Dietary Diversity and Nutrient Intake of Han and Dongxiang Smallholder Farmers in Poverty Areas of Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants’ Nutrient Adequacy Ratio (NAR)
2.2. Dietary Data
2.3. Anthropometric Measures
2.4. Definitions of Study Variables
2.5. Assessment of Nutrient Adequacy
2.6. Statistics Analysis
2.7. Ethics Statement
3. Results
3.1. Dietary Diversity Score (DDS) Based on Basic Characteristics
3.2. Energy, Nutrients, and Food Groups Intake of the Participants by Ethnicity Groups
3.3. Consumption of Energy, Nutrients and Food Groups Based on the Dietary Diversity Score (DDS) Groups
3.4. Nutrient Adequacy Ratio (NAR) of Specific Nutrients in Two Ethnicity Groups
3.5. Nutrient Adequacy Ratio (NAR) of Specific Nutrients by Dietary Diversity Score (DDS) Groups
3.6. Linear Regression Model of Predictors of Mean Adequacy Ratio (MAR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, W.; Yu, K.; Tan, S.; Zheng, Y.; Zhao, A.; Wang, P.; Zhang, Y. Dietary diversity scores: An indicator of micronutrient inadequacy instead of obesity for Chinese children. BMC Public Health 2017, 17, 440. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.L.; West, K.P.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66, 22–33. [Google Scholar] [CrossRef]
- Farhat, G.; Lees, E.; Macdonald-Clarke, C.; Amirabdollahian, F. Inadequacies of micronutrient intake in normal weight and overweight young adults aged 18-25 years: A cross-sectional study. Public Health 2019, 167, 70–77. [Google Scholar] [CrossRef]
- Otsuka, R.; Kato, Y.; Nishita, Y.; Tange, C.; Nakamoto, M.; Tomida, M.; Imai, T.; Ando, F.; Shimokata, H.; Suzuki, T. Dietary diversity and 14-year decline in higher-level functional capacity among middle-aged and elderly Japanese. Nutrition 2016, 32, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Wang, Y.; Li, T.; Loo-Bouwman, C.A.V.; Zhang, Y.; Man-Yau Szeto, I. Dietary Diversity and Food Variety in Chinese Children Aged 3-17 Years: Are They Negatively Associated with Dietary Micronutrient Inadequacy? Nutrients 2018, 10, 1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Zhao, L.; Man, Q.; Wang, J.; Zhao, W.; Zhang, J. Dietary micronutrients intake status among Chinese elderly people living at home: Data from CNNHS 2010-2012. Nutrients 2019, 11, 1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, R.M.; Rose, A.M.C.; Forouhi, N.G.; Unwin, N. Nutritional adequacy and dietary disparities in an adult Caribbean population of African descent with a high burden of diabetes and cardiovascular disease. Food Sci. Nutr. 2020, 8, 1335–1344. [Google Scholar] [CrossRef]
- Hatløy, A.; Torheim, L.E.; Oshaug, A. Food variety-a good indicator of nutritional adequacy of the diet? A case study from an urban area in Mali, West Africa. Eur. J. Clin. Nutr. 1998, 52, 891–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, T.; Tanisawa, K.; Kawakami, R.; Usui, C.; Ishii, K.; Suzuki, K.; Sakamoto, S.; Muraoka, I.; Oka, K.; Higuchi, M. Micronutrient intake adequacy in men and women with a healthy Japanese dietary pattern. Nutrients 2020, 12, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Wan, Q.Q.; Yu, S.Y.; Liu, Z.T.; Zhao, J.; Li, J.J.; Wang, X.W.; Ruan, Y.; Wan, R. Correlation of dietary diversity and growth of children aged 2~6 years old in poor areas, Yunnan. Chin. J. Child Health Care 2015, 23, 759–761. [Google Scholar]
- Frempong, R.B.; Annim, S.K. Dietary diversity and child malnutrition in Ghana. Heliyon 2017, 3, e00298. [Google Scholar] [CrossRef] [Green Version]
- Chakona, G.; Shackleton, C. Minimum dietary diversity scores for women indicate micronutrient adequacy and food insecurity status in South African towns. Nutrients 2017, 9, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayogu, R. Energy and nutrient intakes of rural Nigerian schoolchildren: Relationship with dietary diversity. Food Nutr. Bull. 2019, 40, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zheng, Z.; Henneberry, S.R. Is nutritional status associated with income growth? Evidence from Chinese adults. China Agric. Econ. Rev. 2020, 12, 507–525. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, J.; Du, W.; Su, C.; Zhang, B.; Wang, H. Energy intake and energy contributions of macronutrients and major food sources among Chinese adults: CHNS 2015 and CNTCS 2015. Eur. J. Clin. Nutr. 2020, 75, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Du, S.F.; Lu, B.; Zhai, F.Y.; Popkin, B.M. A new stage of the nutrition transition in China. Public Health Nutr. 2002, 5, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wan, G.H.; Wu, W.Z. Transformation of China’s poverty-reduction Strategy and Related Challenges. China Ind. Econ. 2020, 1, 5–23. [Google Scholar]
- Gansu Statistics Bureau. Available online: http://tjj.gansu.gov.cn/tjnj/2020/zk/indexch.htm (accessed on 14 December 2020).
