Nutraceuticals for Peripheral Vestibular Pathology: Properties, Usefulness, Future Perspectives and Medico-Legal Aspects
Abstract
:1. Introduction
2. Search Strategy
3. Main Nutraceuticals
3.1. Ginkgo Biloba
Mechanism(s) of Action | Use in Peripheral Vestibular Vertigo/Dizziness | Possible Adverse Events | |
---|---|---|---|
Alpha-lipoic acid | Cofactor in enzymatic processes that produce energy. | Non-specific. | Generally safe, even if skin and gastrointestinal disorders are described [35]. |
Carnosine | Antioxidant, neuromodulatory, antinflammatory, neuroprotective, stimulation of mitochondria [36]. | Non-specific. | NA; probably none [37]. |
Citicoline | Neuroprotective, neuromodulatory, effect on phospholipid synthesis, decrease of their peroxidation, increase of blood flow, cerebral oedema reduction, increase of superoxide-dismutase activity, enhancement of acetylcholine, dopamine and noradrenalin synaptic levels, activation of SIRT-1 and neuronal repair [38,39,40]. | Non-specific, but showed utility in vertigo/dizziness [38,41]. | Safety comparable to placebo. Anxiety, leg oedema (more frequent), depression, falls and incontinence. Reported (not significant): stomach distress, headache, rash, cardiac abnormalities, insomnia, decrease in systolic blood pressure, excitability, restlessness, dizziness. Experimental rats models: creatinine increase, brown urine and lower urine volume in males, mineralisation in both males and females [42,43,44,45]. |
Coenzyme Q10 | Antioxidant, ATP production [46,47]. | MD-like syndromes, preventing hypoxia and improving patients’ symptoms, especially if there is a deficiency [46]. | Generally safe [46]. |
Curcumin | Antioxidant [48]. | Non-specific. | Generally safe [49,50]. |
Ginger | Antithrombotic, antiemetic (blocking 5HT3 receptor), antioxidant, anti-inflammatory (inhibition of COX2, lipoxygenase, and gene encoding inflammatory molecules), anti-infectious, antineoplastic, hypolipidaemic and hypoglycaemic, prokinetic, cardiovascular, thermogenic, analgesic, anti-allergic activity [51,52]. | Non-specific. Effective against nausea and vomiting and with motion sickness. Controversial in vertigo/dizziness [51,53,54]. | Possible adverse events mainly include gastrointestinal symptoms. Sleepiness is also documented, while allergic reactions are rare. There is no solid evidence for interactions with anti-coagulant drugs. Dizziness was described [51,52,55]. |
Ginkgo biloba | Neuroprotective, antioxidative, improvement of cerebral perfusion, stabilization of mitochondria, rheological properties, antinflammatory, antithrombotic and vasorelaxant action, catecholamines modulation. Activity on vestibular system (animal models) [27,28,29]. | Non-specific. Generally useful in vertigo/dizziness [27]. | Increase in blood pressure, dizziness, breathing rate. Poisoning: seizures, legsparalysis, unconsciousness, vomiting (susceptible subjects) [31]. |
Hawthorn | Acts on cardiovascular system and contributes also to relaxation and mental well-being. Hypolipidaemic, hypotensive, cardiotonic, antiarrhythmic, antioxidative activity [56,57]. | Non-specific. | Generally safe. Possible adverse events: gastrointestinal symptoms, dizziness, cardiac complaints [58]. |
Lactium | Calming and sleep-stimulating activity [59]. | Non-specific. | Generally safe. Reported: infections, gastrointestinal symptoms [59]. |
Lemon balm | Action on GABA system, neurocognitive effects and seems to act on cholinergic receptors. Improvements in mood and cognitive performance, antioxidant, anti-inflammatory, anti-nociceptive, hypoglycaemic, hyperlipidaemic, cardiologic, cytotoxic, antimicrobic, antispasmodic, antiepileptic effects are described. May be used in the management of various neurological pathologies or symptoms [60,61,62,63]. | Non specific and generally used in vertigo/dizziness. A formulation containing lemon balm was effective in BPPV [61]. | Generally safe [62]. Rare adverse events (similar to placebo): thyroid hormone inhibition, dizziness, nausea, vomiting, palpitation, wheezing, agitation, increased appetite, EEG changes, reduced alertness, increased intraocular pressure [60]. In mice: prone position, decreased motor activity, difficult breathing, tremors (which resolved spontaneously) [62]. |
