Nut Consumption Is Associated with Lower Risk of Metabolic Syndrome and Its Components in Type 1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Visit
2.2. Outcome Variables
2.3. Dietary Intake
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ros, E. Health benefits of nut consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [Green Version]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef]
- Albert, C.M.; Gaziano, J.M.; Willett, W.C.; Manson, J.E. Nut consumption and decreased risk of sudden cardiac death in the Physicians’ Health Study. Arch. Intern. Med. 2002, 162, 1382–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Guasch-Ferré, M.; Hu, Y.; Li, Y.; Hu, F.B.; Rimm, E.B.; Manson, J.E.; Rexrode, K.M.; Sun, Q. Nut consumption in relation to cardiovascular disease incidence and mortality among patients with diabetes mellitus. Circ. Res. 2019, 124, 920–929. [Google Scholar] [CrossRef]
- US. Food and Drug Administration (FDA). Qualified Health Claims: Letter of Enforcement Discretion—Nuts and Coronary Heart Disease (Docket No 02P-0505). 2003. Available online: http://wayback.archive-it.org/7993/20171114183724/https://www.fda.gov/Food/IngredientsPackagingLabeling/LabelingNutrition/ucm072926.htm (accessed on 6 October 2021).
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Thorn, L.M.; Forsblom, C.; Fagerudd, J.; Thomas, M.C.; Pettersson-Fernholm, K.; Saraheimo, M.; Wadén, J.; Rönnback, M.; Rosengård-Bärlund, M.; Af Björkesten, C.G.; et al. Metabolic Syndrome in Type 1 Diabetes: Association with diabetic nephropathy and glycemic control (the FinnDiane study). Diabetes Care 2005, 28, 2019–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet 2018, 391, 2449–2462. [Google Scholar] [CrossRef]
- Ibarrola-Jurado, N.; Bulló, M.; Guasch-Ferré, M.; Ros, E.; Martínez-González, M.A.; Corella, D.; Fiol, M.; Wärnberg, J.; Estruch, R.; Román, P.; et al. Cross-sectional assessment of nut consumption and obesity, metabolic syndrome and other cardiometabolic risk factors: The PREDIMED Study. PLoS ONE 2013, 8, e57367. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Montero, A.; Bes-Rastrollo, M.; Beunza, J.J.; Barrio-Lopez, M.T.; de la Fuente-Arrillaga, C.; Moreno-Galarraga, L.; Martínez-González, M.A. Nut consumption and incidence of metabolic syndrome after 6-year follow-up: The SUN (Seguimiento Universidad de Navarra, University of Navarra Follow-up) cohort. Public Health Nutr. 2013, 16, 2064–2072. [Google Scholar] [CrossRef] [Green Version]
- Ahola, A.J.; Thorn, L.M.; Saraheimo, M.; Forsblom, C.; Groop, P.-H. on behalf of the Finndiane Study Group. Depression is associated with the metabolic syndrome among patients with type 1 diabetes. Ann. Med. 2010, 42, 495–501. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Ahola, A.J.; Mikkilä, V.; Mäkimattila, S.; Forsblom, C.; Freese, R.; Groop, P.-H. Energy and nutrient intakes and adherence to dietary guidelines among Finnish adults with type 1 diabetes. Ann. Med. 2012, 44, 73–81. [Google Scholar] [CrossRef]
- Ahola, A.J.; Lassenius, M.; Forsblom, C.; Harjutsalo, V.; Lehto, M.; Groop, P.-H. Dietary patterns reflecting healthy food choices are associated with lower serum LPS activity. Sci. Rep. 2017, 7, 6511–6519. [Google Scholar] [CrossRef] [Green Version]