- McGuire, S. WHO, World Food Programme, and International Fund for Agricultural Development. 2012. The State of Food Insecurity in the World 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. Rome, FAO. Adv. Nutr. 2013, 4, 126–127. [Google Scholar] [CrossRef] [Green Version]
- Arimond, M.; Wiesmann, D.; Becquey, E.; Carriquiry, A.; Daniels, M.C.; Deitchler, M.; Fanou-Fogny, N.; Joseph, M.L.; Kennedy, G.; Martin-Prevel, Y.; et al. Simple food group diversity indicators predict micronutrient adequacy of women’s diets in 5 diverse, resource-poor settings. J. Nutr. 2010, 140, 2059s–2069s. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.F.; Yang, J.W.; Zhou, H.X. Comparative on Physical Fitness Growth between Dongxiang and Rural Han Nationality 7 similar to 18 Years Students. In Proceedings of the 3rd International Conference on Physical Education and Society Management (ICPESM), Sanya, China, 20–21 February 2014; pp. 49–54. [Google Scholar]
- Su, P.; Zhou, G.; Ma, h.; Ma, L.Y.; Lei, L.F.; Wang, N. The prevalence of dyslipidemia in middle-aged and elderly residents of the Dongxiang Chinese in Gansu province. Chin. J. Gerontol. 2017, 37, 2711–2713. [Google Scholar]
- Zhang, Q.; Chen, X.; Liu, Z.; Varma, D.S.; Wan, R.; Zhao, S. Diet diversity and nutritional status among adults in southwest China. PLoS ONE 2017, 12, e0172406. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhao, A.; Zhao, W.; Tan, S.; Zhang, J.; Zhang, Y.; Wang, P. Do Chinese preschool children eat a sufficiently diverse diet? A cross-sectional study in China. Nutrients 2018, 10, 794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, D.; He, Y.n.; Guo, Q.; Fang, H.; Xu, X.; Fang, Y.; Li, J.; Zhao, L. Trends of energy and nutrients intake among Chinese population in 2002-2012. J. Hyg. Res. 2016, 45, 527–533. [Google Scholar]
- Wang, Z. Atlas of the Illustrative Food Pictures for Use in Dietary Intake Recall, 1st ed.; School of Public Health, Nanjing Medical University: Nanjing, China, 2008; pp. 1–121. [Google Scholar]
- Bei-fan, Z. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults-study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar] [CrossRef]
- Tian, X.; Xu, X.; Zhang, K.; Wang, H. Gender difference of metabolic syndrome and its association with dietary diversity at different ages. Oncotarget 2017, 8, 73568–73578. [Google Scholar] [CrossRef] [Green Version]
- Gómez, G.; Nogueira Previdelli, Á.; Fisberg, R.M.; Kovalskys, I.; Fisberg, M.; Herrera-Cuenca, M.; Cortés Sanabria, L.Y.; Yépez García, M.C.; Rigotti, A.; Liria-Domínguez, M.R. Dietary diversity and micronutrients adequacy in women of childbearing age: Results from ELANS study. Nutrients 2020, 12, 1994. [Google Scholar] [CrossRef] [PubMed]
- Chinese Nutrition Society. Chinese Dietary Reference Intakes (2013); Science Press: Beijing, China, 2014; ISBN 978-7-03-041401-4. [Google Scholar]