Magnesium | Important enzymatic cofactor. Pplays a role in the prevention of various pathologies. Involved in the structural function of nucleic acids, mitochondria, proteins, transport of other ions, DNA/RNA synthesis and aerobic/anaerobic energy production, and many other functions. It can reduce catecholamines [64,65]. | Its deficiency is associated with vertigo [64,66]. Evidence in the treatment of headache/migraine concomitant to vertigo/dizziness, ISHL with vertigo/dizziness, post-stapedectomy vertigo [9,64,67,68,69]. | Hypermagnesemia: vomiting, nausea, headache; absent tendon reflexes, hypotension, somnolence; cardiovascular alteration and hypoventilation; cardio-respiratory arrest, coma, death [64,70]. |
Omega-3 fatty acids | Important role in the production of eicosanoids, such as prostaglandins and leukotrienes. They improve cardiac filling, myocardial efficiency, anti-inflammatory effects, vasodilation. They also regulate ion channel function and provide cellular membrane stability, since they are incorporated in membrane phospholipids [71,72]. | Possible future option in MD [71]. | Generally safe. Possible adverse events: skin eruptions and gastrointestinal symptoms were the most frequent, with the possibility of some laboratory parameter alteration. In dogs and cats: altered platelet and immune function [73,74]. |
Orthosiphon | Antioxidant, anti-inflammatory, analgesic, antihypertensive, renal and hepatoprotective, diuretic, gastroprotective, and many other properties [75]. | Non-specific. | Considered safe. Liver hypertrophy is a possible adverse event [75]. |
Polygonum | Immunomodulating, antioxidant, anti-cancer, neuroprotective, anti-ageing, hepatoprotective, anti-hyperlipidaemia, anti-inflammatory [76]. | Non-specific. | Generally safe. Certain components or preparations may generate nephrotoxicity, hepatotoxicity, lung damage [76]. |
Sage | Anti-inflammatory, antidepressant, anxiolytic, antioxidative, antimicrobial, anticancer, antinociceptive, antidementia, hypoglycaemic, hypolipidaemic properties. It inhibits AChE (cholinergic activity) and inhibits the GABAA receptor (through thujone) [77,78,79,80]. | Non-specific. Effective in vertigo/dizziness [79]. | Generally safe. Reported signs and symptoms include: salivation, gastrointestinal symptoms, tachycardia, skin eruption, hot flushes, hypersensitivity, cyanosis, increased blood pressure, and convulsion [77,79,80]. |
SPC-flakes * | Contain AF. It may regulate ions and water, interacting with aquaporins and modulating chloride homeostasis [81]. | Used in MD [81,82]. | No adverse events reported [81,83]. |
Vinitrox | Combination of apple and grape polyphenols with vasodilator and antioxidant effect [61]. | Non-specific. | NA. |
Vitamin B | Vitamin B6 protects circulation and seems to facilitate vestibular system, acting on vertigo [61,84,85]. Vitamin B2, B3, and B6 aid nervous system. B2 and B3 also maintain mucous membranes [56]. | Vitamin B deficiency, in general, may lead to neurological symptoms, also dizziness and vertigo [86,87]. | Possible toxicity (rare). Vitamin B12: transientchromaturia, skin eruptions, CNS manifestations, increased bloodpressure, gastrointestinal symptoms [88]. Vitamin B3: flushing, skin and gastrointestinal manifestations, headache, light-headedness [89]. Vitamin B6: neurological symptoms [90]. |
Vitamin C | It is a radical scavenger that gave an improvement in MD control, considering an oxidative insult as a basis for MD origin: controversial in a study. Vitamin C also contributes to nervous system function [91,92,93]. | Non-specific. Maybe useful in MD [92]. | Rare adverse events: gastrointestinal symptoms, kidney stones in men [94]. |