- Ahola, A.J.; Mikkilä, V.; Saraheimo, M.; Wadén, J.; MäkimaTtila, S.; Forsblom, C.; Freese, R.; Groop, P.H. Sense of coherence, food selection and leisure time physical activity in type 1 diabetes. Scand. J. Public Health 2012, 40, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Fernández-Ballart, J.; Ros, E.; Martínez-González, M.A.; Fitó, M.; Estruch, R.; Corella, D.; Fiol, M.; Gómez-Gracia, E.; Arós, F.; et al. Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: One-year results of the PREDIMED Randomized Trial. Arch. Intern. Med. 2008, 168, 2449–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neil, C.E.; Keast, D.R.; Nicklas, T.A.; Fulgoni, V.L. Nut consumption is associated with decreased health risk factors for cardiovascular disease and metabolic syndrome in U.S. adults: NHANES 1999–2004. J. Am. Coll. Nutr. 2011, 30, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Bes-Rastrollo, M.; Wedick, N.M.; Martinez-Gonzalez, M.A.; Li, T.Y.; Sampson, L.; Hu, F.B. Prospective study of nut consumption, long-term weight change, and obesity risk in women. Am. J. Clin. Nutr. 2009, 89, 1913–1919. [Google Scholar] [CrossRef]
- Mejia, S.B.; Kendall, C.W.; Viguiliouk, E.; Augustin, L.S.; Ha, V.; Cozma, A.I.; Mirrahimi, A.; Maroleanu, A.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on metabolic syndrome criteria: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2014, 4, e004660. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.; Clifton, P. Nuts and cardio-metabolic disease: A review of meta-analyses. Nutrients 2018, 10, 1935. [Google Scholar] [CrossRef] [Green Version]
- Djoussé, L.; Rudich, T.; Gaziano, J.M. Nut consumption and risk of hypertension in US male physicians. Clin. Nutr. 2009, 28, 10–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Lapiscina, E.H.; Pimenta, A.M.; Beunza, J.J.; Bes-Rastrollo, M.; Martínez, J.A.; Martínez-González, M.A. Nut consumption and incidence of hypertension: The SUN prospective cohort. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 359–365. [Google Scholar] [CrossRef]
- Del Gobbo, L.C.; Falk, M.C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: Systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 2015, 102, 1347–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guasch-Ferré, M.; Li, J.; Hu, F.B.; Salas-Salvadó, J.; Tobias, D.K. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: An updated meta-analysis and systematic review of controlled trials. Am. J. Clin. Nutr. 2018, 108, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Mohammadifard, N.; Salehi-Abargouei, A.; Salas-Salvadó, J.; Guasch-Ferré, M.; Humphries, K.; Sarrafzadegan, N. The effect of tree nut, peanut, and soy nut consumption on blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials. Am. J. Clin. Nutr. 2015, 101, 966–982. [Google Scholar] [CrossRef] [Green Version]
- Li, T.Y.; Brennan, A.M.; Wedick, N.M.; Mantzoros, C.; Rifai, N.; Hu, F.B. Regular consumption of nuts is associated with a lower risk of cardiovascular disease in women with type 2 diabetes. J. Nutr. 2009, 139, 1333–1338. [Google Scholar] [CrossRef] [Green Version]
- Kendall, C.W.C.; Esfahani, A.; Josse, A.R.; Augustin, L.S.A.; Vidgen, E.; Jenkins, D.J.A. The glycemic effect of nut-enriched meals in healthy and diabetic subjects. Nutr. Metab. Cardiovasc. Dis. 2011, 21, S34–S39. [Google Scholar] [CrossRef]