- Yin, Z.; Fei, Z.; Qiu, C.; Brasher, M.S.; Kraus, V.B.; Zhao, W.; Shi, X.; Zeng, Y. Dietary diversity and cognitive function among elderly people: A population-based study. J. Nutr. Health Aging 2017, 21, 1089–1094. [Google Scholar] [CrossRef]
- Bi, J.; Liu, C.; Li, S.; He, Z.; Chen, K.; Luo, R.; Wang, Z.; Yu, Y.; Xu, H. Dietary diversity among preschoolers: A cross-sectional study in poor, rural, and ethnic minority areas of central south China. Nutrients 2019, 11, 558. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shively, G.E.; Binkley, J.K. Access to variety contributes to dietary diversity in China. Food Policy 2014, 49, 323–331. [Google Scholar] [CrossRef]
- Bezerra, I.N.; Sichieri, R. Household food diversity and nutritional status among adults in Brazil. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Mirmiran, P.; Azadbakht, L.; Esmaillzadeh, A.; Azizi, F. Dietary diversity score in adolescents—a good indicator of the nutritional adequacy of diets: Tehran lipid and glucose study. Asia Pac. J. Clin. Nutr. 2004, 13, 56–60. [Google Scholar] [PubMed]
- Miller, V.; Yusuf, S.; Chow, C.K.; Dehghan, M.; Corsi, D.J.; Lock, K.; Popkin, B.; Rangarajan, S.; Khatib, R.; Lear, S.A. Availability, affordability, and consumption of fruits and vegetables in 18 countries across income levels: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet Glob. Health 2016, 4, e695–e703. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Jones, A.D.; Jain, M. Regional differences in agricultural and socioeconomic factors associated with farmer household dietary diversity in India. PLoS ONE 2020, 15, e0231107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desta, M.; Akibu, M.; Tadese, M.; Tesfaye, M. Dietary diversity and associated factors among pregnant women attending antenatal clinic in Shashemane, Oromia, Central Ethiopia: A cross-sectional study. J. Nutr. Metab. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.D. Critical review of the emerging research evidence on agricultural biodiversity, diet diversity, and nutritional status in low-and middle-income countries. Nutr. Rev. 2017, 75, 769–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochieng, J.; Afari-Sefa, V.; Lukumay, P.J.; Dubois, T. Determinants of dietary diversity and the potential role of men in improving household nutrition in Tanzania. PLoS ONE 2017, 12, e0189022. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, Y.; Ishikawa, M.; Yokoyama, T.; Hayashi, T.; Nakaya, T.; Takemi, Y.; Kusama, K.; Yoshiike, N.; Nozue, M.; Yoshiba, K. Physical and social determinants of dietary variety among older adults living alone in Japan. Geriatr. Gerontol. Int. 2017, 17, 2232–2238. [Google Scholar] [CrossRef]
- Otto, M.C.; Padhye, N.S.; Bertoni, A.G.; Jacobs, D.R.; Mozaffarian, D. Everything in Moderation-Dietary Diversity and Quality, Central Obesity and Risk of Diabetes. PLoS ONE 2015, 10, e0141341. [Google Scholar]