Vitamin D | Vitamin D deficiency/alterations of calcium metabolism are also risk factors for recurrence, and probably pathogenic factors of BPVV, immunomodulatory activity (immune system role on MD) [95,96,97,98]. | Vitamin D supplementation in BPVV showed a 24% lower recurrence for patients with low serum levels. Class III evidence. Possible role in MD [95,96,97,98]. | Gastrointestinal symptoms. Intoxication: hypercalcemia, hypercalciuria. This potentially leads to muscle weakness, hypertension, neuropsychiatricdisturbances, gastrointestinal upset, polyuria and polydipsia, renal calculi, and, in extreme cases, renal failure, arrhythmias [95,99]. |
Vitamin E | Antioxidant [47,100]. | Non-specific. | Intoxication: increase of bleeding risk, hepatobiliary disfunction, malabsorption of other fat-soluble vitamins [101]. |
Zinc and copper | Antioxidant [56]. | Non-specific. | Zinc (intoxication): Gastrointestinal symptoms, muscle cramps, rare cases of kidney injury [102]. Copper (intoxication): neurological, liver damage (similar to Wilson’s disease) [103,104]. |
Metabolism by CYP or Transporters | Action on CYP or Transporters | Theorical or Factual Pharmacodynamic Interactions | |
---|---|---|---|
Citicoline | NA. | NA. | Increases vertigo/dizziness feeling: interacting with antibiotics (aminoglycosides, macrolides, glycopeptides), antimalarial drugs, NSAIDs, and acetylsalicylic acid, which also cause vertigo/dizziness [45,105]. Increased activity of antihypertensive drugs [42]. Increased levels of acetylcholine [38,39]. Increased levels of dopamine, noradrenaline and serotonin; this generates interference with drugs acting on these pathways [38,39]. |
Ginger | NA. | In vitro inhibition of CYP2C9, 2C19 2D6, and CYP 3A4 [51,106]. Inhibition of P-gp in vitro [51,106]. | Anti-allergic activity: increased effects of antihistamines. Increased risk of bleeding [51,52]. Hypoglycemic effects [51]. It blocks 5HT3 receptor similarly to ondansetron; increased activity [51]. Anti-allergic activity: increased effects of antihistamines with increased risk of sleepiness [51,52]. |
Ginkgo biloba | NA. | Inhibition of CYP1A2, CYP2C9, CYP2E1, CYP3A4, and P-gp [32]. | Increased effects of cilostazol or anticoagulants with increase in bleeding time [31,34]. Increase in vertigo/dizziness feeling: interaction with antibiotics (aminoglycosides, macrolides, glycopeptides), antimalarial drugs, NSAIDs, and acetylsalicylic acid, which causes vertigo/dizziness [31,105]. Proconvulsant effect: interaction with anti-epileptic drugs [107]. Increase of acetylcholine levels [108]. Increase of dopamine and noradrenaline levels [108]. |
Hawthorn | No strong information. Some authors described a new CYP450 enzyme responsible for terpenoids C-2α hydroxylation [109]. | NA. | Increased activity of beta-blockers, digitalis, and hypotensive drugs [57]. Increased activity of antihypertensive drugs [57]. |
Lemon balm (Melissa officinalis) | NA. | NA. | Action on GABA receptors: may increase the effects of BDZ [61,63]; Hypoglycemic effects [60]. Increase of vertigo/dizziness feeling: interaction with antibiotics (aminoglycosides, macrolides, glycopeptides), antimalarial drugs, NSAIDs, and acetylsalicylic acid, which causes vertigo/dizziness [60,105]. Increase in intraocular pressure: pay attention to patients with glaucoma [60]. Action on acetylcholine pathways: may interact with cholinergic and anticholinergic drugs [63]. Associated with tremors: pay attention to patients with Parkinson’s disease [62]. |
Magnesium | NA. | NA. | Increased activity of antihypertensive drugs. Loop diuretics may cause hypomagnesemia [110]. |
Omega-3 fatty acids | Omega-3 and omega-6 can be metabolized by CYP1A1, CYP2E1, CYP2C, CYP2J2, CYP4A, CYP4F, and other isoforms as efficient alternative substrates of arachidonic acid metabolizing CYP enzymes [111]. | NA. | NA. |
Ortosiphon | NA. | In vitro inhibition of CYP2C19, CYP2D6, and CYP3A4 [112,113]. | Anti-seizure activity: may increase anti-epileptics activity [114]. Increased activity of antihypertensive drugs [75]. |
Polygonum | NA. | Induction of CYP2C9 and CYP3A4 [115]. Inhibition of CYP3A and MRP [116]. | May be useful in Parkinson’s disease [76]. |