- Kendall, C.W.C.; Josse, A.R.; Esfahani, A.; Jenkins, D.J.A. The impact of pistachio intake alone or in combination with high-carbohydrate foods on post-prandial glycemia. Eur. J. Clin. Nutr. 2011, 65, 696–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josse, A.R.; Kendall, C.W.C.; Augustin, L.S.A.; Ellis, P.R.; Jenkins, D.J.A. Almonds and postprandial glycemia—A dose-response study. Metabolism 2007, 56, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Viguiliouk, E.; Kendall, C.W.; Blanco Mejia, S.; Cozma, A.I.; Ha, V.; Mirrahimi, A.; Jayalath, V.H.; Augustin, L.S.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled dietary trials. PLoS ONE 2014, 9, e103376. [Google Scholar] [CrossRef]
- Tindall, A.M.; Johnston, E.A.; Kris-Etherton, P.M.; Petersen, K.S. The effect of nuts on markers of glycemic control: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2019, 109, 297–314. [Google Scholar] [CrossRef]
- Neale, E.P.; Guan, V.; Tapsell, L.C.; Probst, Y.C. Effect of walnut consumption on markers of blood glucose control: A systematic review and meta-analysis. Br. J. Nutr. 2020, 124, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xia, J.; Ke, Y.; Cheng, J.; Yuan, J.; Wu, S.; Lv, Z.; Huang, S.; Kim, J.H.; Wong, S.Y.S.; et al. Effects of nut consumption on selected inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Nutrition 2018, 54, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Segura, R.; Javierre, C.; Lizarraga, M.A.; Ros, E. Other relevant components of nuts: Phytosterols, folate and minerals. Br. J. Nutr. 2006, 96, S36–S44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, J.; Ballevre, O.; Luo, H.; Zhang, W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens. Res. 2012, 35, 370–374. [Google Scholar] [CrossRef] [Green Version]
- Zibella, M.; Parillo, M. Effects of nuts on postprandial glycemia, satiety and hunger sensations in healthy individuals. MNM 2017, 10, 243–249. [Google Scholar] [CrossRef]
- Creedon, A.C.; Hung, E.S.; Berry, S.E.; Whelan, K. Nuts and their effect on gut microbiota, gut function and symptoms in adults: A systematic review and meta-analysis of randomised controlled trials. Nutrients 2020, 12, 2347. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, S.; Liu, Z.; Wei, H.; Zhang, L.; He, M.; Pei, F.; Zhang, J.; Sun, Q.; Duan, L. Increased expression of colonic mucosal melatonin in patients with irritable bowel syndrome correlated with gut dysbiosis. Genom. Proteom. Bioinform. 2021, 18, 708–720. [Google Scholar] [CrossRef]
- Wong, J.M.W.; de Souza, R.; Kendall, C.W.C.; Emam, A.; Jenkins, D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef]
<2 Weekly Servings n = 902 (85.3%) | ≥2 Weekly Servings n = 156 (14.7%) | p | |
---|---|---|---|
Men % | 42.9 | 34.0 | 0.043 |
Age, years | 47 (36–57) | 43 (34–55) | 0.054 |
Current smoker, % | 11.8 | 8.0 | 0.208 |
Diet score | 11 (9–14) | 11 (9–14) | 0.811 |
Energy intake, MJ | 7.6 (6.4–9.1) | 8.4 (7.3–9.8) | <0.001 |
Physical activity, METmin/d | 283 (154–465) | 344 (210–593) | <0.001 |
Insulin dose/kg | 0.58 (0.46–0.75) | 0.51 (0.38–0.65) | <0.001 |
eGFR, ml/min/1.73 m2 | 100 (86–112) | 101 (89–111) | 0.392 |
Metabolic syndrome, % | 67.1 | 44.9 | <0.001 |
Metabolic syndrome score | 3 (2–4) | 2 (2–4) | <0.001 |
SBP, mmHg | 135 (123–149) | 131 (122–144) | 0.008 |