- Tesfaye, T.S.; Zeleke, T.M.; Alemu, W.; Argaw, D.; Bedane, T.K. Dietary diversity and physical activity as risk factors of abdominal obesity among adults in Dilla town, Ethiopia. PLoS ONE 2020, 15, e0236671. [Google Scholar]
- Oldewage-Theron, W.H.; Kruger, R. Food variety and dietary diversity as indicators of the dietary adequacy and health status of an elderly population in Sharpeville, South Africa. J. Nutr. Elder. 2008, 27, 101–133. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, S.; Dorosty-Motlagh, A.R.; Hoshiar-Rad, A.; Eshraghian, M.R.; Sotoudeh, G.; Azadbakht, L.; Karimi, M.; Jalali-Farahani, S. Is dietary diversity a proxy measurement of nutrient adequacy in Iranian elderly women? Appetite 2016, 105, 468–476. [Google Scholar] [CrossRef]
- Quann, E.E.; Fulgoni, V.L.; Auestad, N. Consuming the daily recommended amounts of dairy products would reduce the prevalence of inadequate micronutrient intakes in the United States: Diet modeling study based on NHANES 2007-2010. Nutr. J. 2015, 14, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masset, G.; Scarborough, P.; Rayner, M.; Mishra, G.; Brunner, E.J. Can nutrient profiling help to identify foods which diet variety should be encouraged? Results from the Whitehall II cohort. Br. J. Nutr. 2015, 113, 1800–1809. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.Y.; Fang, Y.H.; He, Y.N.; Yu, D.M.; Guo, Q.Y.; Yu, W.T.; Fang, H.Y.; Wang, X.; Zhao, W.H. Trends of food consumption among Chinese population in 1992—2012. J. Hyg. Res. 2016, 45, 522–526. [Google Scholar]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano-Ibáñez, N.; Gea, A.; Martínez-González, M.A.; Salas-Salvadó, J.; Corella, D.; Zomeño, M.D.; Romaguera, D.; Vioque, J.; Aros, F.; Wärnberg, J. Dietary diversity and nutritional adequacy among an older Spanish population with metabolic syndrome in the PREDIMED-Plus study: A cross-sectional analysis. Nutrients 2019, 11, 958. [Google Scholar] [CrossRef] [Green Version]
- Gavelle, E.; Huneau, J.F.; Mariotti, F. Patterns of protein food intake are associated with nutrient adequacy in the general French adult population. Nutrients 2018, 10, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Basic Characteristics | N | (%) | DDS (Mean ± SD) | p |
---|---|---|---|---|
Gender | ||||
Male | 330 | (66.13) | 3.82 ± 0.99 | 0.891 |
Female | 169 | (33.87) | 3.80 ± 1.07 | |
Ethnicity | ||||
Han | 250 | (50.10) | 4.18 ± 1.10 | <0.001 *** |
Dongxiang | 249 | (49.90) | 3.45 ± 0.76 | |
Age (years) | ||||
18~ | 205 | (41.08) | 3.85 ± 1.05 | 0.002 ** |
45~ | 216 | (43.29) | 3.91 ± 1.02 | |
60~ | 78 | (15.63) | 3.45 ± 0.82 | |
Education level | ||||
Primary or below | 363 | (72.75) | 3.59 ± 0.92 | <0.001 *** |
Middle school | 82 | (16.43) | 4.22 ± 0.96 | |
High school/secondary technical school | 35 | (7.01) | 4.43 ± 1.04 | |
College/technical school | 19 | (3.81) | 5.21 ± 0.86 | |
Household monthly income (yuan) | ||||