Sage (Salvia officinalis) | NA. | Components act on CYP450: among phenolic acids, TSIIA inhibited CYP2C9/3A4, whereas SAB induces it [117]; among the terpenoids, salvinorin A showed to be a CYP1A1 2C18, 2D6, and 2E1 substrate [117]. Inhibition of CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 [117]; Induction of CYP1A2 and CYP3A4 [117]. Some compounds showed activity on P-gp and OAT [117]. | Inhibition of GABAA receptors: decreased effects of BDZ [77,80]; Inhibition of AChE: this may lead to an interaction with cholinergic or anticholinergic drugs [77]. Increase risk of bleeding [117]. Hypoglycemic effects [79,117]. Increase of vertigo/dizziness feeling: interaction with antibiotics (aminoglycosides, macrolides, glycopeptides), antimalarial drugs, NSAIDs, and acetylsalicylic acid, which causes vertigo/dizziness [105,117]. Proconvulsant effects: interaction with anti-epileptic drugs [79,80]. It may reduce tremors: enforces the action of drugs used in neurological diseases [79]. Associated with both increased and decreased blood pressure [77,80]. |
3.2. Ginger
3.3. Citicoline
3.4. Magnesium
3.5. Lemon Balm
3.6. Sage
3.7. Omega-3 Fatty Acids
3.8. Specially Processed Cereals (SPC) Flakes
3.9. Other Compounds/Supplements
4. Discussion
5. Medico-Legal Aspects
Author Contributions
Funding
Conflicts of Interest
References
- Aronson, J.K. Defining ‘nutraceuticals’: Neither nutritious nor pharmaceutical. Br. J. Clin. Pharmacol. 2017, 83, 8–19. [Google Scholar] [CrossRef]
- Gallelli, G.; Di Mizio, G.; Palleria, C.; Siniscalchi, A.; Rubino, P.; Muraca, L.; Cione, E.; Salerno, M.; De Sarro, G.; Gallelli, L. Data recorded in real life support the safety of nattokinase in patients with vascular diseases. Nutrients 2021, 13, 2031. [Google Scholar] [CrossRef] [PubMed]
- Serra, R.; Ielapi, N.; Bitonti, A.; Candido, S.; Fregola, S.; Gallo, A.; Loria, A.; Muraca, L.; Raimondo, L.; Velcean, L.; et al. Efficacy of a Low-Dose Diosmin Therapy on Improving Symptoms and Quality of Life in Patients with Chronic Venous Disease: Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 999. [Google Scholar] [CrossRef] [PubMed]
- Amato, B.; Compagna, R.; Amato, M.; Gallelli, L.; de Franciscis, S.; Serra, R. Aterofisiol® in carotid plaque evolution. Drug Des. Devel. Ther. 2015, 9, 3877–3884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeg, F.; Orazi, R.; Bowers, G.M.; Janis, J.E. Evidence-Based Nutritional Interventions in Wound Care. Plast. Reconstr. Surg. 2021, 148, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Garay, R.P. Investigational drugs and nutrients for human longevity. Recent clinical trials registered in ClinicalTrials.gov and clinicaltrialsregister.eu. Expert Opin. Investig. Drugs 2021, 30, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Kanegaonkar, R.G.; Tysome, J.R. Dizziness and Vertigo: An Introduction and Pratical Guide; CRC Press: Boca Raton, MI, USA, 2014; ISBN 9781451171372. [Google Scholar]
- Della-Morte, D.; Rundek, T. Dizziness and vertigo. Pract. Neurol. Fourth Ed. 2012, 30, 673–682. [Google Scholar] [CrossRef]
- Babu, S.; Schutt, C.A.; Bojrab, D.I. Diagnosis and Treatment of Vestibular Disorders; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783319978574. [Google Scholar]
- Le, T.N.; Westerberg, B.D.; Lea, J. Vestibular neuritis: Recent advances in etiology, diagnostic evaluation, and treatment. Adv. Otorhinolaryngol. 2019, 82, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Chiarella, G.; Leopardi, G.; De Fazio, L.; Chiarella, R.; Cassandro, E. Benign paroxysmal positional vertigo after dental surgery. Eur. Arch. Oto Rhino Laryngol. 2008, 265, 119–122. [Google Scholar] [CrossRef]
- Chiarella, G.; Leopardi, G.; De Fazio, L.; Chiarella, R.; Cassandro, C.; Cassandro, E. Iatrogenic benign paroxysmal positional vertigo: Review and personal experience in dental and maxillo-facial surgery. Acta Otorhinolaryngol. Ital. 2007, 27, 126–128. [Google Scholar]
- Jeong, S.H. Benign Paroxysmal Positional Vertigo Risk Factors Unique to Perimenopausal Women. Front. Neurol. 2020, 11, 1–6. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Zhu, Z.; He, J.; Wei, X.; Xie, M. Effect of vitamin D supplementation on benign paroxysmal positional vertigo recurrence: A meta-analysis. Sci. Prog. 2021, 104, 1–14. [Google Scholar] [CrossRef]
