93.9 | 82.8 | 90.3 | 89.0 | 77.4 | 82.1 | 83.5 |
Yes, although I have no financial problems c,* | 0.7 | 1.4 | 0.7 | 0.0 | 0.7 | 0.7 | 0.7 | 2.0 | 0.0 |
Education | |||||||||
Primary a,b,c,* | 10.0 | 15.9 | 9.5 | 22.8 | 18.4 | 9.7 | 19.2 | 20.8 | 8.2 |
Vocational | 34.7 | 38.6 | 40.8 | 26.2 | 28.1 | 33.8 | 43.8 | 29.7 | 37.5 |
Secondary | 32.5 | 27.6 | 35.4 | 34.5 | 37.0 | 38.6 | 31.5 | 31.7 | 32.9 |
Higher education a,b,c,* | 22.8 | 17.9 | 14.3 | 30.1 | 16.5 | 17.9 | 5.5 | 17.8 | 21.4 |
Variables | “Traditional” DP | “Prudent” DP | “Adverse” DP | |||
---|---|---|---|---|---|---|
(Ref. Bottom Tertile) | (Ref. Bottom Tertile) | (Ref. Bottom Tertile) | ||||
Upper Tertile | p | Upper Tertile | p | Upper Tertile | p | |
Region (ref. Świętokrzyskie) | 0.88 (0.70–1.11) | 0.2898 | 0.99 (0.78–1.25) | 0.9062 | 1.03 (0.82–1.31) | 0.7626 |
Household structure | ||||||
Living with partner (ref. living alone) | 0.74 (0.38–1.48) | 0.4058 | 0.91 (0.46–1.83) | 0.8014 | 1.68 (0.82–3.47) | 0.1517 |
Living without a partner, but with my family (ref. living alone) | 0.52 (0.22–1.26) | 0.1413 | 1.58 (0.67–3.70) | 0.0287 | 1.90 (0.78–4.69) | 0.1515 |
Living with a partner and with my family (ref. living alone) | 0.53 (0.25–1.11) | 0.0883 | 2.02 (0.96–4.25) | 0.0063 | 1.60 (0.74–3.46) | 0.2268 |
SES index | ||||||
Medium SES (ref. low SES) | 0.92 (0.70–1.24) | 0.6130 | 0.83 (0.62–1.12) | 0.2113 | 1.05 (0.79–1.40) | 0.7496 |
High SES (ref. low SES) | 0.68 (0.51–0.92) | 0.0125 | 0.44 (0.33–0.62) | <0.0001 | 1.16 (0.86–1.57) | 0.3314 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajda, R.; Jeżewska-Zychowicz, M.; Raczkowska, E. Differences in Dietary Patterns among the Polish Elderly: A Challenge for Public Health. Nutrients 2021, 13, 3966. https://doi.org/10.3390/nu13113966
Gajda R, Jeżewska-Zychowicz M, Raczkowska E. Differences in Dietary Patterns among the Polish Elderly: A Challenge for Public Health. Nutrients. 2021; 13(11):3966. https://doi.org/10.3390/nu13113966
Chicago/Turabian StyleGajda, Robert, Marzena Jeżewska-Zychowicz, and Ewa Raczkowska. 2021. "Differences in Dietary Patterns among the Polish Elderly: A Challenge for Public Health" Nutrients 13, no. 11: 3966. https://doi.org/10.3390/nu13113966
APA StyleGajda, R., Jeżewska-Zychowicz, M., & Raczkowska, E. (2021). Differences in Dietary Patterns among the Polish Elderly: A Challenge for Public Health. Nutrients, 13(11), 3966. https://doi.org/10.3390/nu13113966