<1500 | 324 | (64.93) | 3.60 ± 0.91 | <0.001 *** |
1500~ | 97 | (19.44) | 3.98 ± 1.01 | |
2500~ | 38 | (7.62) | 4.29 ± 1.11 | |
≤3500 | 40 | (8.01) | 4.68 ± 1.05 | |
Household size | ||||
<3 | 36 | (7.21) | 3.39 ± 0.80 | <0.001 *** |
3~ | 259 | (51.90) | 4.04 ± 1.11 | |
6~ | 173 | (34.67) | 3.65 ± 0.85 | |
≥9 | 31 | (6.22) | 3.35 ± 0.71 | |
Marital status | ||||
Married | 452 | (90.58) | 3.82 ± 1.01 | 0.855 |
Unmarried | 47 | (9.42) | 3.79 ± 1.04 | |
Nutritional knowledge | ||||
Above the mean | 211 | (42.28) | 4.39 ± 0.81 | <0.001 *** |
Below the mean | 288 | (57.72) | 4.26 ± 1.10 | |
Weight status (determined by BMI) | ||||
Underweight | 38 | (7.62) | 3.58 ± 0.92 | 0.006 ** |
Normal weight | 312 | (62.53) | 3.76 ± 1.02 | |
Overweight | 117 | (23.45) | 4.09 ± 1.01 | |
Obesity | 32 | (6.40) | 3.63 ± 0.91 |
Nutrients | Total (N = 499) | Han (n = 250) | Dongxiang (n = 249) | p |
---|---|---|---|---|
Energy | 1784.00 (1401.33, 2194.00) | 1893.83 (1477.42, 2256.25) | 1696.33 (1352.50, 2152.17) | 0.042 * |
Protein | 50.37 (39.73, 63.63) | 51.42 (42.00, 64.97) | 47.63 (37.00, 62.90) | 0.044 * |
Fat | 31.73 (25.00, 42.13) | 37.00 (29.23, 51.57) | 28.47 (22.53, 33.13) | <0.001 *** |
Carbohydrates | 312.10 (241.23, 396.76) | 315.13 (242.41, 389.60) | 307.00 (240.77, 410.03) | 0.826 |
Cholesterol | 5.67 (0.00, 151.67) | 65.33 (0.00, 257.33) | 0.00 (0.00, 32.50) | <0.001 *** |
Vitamin A | 46.33 (15.00, 132.33) | 82.67 (32.67, 185.50) | 23.00 (9.17, 64.50) | <0.001 *** |
Vitamin E | 18.23 (14.72, 22.57) | 20.27 (15.50, 25.64) | 17.12 (13.76, 20.13) | <0.001 *** |
Thiamine | 1.00 (0.77, 1.35) | 1.11 (0.83, 1.44) | 0.94 (0.71, 1.27) | <0.001 *** |
Riboflavin | 0.46 (0.34, 0.60) | 0.51 (0.38, 0.64) | 0.40 (0.30, 0.55) | <0.001 * |
Pyridoxine | 0.38 (0.23, 0.65) | 0.28 (0.17, 0.42) | 0.40 (0.30, 0.55) | <0.001 *** |
Vitamin C | 40.80 (24.77, 67.50) | 29.58 (18.03, 46.09) | 55.73 (35.30, 81.68) | <0.001 *** |
Niacin | 10.13 (7.44, 13.28) | 10.91 (8.21, 13.75) | 9.12 (7.02, 12.59) | <0.001 *** |
Calcium | 164.00 (125.00, 223.00) | 165.17 (121.92, 219.75) | 163.33 (125.83, 224.17) | 0.96 |
Potassium | 1437.67 (1131.27, 1820.70) | 1319.63 (1034.22, 1681.88) | 1551.80 (1215.68, 2018.37) | <0.001 *** |
Phosphorus | 798.73 (631.73, 988.80) | 822.98 (666.18, 999.98) | 759.40 (590.40, 985.60) | 0.065 |
Magnesium | 260.33 (202.00, 319.67) | 267.17 (211.33, 324.17) | 249.33 (196.33, 315.50) | 0.113 |
Iron | 18.80 (14.37, 24.63) | 19.15 (14.86, 24.57) | 18.37 (13.82, 25.30) | 0.471 |
Zinc | 6.36 (5.06, 8.16) | 6.68 (5.45, 8.55) | 5.84 (4.65, 8.11) | 0.001 ** |
Selenium | 35.51 (26.79, 48.00) | 34.50 (25.56, 44.67) | 36.98 (27.41, 51.49) | <0.032 * |
Food groups | ||||
Grain | 647.00 (513.33, 828.33) | 627.50 (482.98, 771.95) | 695.00 (542.67, 913.50) | <0.001 *** |
Vegetables | 80.00 (41.70, 137.00) | 80.85 (36.70, 154.78) | 77.50 (48.33, 125.00) | 0.633 |
Fruits | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.004 ** |