- Bhattacharyya, N.; Gubbels, S.P.; Schwartz, S.R.; Edlow, J.A.; El-Kashlan, H.; Fife, T.; Holmberg, J.M.; Mahoney, K.; Hollingsworth, D.B.; Roberts, R.; et al. Clinical Practice Guideline: Benign Paroxysmal Positional Vertigo (Update). Otolaryngol. Head Neck Surg. 2017, 156, S1–S47. [Google Scholar] [CrossRef]
- Leopardi, G.; Chiarella, G.; Serafini, G.; Pennacchi, A.; Bruschini, L.; Brizi, S.; Tasca, I.; Simoncelli, C.; Cassandro, E. Paroxysmal positional vertigo: Short- and long-term clinical and methodological analyses of 794 patients. Acta Otorhinolaryngol. Ital. 2003, 23, 155–160. [Google Scholar] [PubMed]
- Basura, G.J.; Adams, M.E.; Monfared, A.; Schwartz, S.R.; Antonelli, P.J.; Burkard, R.; Bush, M.L.; Bykowski, J.; Colandrea, M.; Derebery, J.; et al. Clinical Practice Guideline: Ménière’s Disease. Otolaryngol. Head Neck Surg. 2020, 162, S1–S55. [Google Scholar] [CrossRef] [Green Version]
- Chiarella, G.; Petrolo, C.; Cassandro, E. The Genetics of Meniere’ s Disease. Appl. Clin. Genet. 2015, 8, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiarella, G.; Russo, D.; Monzani, F.; Petrolo, C.; Fattori, B.; Pasqualetti, G.; Cassandro, E.; Costante, G. Hashimoto thyroiditis and vestibular dysfunction. Endocr. Pract. 2017, 23, 863–868. [Google Scholar] [CrossRef]
- Scarpa, A.; Ralli, M.; Cassandro, C.; Gioacchini, F.M.; Alicandri-Ciufelli, M.; Viola, P.; Chiarella, G.; de Vincentiis, M.; Cassandro, E. Low-dose intratympanic gentamicin administration for unilateral Meniere’s disease using a method based on clinical symptomatology: Preliminary results. Am. J. Otolaryngol. Head Neck Med. Surg. 2019, 40, 1–5. [Google Scholar] [CrossRef]
- Scarpa, A.; Cassandro, C.; De Luca, P.; Viola, P.; Greco, A.; de Vincentiis, M.; Cassandro, E.; Ralli, M. Letter to the Editor: Intratympanic gentamicin for Ménière’s disease: Is there a selective vestibulotoxic effect? Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 2399–2400. [Google Scholar] [CrossRef]
- De Luca, P.; Cassandro, C.; Ralli, M.; Di Stadio, A.; Viola, P.; Cassandro, E.; Scarpa, A. Therapeutic options in Meniere’s disease: Our experience. Am. J. Otolaryngol. 2021, 42, 102939. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, A. Pharmacological, surgical and diagnostic innovations in Meniere’s disease: A review. Transl. Med. UniSa 2020, 23, 48–52. [Google Scholar] [CrossRef]
- Scarpa, A.; Cassandro, C.; De Luca, P.; Greco, A.; Chiarella, G.; de Vincentiis, M.; Cassandro, E.; Ralli, M. Therapeutic role of intravenous glycerol for Meniere’s disease. Preliminary results. Am. J. Otolaryngol. Head Neck Med. Surg. 2020, 41, 1–5. [Google Scholar] [CrossRef]
- Strupp, M.; Kim, J.S.; Murofushi, T.; Straumann, D.; Jen, J.C.; Rosengren, S.M.; Della Santina, C.C.; Kingma, H. Bilateral vestibulopathy: Diagnostic criteria consensus document of the classification committee of the Barany Society. J. Vestib. Res. Equilib. Orientat. 2017, 27, 177–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, C.; Yagi, M.; Murofushi, T. Recent advances in idiopathic bilateral vestibulopathy: A literature review. Orphanet J. Rare Dis. 2019, 14, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallak, B.; Schneider, A.; Güntensperger, D.; Schapowal, A. Standardized Ginkgo biloba Extract in the Treatment of Vertigo and/or Tinnitus: A Review of the Literature. Adv. Aging Res. 2021, 10, 31–57. [Google Scholar] [CrossRef]
- Cybulska-Heinrich, A.K.; Mozaffarieh, M.; Flammer, J. Ginkgo biloba: An adjuvant therapy for progressive normal and high tension glaucoma. Mol. Vis. 2012, 18, 390–402. [Google Scholar]
- Yabe, T.; Chat, M.; Malherbe, E.; Vidal, P.P. Effects of Ginkgo biloba extract (EGb 761) on the guinea pig vestibular system. Pharmacol. Biochem. Behav. 1992, 42, 595–604. [Google Scholar] [CrossRef]
- Sokolova, L.; Hoerr, R.; Mishchenko, T. Treatment of Vertigo: A Randomized, Double-Blind Trial Comparing Efficacy and Safety of Ginkgo biloba Extract EGb 761 and Betahistine. Int. J. Otolaryngol. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Committee on Herbal Medicinal Products (HMPC). European Medicines Agency-Assessment report on Ginkgo biloba L., folium, EMA/HMPC/321095/2012. Agency Eur. Med. 2014, 44, 116. [Google Scholar]