DBP, mmHg | 77 ± 9 | 76 ± 8 | 0.205 |
Total cholesterol, mmol/L | 4.6 (4.0–5.2) | 4.5 (3.9–5.1) | 0.282 |
HDL-cholesterol, mmol/L | 1.6 (1.3–1.9) | 1.7 (1.4–1.9) | 0.166 |
Triglycerides, mmol/L | 0.95 (0.74–1.27) | 0.77 (0.63–1.09) | <0.001 |
HbA1c, mmol/mol | 64 (56–72) | 58 (51–66) | <0.001 |
HbA1c, % | 8.0 (7.3–8.7) | 7.5 (6.8–8.2) | <0.001 |
Waist circumference, cm | 88 (80–97) | 83 (75–91) | <0.001 |
Overweight/obese, % | 57.1 | 43.6 | 0.002 |
BMI, kg/m2 | 25.7 (23.3–28.6) | 24.5 (22.9–26.7) | <0.001 |
Servings per Week | <2 Weekly Servings | ≥2 Weekly Servings | |||
---|---|---|---|---|---|
B (95% CI) | p | Mean (95% CI) | Mean (95% CI) | p | |
Metabolic syndrome score | −0.051 (−0.079–−0.022) | <0.001 | 3.2 (3.1–3.3) | 2.8 (2.6–3.0) | <0.001 |
Waist circumference, cm | −0.286 (−0.562–−0.010) | 0.042 | 89 (88–90) | 86 (84–88) | 0.005 |
SBP, mmHg | −0.343 (−0.712–0.027) | 0.069 | 136 (135–137) | 135 (132–137) | 0.181 |
DBP, mmHg | −0.105 (−0.322–0.112) | 0.342 | 77 (76–77) | 76 (74–77) | 0.462 |
Triglycerides, mmol/L | −0.004 (−0.020–0.012) | 0.619 | 1.12 (1.07–1.16) | 1.07 (0.96–1.18) | 0.426 |
HDL-cholesterol, mmol/L | −0.004 (−0.013–0.006) | 0.455 | 1.65 (1.62–1.68) | 1.64 (1.58–1.71) | 0.876 |
HbA1c, mmol/mol | −0.470 (−0.777–−0.162) | 0.003 | 65 (64–66) | 60 (58–62) | <0.001 |
BMI, kg/m2 | −0.103 (−0.203–−0.004) | 0.041 | 26.3 (26.0–26.6) | 25.3 (24.6–26.0) | 0.008 |
Servings Per Week | <2 Weekly Servings | ≥2 Weekly Servings | |||
---|---|---|---|---|---|
B (95% CI) | p | B (95% CI) | p | ||
Metabolic syndrome | 0.915 (0.866–0.968) | 0.002 | Ref. | 0.482 (0.324–0.718) | <0.001 |
Waist component | 0.957 (0.909–1.007) | 0.090 | Ref. | 0.627 (0.434–0.905) | 0.013 |
BP component | 0.913 (0.861–0.967) | 0.002 | Ref. | 0.555 (0.362–0.851) | 0.007 |
Triglyceride component | 0.925 (0.870–0.984) | 0.013 | Ref. | 0.623 (0.407–0.952) | 0.029 |
HDL-cholesterol component | 0.940 (0.888–0.996) | 0.036 | Ref. | 0.638 (0.424–0.958) | 0.030 |
Suboptimal glycaemic control | 0.936 (0.891–0.983) | 0.008 | Ref. | 0.485 (0.340–0.693) | <0.001 |
Overweight/obesity | 0.955 (0.909–1.002) | 0.063 | Ref. | 0.666 (0.467–0.950) | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahola, A.J.; Forsblom, C.M.; Harjutsalo, V.; Groop, P.-H., on behalf of the FinnDiane Study Group. Nut Consumption Is Associated with Lower Risk of Metabolic Syndrome and Its Components in Type 1 Diabetes. Nutrients 2021, 13, 3909. https://doi.org/10.3390/nu13113909
Ahola AJ, Forsblom CM, Harjutsalo V, Groop P-H on behalf of the FinnDiane Study Group. Nut Consumption Is Associated with Lower Risk of Metabolic Syndrome and Its Components in Type 1 Diabetes. Nutrients. 2021; 13(11):3909. https://doi.org/10.3390/nu13113909
Chicago/Turabian StyleAhola, Aila J., Carol M. Forsblom, Valma Harjutsalo, and Per-Henrik Groop on behalf of the FinnDiane Study Group. 2021. "Nut Consumption Is Associated with Lower Risk of Metabolic Syndrome and Its Components in Type 1 Diabetes" Nutrients 13, no. 11: 3909. https://doi.org/10.3390/nu13113909
APA StyleAhola, A. J., Forsblom, C. M., Harjutsalo, V., & Groop, P. -H., on behalf of the FinnDiane Study Group. (2021). Nut Consumption Is Associated with Lower Risk of Metabolic Syndrome and Its Components in Type 1 Diabetes. Nutrients, 13(11), 3909. https://doi.org/10.3390/nu13113909