Meats | 0.00 (0.00, 10.00) | 0.00 (0.00, 21.70) | 0.00 (0.00, 0.00) | <0.001 *** |
Fish | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.008 ** |
Eggs | 0.00 (0.00, 20.00) | 0.00 (0.00, 42.00) | 0.00 (0.00, 0.00) | <0.001 *** |
Dairy | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.986 |
Beans | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.001 ** |
Oil | 23.00 (18.33, 27.67) | 25.17 (20.00, 31.00) | 21.00 (16.83, 24.83) | <0.001 *** |
Nutrients | Low (n = 378) | Medium (n = 86) | High (n = 35) | p |
---|---|---|---|---|
Energy | 1758.67 (1392.42, 2173.83) | 1855.50 (1441.25, 2241.00) | 1906.00 (1267.00, 2424.67) | 0.546 |
Protein | 48.73 (38.62, 61.44) a | 54.00 (44.04, 70.12) b | 58.50 (42.33, 78.00) b | 0.006 ** |
Fat | 29.50 (23.66, 35.94) a | 46.53 (32.73, 61.98) b | 53.50 (35.03, 71.33) b | <0.001 *** |
Carbohydrate | 317.42 (248.02, 405.75) | 291.73 (231.52, 369.92) | 307.13 (209.30, 371.20) | 0.03 * |
Cholesterol | 0.00 (0.00, 26.67) a | 200 (112.17, 370.92) b | 277.33 (228.67, 508.33) b | <0.001 *** |
Vitamin A | 27.83 (11.67, 70.00) a | 149.50 (86.50, 233.58) b | 205.67 (116.67, 253.33) b | <0.001 *** |
Vitamin E | 17.66 (13.98, 21.39) a | 20.60 (16.88, 26.43) b | 21.89 (17.31, 30.72) b | <0.001 *** |
Thiamine | 1.02 (0.77, 1.34) | 1.00 (0.77, 1.35) | 0.94 (0.71, 1.44) | 0.908 |
Riboflavin | 0.41 (0.31, 0.55) a | 0.55 (0.46, 0.68) b | 0.60 (0.47, 0.84) b | <0.001 *** |
Pyridoxine | 0.44 (0.27, 0.72) a | 0.27 (0.16, 0.44) b | 0.21 (0.15, 0.31) b | <0.001 *** |
Vitamin C | 41.72 (26.67, 67.67) | 37.10 (24.28, 66.63) | 27.57 (19.20, 71.83) | 0.243 |
Niacin | 9.72 (7.33, 12.85) a | 10.98 (8.53, 13.88) b | 11.99 (8.00, 14.04) b | 0.006 ** |
Calcium | 155.33 (120.25, 202.08) a | 190.67 (137.00, 265.08) b | 217.00 (165.00, 293.67) b | <0.001 *** |
Potassium | 1438.83 (1148.53, 1871.01) | 1391.92 (1039.88, 1755.23) | 1502.43 (1187.67, 1767.70) | 0.679 |
Phosphorus | 773.82 (618.58, 975.43) a | 833.85 (663.14, 999.23) | 870.73 (642.87, 1147.23) b | 0.133 |
Magnesium | 259.17 (203.42, 322.75) | 265.33 (200.92, 318.75) | 268.00 (183.67, 320.33) | 0.945 |
Iron | 18.67 (14.35, 24.39) | 18.45 (14.79, 25.40) | 22.50 (13.27, 25.53) | 0.748 |
Zinc | 6.11 (4.84, 7.93) a | 6.69 (5.65, 8.89) b | 8.09 (5.62, 10.47) b | <0.001 *** |
Selenium | 34.70 (25.85, 45.67) | 37.58 (28.86, 56.01) | 40.38 (30.84, 61.47) | 0.015 * |
Food groups | ||||
Grains | 673.30 (542.48, 876.50) a | 591.00 (444. 33, 773.10) b | 533.30 (386.70, 645.70) b | <0.001 *** |
Vegetables | 74.50 (33.33, 126.70) a | 113.35 (62.90, 181.68) b | 84.30 (49.00, 155.00) b | <0.001 *** |
Fruits | 00.00 (0.00, 0.00) a | 0.00 (0.00, 24.17) b | 33.30 (0.00, 116.70) c | <0.001 *** |
Meats | 0.00 (0.00, 0.00) a | 17.50 (3.33, 53.30) b | 38.30 (10.00, 76.70) b | <0.001 *** |
Fish | 0.00 (0.00, 0.00) a | 0.00 (0.00, 0.00) a | 0.00 (0.00, 0.00) b | <0.001 *** |