- Gaudineau, C.; Beckerman, R.; Welbourn, S.; Auclair, K. Inhibition of human P450 enzymes by multiple constituents of the Ginkgo biloba extract. Biochem. Biophys. Res. Commun. 2004, 318, 1072–1078. [Google Scholar] [CrossRef]
- Zadoyan, G.; Rokitta, D.; Klement, S.; Dienel, A.; Hoerr, R.; Gramatté, T.; Fuhr, U. Effect of Ginkgo biloba special extract EGb 761® on human cytochrome P450 activity: A cocktail interaction study in healthy volunteers. Eur. J. Clin. Pharmacol. 2012, 68, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Aruna, D.; Naidu, M.U.R. Pharmacodynamic interaction studies of Ginkgo biloba with cilostazol and clopidogrel in healthy human subjects. Br. J. Clin. Pharmacol. 2007, 63, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Fogacci, F.; Rizzo, M.; Krogager, C.; Kennedy, C.; Georges, C.M.G.; Knežević, T.; Liberopoulos, E.; Vallée, A.; Pérez-Martínez, P.; Wenstedt, E.F.E.; et al. Safety evaluation of α-lipoic acid supplementation: A systematic review and meta-analysis of randomized placebo-controlled clinical studies. Antioxidants 2020, 9, 1011. [Google Scholar] [CrossRef]
- Schön, M.; Mousa, A.; Berk, M.; Chia, W.L.; Ukropec, J.; Majid, A.; Ukropcová, B.; De Courten, B. The potential of carnosine in brain-related disorders: A comprehensive review of current evidence. Nutrients 2019, 11, 1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, O.N.; Serfozo, K.; Baek, S.H.; Lee, K.Y.; Dorrance, A.; Rumbeiha, W.; Fitzgerald, S.D.; Farooq, M.U.; Naravelta, B.; Bhatt, A.; et al. Safety and efficacy evaluation of carnosine, an endogenous neuroprotective agent for ischemic stroke. Stroke 2013, 44, 205–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martines, F.; Salvago, P.; DisPenza, F.; Rizzo, S.; Mauro, G.L.; Puglisi, S. Treatment with a new nutraceutical compound on patients suffering from balance disorders: Dizziness handicap inventory scores. Acta Medica Mediterr. 2019, 35, 2029–2034. [Google Scholar] [CrossRef]
- Gareri, P.; Gallelli, L.; Cotroneo, A.M.; Manfredi, V.G.L.; De Sarro, G. The art of safe and judicious deprescribing in an elderly patient: A case report. Geriatrics 2020, 5, 57. [Google Scholar] [CrossRef] [PubMed]
- Gareri, P.; Castagna, A.; Cotroneo, A.M.; Putignano, S.; De Sarro, G.; Bruni, A.C. The role of citicoline in cognitive impairment: Pharmacological characteristics, possible advantages, and doubts for an old drug with new perspectives. Clin. Interv. Aging 2015, 10, 1421–1429. [Google Scholar] [CrossRef] [Green Version]
- Petrova, D.; Maslarov, D.; Angelov, I.; Zekin, D. Analysis of Therapeutic Efficacy of Citicoline in Patients with Vertigo of Central Origin and Vascular Aetiology. Am. J. Neuroprot. Neuroregen. 2012, 4, 1–8. [Google Scholar] [CrossRef]
- European Food Standards Agency-Scientific Opinion on the safety of “citicoline” as a Novel Food ingredient. EFSA J. 2013, 11, 1–22. [CrossRef] [Green Version]
- Cotroneo, A.M.; Castagna, A.; Putignano, S.; Lacava, R.; Fantò, F.; Monteleone, F.; Rocca, F.; Malara, A.; Gareri, P. Effectiveness and safety of citicoline in mild vascular cognitive impairment: The IDEALE study. Clin. Interv. Aging 2013, 8, 131–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piamonte, B.L.C.; Espiritu, A.I.; Anlacan, V.M.M. Effects of Citicoline as an Adjunct Treatment for Alzheimer’s Disease: A Systematic Review. J. Alzheimer’s Dis. 2020, 76, 725–732. [Google Scholar] [CrossRef]
- Clark, W.M.; Wechsler, L.R.; Sabounjian, L.A.; Schwiderski, U.E. A phase III randomized efficacy trial of 2000 mg citicoline in acute ischemic stroke patients. Neurology 2001, 57, 1595–1602. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kaur, H.; Devi, P.; Mohan, V. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacol. Ther. 2009, 124, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Scharper Acuval Vert. Available online: https://www.scharper.it/dispositivi-medici-integratori-alimentari.html?3364 (accessed on 13 July 2021).