Eggs | 0.00 (0.00, 0.00) a | 31.50 (0.00, 56.15) b | 44.00 (22.00, 76.00) b | <0.001 *** |
Dairy | 0.00 (0.00, 0.00) a | 0.00 (0.00, 0.00) b | 0.00 (0.00, 0.00) b | 0.001 ** |
Beans | 0.00 (0.00, 0.00) a | 0.00 (0.00, 0.00) a | 0.00 (0.00, 0.00) b | <0.001 *** |
Oil | 22.00 (18.00, 26.67) a | 25.00 (19.25, 30.75) b | 28.33 (20.67, 33.33) b | <0.001 *** |
NARs | Overall (N = 499) | Han (n = 250) | Dongxiang (n = 249) | p |
---|---|---|---|---|
Vitamin A | 0.088 (0.028, 0.251) | 0.154 (0.061, 0.344) | 0.044 (0.018, 0.126) | <0.001 *** |
Vitamin E | 1.302 (1.051, 1.612) | 1.448 (1.107, 1.831) | 1.223 (0.983, 1.438) | <0.001 *** |
Thiamine | 0.892 (0.692, 1.200) | 0.992 (0.738, 1.262) | 0.825 (0.663, 1.079) | <0.001 *** |
Riboflavin | 0.400 (0.308, 0.533) | 0.450 (0.350, 0.558) | 0.350 (0.280, 0.479) | <0.001 *** |
Pyridoxine | 0.315 (0.183, 0.531) | 0.215 (0.131, 0.342) | 0.450 (0.284, 0.700) | <0.001 *** |
Vitamin C | 0.482 (0.291, 0.796) | 0.348 (0.212, 0.542) | 0.662 (0.417, 0.968) | <0.001 *** |
Niacin | 0.899 (0.689, 1.143) | 0.971 (0.746, 1.205) | 0.824 (0.629, 1.087) | <0.001 *** |
Calcium | 0.231 (0.176, 0.303) | 0.228 (0.167, 0.294) | 0.236 (0.182, 0.306) | 0.117 |
Potassium | 0.720 (0.566, 0.915) | 0.660 (0.517, 0.841) | 0.789 (0.611, 1.012) | <0.001 *** |
Magnesium | 0.931 (0.725, 1.144) | 0.955 (0.755, 1.158) | 0.898 (0.702, 1.137) | 0.164 |
Iron | 1.959 (1.392, 2.689) | 1.943 (1.457, 2.691) | 1.970 (1.277, 2.689) | 0.624 |
Zinc | 0.738 (0.568, 0.964) | 0.766 (0.592, 1.013) | 0.703 (0.532, 0.885) | 0.008 ** |
Phosphorus | 1.332 (1.055, 1.664) | 1.372 (1.119, 1.677) | 1.267 (0.989, 1.653) | 0.100 |
Selenium | 0.713 (0.542, 0.968) | 0.690 (0.511, 0.894) | 0.749 (0.551, 1.031) | 0.022 * |
MAR | 0.813 (0.648, 1.035) | 0.820 (0.657, 1.053) | 0.800 (0.635, 1.004) | 0.399 |
NARs | Low (n = 378) | Medium (n = 86) | High (n = 35) | p1 | r2 | p |
---|---|---|---|---|---|---|
Vitamin A | 0.053 (0.022, 0.128) a | 0.304 (0.187, 0.455) b | 0.367 (0.236, 0.501) b | <0.001 *** | 0.708 | <0.001 *** |
Vitamin E | 1.261 (0.999, 1.528) a | 1.471 (1.205, 1.888) b | 1.564 (1.236, 2.194) b | <0.001*** | 0.306 | <0.001 *** |
Thiamine | 0.892 (0.692, 1.181) | 0.923 (0.704, 1.242) | 0.808 (0.683, 1.200) | 0.902 | 0.036 | 0.426 |
Riboflavin | 0.367 (0.283, 0.475) a | 0.500 (0.415, 0.643) b | 0.533 (0.450, 0.700) b | <0.001 *** | 0.419 | <0.001 *** |
Pyridoxine | 0.356 (0.208, 0.584) a | 0.219 (0.123, 0.360) b | 0.169 (0.115, 0.258) b | <0.001 *** | −0.315 | <0.001 *** |
Vitamin C | 0.491 (0.314, 0.797) | 0.465 (0.286, 0.807) | 0.324 (0.226, 0.845) | 0.251 | −0.072 | 0.108 |
Niacin | 0.852 (0.675, 1.123) a | 0.988 (0.785, 1.345) b | 1.009 (0.729, 1.278) | 0.002 ** | 0.207 | <0.001 *** |
Calcium | 0.221 (0.167, 0.287) a | 0.272 (0.208, 0.402) b | 0.318 (0.232, 0.395) b | <0.001 *** | 0.259 | <0.001 *** |
Iron | 1.959 (1.399, 2.644) | 1.906 (1.390, 2.754) | 2.274 (1.120, 2.837) | 0.885 | 0.051 | 0.254 |
Potassium | 0.720 (0.574, 0.936) | 0.702 (0.526, 0.881) | 0.751 (0.594, 0.884) | 0.819 | −0.021 | 0.646 |
Magnesium | 0.926 (0.730, 1.154) | 0.952 (0.730, 1.140) | 0.957 (0.656, 1.144) | 0.963 | 0.021 | 0.643 |
Zinc | 0.700 (0.547, 0.901) a | 0.828 (0.629, 1.067) b | 0.940 (0.715, 1.173) b | <0.001 *** | 0.219 | <0.001 *** |
Phosphorus | 1.290 (1.035, 1.636) | 1.421 (1.126, 1.688) | 1.451 (1.072, 1.912) | 0.089 | 0.125 | 0.005 ** |
Selenium | 0.694 (0.517, 0.914) | 0.784 (0.582, 1.127) | 0.808 (0.617, 1.229) | 0.090 | 0.145 | 0.001 ** |
MAR | 0.789 (0.636, 0.100) a | 0.891 (0.706, 1.126) b | 0.970 (0.666, 1.204) | 0.005 ** | 0.170 | <0.001 *** |
Variables | β | 95% CI | p |
---|---|---|---|
Gender | |||
Female (vs male) | −0.140 | (−0.196, −0.083) | <0.001 *** |
Nation | |||
Han (vs Dongxiang) | 0.084 | (0.014, 0.155) | 0.018 * |
Age | |||
45~ (vs 18~) | 0.068 | (0.006, 0.130) | 0.032 * |
60~ (vs 18~) | 0.021 | (−0.062, 0.104) | 0.621 |
Education level | |||
Middle school (vs primary or below) | 0.021 | (−0.06, 0.101) | 0.616 |
High school/secondary technical (vs primary or below) | 0.018 | (−0.094, 0.131) | 0.748 |
College/technical school (vs primary or below) | −0.018 | (−0.172, 0.136) | 0.823 |
Household monthly income (yuan) | |||
1500~ (vs <1500) | 0.044 | (−0.023, 0.112) | 0.198 |
2500~ (vs <1500) | 0.049 | (−0.052, 0.151) | 0.341 |
≥3500 (vs <1500) | 0.116 | (0.012, 0.219) | 0.028 * |
DDS | |||
Medium (vs low) | 0.060 | (−0.013, 0.132) | 0.105 |
High (vs low) | 0.128 | (0.019, 0.238) | 0.021 * |
Nutritional knowledge | |||
Above the mean (vs below the mean) | 0.050 | (−0.008, 0.109) | 0.093 |
Household size | |||
3~ (vs <3) | 0.016 | (−0.091, 0.124) | 0.764 |
6~ (vs <3) | −0.034 | (−0.146, 0.078) | 0.548 |
≥9 (vs <3) | 0.024 | (−0.121, 0.17) | 0.745 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Chen, Y.; Tang, S.; Chen, S.; Gong, S.; Jiang, X.; Wang, L.; Zhang, Y. Dietary Diversity and Nutrient Intake of Han and Dongxiang Smallholder Farmers in Poverty Areas of Northwest China. Nutrients 2021, 13, 3908. https://doi.org/10.3390/nu13113908
Wang Z, Chen Y, Tang S, Chen S, Gong S, Jiang X, Wang L, Zhang Y. Dietary Diversity and Nutrient Intake of Han and Dongxiang Smallholder Farmers in Poverty Areas of Northwest China. Nutrients. 2021; 13(11):3908. https://doi.org/10.3390/nu13113908
Chicago/Turabian StyleWang, Zhuo, Youhai Chen, Shihua Tang, Siqi Chen, Shaoqing Gong, Xinying Jiang, Liang Wang, and Ying Zhang. 2021. "Dietary Diversity and Nutrient Intake of Han and Dongxiang Smallholder Farmers in Poverty Areas of Northwest China" Nutrients 13, no. 11: 3908. https://doi.org/10.3390/nu13113908
APA StyleWang, Z., Chen, Y., Tang, S., Chen, S., Gong, S., Jiang, X., Wang, L., & Zhang, Y. (2021). Dietary Diversity and Nutrient Intake of Han and Dongxiang Smallholder Farmers in Poverty Areas of Northwest China. Nutrients, 13(11), 3908. https://doi.org/10.3390/nu13113908