- Difass Vertistop L. Available online: https://www.vertistop.it/it/vertistop-l.php (accessed on 13 July 2021).
- Shep, D.; Khanwelkar, C.; Gade, P.; Karad, S. Safety and efficacy of curcumin versus diclofenac in knee osteoarthritis: A randomized open-label parallel-arm study. Trials 2019, 20, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandran, B.; Goel, A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phyther. Res. 2012, 26, 1719–1725. [Google Scholar] [CrossRef]
- Bager, S.; Ovesen, L. European Medicines Agency Assessment report on Zingiber officinale Roscoe, rhizoma. Eur. Med. Agency 2012, 44, 43. [Google Scholar]
- Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A.M. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry 2015, 117, 554–568. [Google Scholar] [CrossRef]
- Grøntved, A.; Hentzer, E. Vertigo-reducing effect of ginger root. A controlled clinical study. ORL J. Otorhinolaryngol. Relat. Spec. 1986, 48, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Lien, H.C.; Sun, W.M.; Chen, Y.H.; Kim, H.; Hasler, W.; Owyang, C. Effects of ginger on motion sickness and gastric slow-wave dysrhythmias induced by circular vection. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 284, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Yamprasert, R.; Chanvimalueng, W.; Mukkasombut, N.; Itharat, A. Ginger extract versus loratadine in the treatment of allergic rhinitis: A randomized controlled trial. BMC Complement. Med. Ther. 2020, 20, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erbozeta Vestanol. Available online: https://www.erbozeta.com/products/vestanol/ (accessed on 13 July 2021).
- Chang, Q.; Zuo, Z.; Harrison, F.; Sing, M.; Chow, S. Hawthorn. J. Clin. Pharmacol. 2002, 42, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Pittler, M.H.; Guo, R.; Ernst, E. Hawthorn extract for treating chronic heart failure. Cochrane Database Syst. Rev. 2008, 23, 1–31. [Google Scholar] [CrossRef]
- Scholey, A.; Benson, S.; Gibbs, A.; Perry, N.; Sarris, J.; Murray, G. Exploring the effect of lactiumTM and zizyphus complex on sleep quality: A double-blind, randomized placebo-controlled trial. Nutrients 2017, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Shakeri, A.; Sahebkar, A.; Javadi, B. Melissa officinalis L.—A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2016, 188, 204–228. [Google Scholar] [CrossRef]
- Casani, A.P.; Navari, E.; Albera, R.; Agus, G.; Libonati, G.A.; Chiarella, G.; Lombardo, N.; Marcelli, V.; Ralli, G.; Di Santillo, L.S.; et al. Approach to residual dizziness after successfully treated benign paroxysmal positional vertigo: Effect of a polyphenol compound supplementation. Clin. Pharmacol. Adv. Appl. 2019, 11, 117–125. [Google Scholar] [CrossRef] [Green Version]
- European Food Standards Agency Scientific Opinion on the use of oregano and lemon balm extracts as a food additive. EFSA J. 2010, 8, 1–19. [CrossRef] [Green Version]
- Scholey, A.; Gibbs, A.; Neale, C.; Perry, N.; Ossoukhova, A.; Bilog, V.; Kras, M.; Scholz, C.; Sass, M.; Buchwald-Werner, S. Anti-stress effects of lemon balm-containing foods. Nutrients 2014, 6, 4805–4821. [Google Scholar] [CrossRef] [Green Version]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in prevention and therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [Green Version]
- Esposito, M.; Precenzano, F.; Sorrentino, M.; Avolio, D.; Carotenuto, M. A Medical Food Formulation of Griffonia simplicifolia/Magnesium for Childhood Periodic Syndrome Therapy: An Open-Label Study on Motion Sickness. J. Med. Food 2015, 18, 916–920. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Mohammed, A. Magnesium: The Forgotten Electrolyte—A Review on Hypomagnesemia. Med. Sci. 2019, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Dolati, S.; Rikhtegar, R.; Mehdizadeh, A.; Yousefi, M. The Role of Magnesium in Pathophysiology and Migraine Treatment. Biol. Trace Elem. Res. 2020, 196, 375–383. [Google Scholar] [CrossRef]
- Gordin, A.; Goldenberg, D.; Golz, A.; Netzer, A.; Joachims, H.Z. Magnesium: A new therapy for idiopathic sudden sensorineural hearing loss. Otol. Neurotol. 2002, 23, 447–451. [Google Scholar] [CrossRef]
- Moshtaghi, O.; Mahboubi, H.; Haidar, Y.M.; Sahyouni, R.; Lin, H.W.; Djalilian, H.R. Resolution of Persistent Post-Stapedotomy Vertigo With Migraine Prophylactic Medication. Otol. Neurotol. 2017, 38, 1500–1504. [Google Scholar] [CrossRef] [Green Version]
- Bokhari, S.R.; Siriki, R.; Teran, F.J.; Batuman, V. Fatal Hypermagnesemia Due to Laxative Use. Am. J. Med. Sci. 2018, 355, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Borghi, C.; Pirodda, A. Omega-3 fatty acids: A promising possible treatment for Meniere’s Disease and other inner ear disorders of unknown origin? Med. Hypotheses 2012, 79, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.H.; Tseng, P.T.; Chen, N.Y.; Lin, P.C.; Lin, P.Y.; Chang, J.P.C.; Kuo, F.Y.; Lin, J.; Wu, M.C.; Su, K.P. Safety and tolerability of prescription omega-3 fatty acids: A systematic review and meta-analysis of randomized controlled trials. Prostaglandins Leukot. Essent. Fat. Acids 2018, 129, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenox, C.E.; Bauer, J.E. Potential adverse effects of omega-3 fatty acids in dogs and cats. J. Vet. Intern. Med. 2013, 27, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Ameer, O.Z.; Salman, I.M.; Asmawi, M.Z.; Ibraheem, Z.O.; Yam, M.F. Orthosiphon stamineus: Traditional uses, phytochemistry, pharmacology, and toxicology. J. Med. Food 2012, 15, 678–690. [Google Scholar] [CrossRef]
- Lin, L.; Ni, B.; Lin, H.; Zhang, M.; Li, X.; Yin, X. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: A review. J. Ethnopharmacol. 2015, 159, 158–183. [Google Scholar] [CrossRef]
- Lopresti, A.L. Salvia (Sage): A Review of its Potential Cognitive-Enhancing and Protective Effects. Drugs R. D. 2017, 17, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Poulios, E.; Giaginis, C.; Vasios, G.K. Current State of the Art on the Antioxidant Activity of Sage (Salvia spp.) and Its Bioactive Components. Planta Med. 2020, 86, 224–238. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency Assessment Report on Salvia officinalis L., Folium and Salvia officinalis L., Aetheroleum. 2016. Available online: https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-salvia-officinalis-l-foliumsalvia-officinalis-l-aetheroleum-revision-1_en.pdf (accessed on 13 July 2021).
- Viola, P.; Pisani, D.; Scarpa, A.; Cassandro, C.; Laria, C.; Aragona, T.; Ciriolo, M.; Spadera, L.; Ralli, M.; Cavaliere, M.; et al. The role of endogenous Antisecretory Factor (AF) in the treatment of Ménière’s Disease: A two-year follow-up study. Preliminary results. Am. J. Otolaryngol. Head Neck Med. Surg. 2020, 41, 1–6. [Google Scholar] [CrossRef]
- Scarpa, A.; Ralli, M.; Viola, P.; Cassandro, C.; Alicandri-Ciufelli, M.; Iengo, M.; Chiarella, G.; de Vincentiis, M.; Cavaliere, M.; Cassandro, E. Food-induced stimulation of the antisecretory factor to improve symptoms in Meniere’s disease: Our results. Eur. Arch. Oto Rhino Laryngol. 2020, 277, 77–83. [Google Scholar] [CrossRef]
- Zaman, S.; Aamir, K.; Hanson, L.; Lange, S. High doses of Antisecretory Factor stop diarrhea fast without recurrence for six weeks post treatment. Int. J. Infect. Dis. 2018, 71, 48–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewy, A.; Fox, N. Pyridoxine (B6) used in the treatment of vertigo. Arch. Otolaryngol. 1947, 46, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Claussen, C.F.; Claussen, E. Antivertiginous action of vitamin B6 on experimental minocycline-induced vertigo in man. Arzneimittelforschung 1988, 38, 396–399. [Google Scholar]
- Wang, H.; Li, L.; Ll, Q.; Song, Y.; Th, L.; Wang, H.; Li, L.; Ll, Q.; Song, Y.; Th, L. Oral vitamin B 12 versus intramuscular vitamin B 12 for vitamin B 12 deficiency. Cochrane Database Syst. Rev. 2018, 3, 1–56. [Google Scholar] [CrossRef]
- Serin, H.M.; Arslan, E.A. Neurological symptoms of vitamin B12 deficiency: Analysis of pediatric patients*. Acta Clin. Croat. 2019, 58, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Morales-Gutierrez, J.; Díaz-Cortés, S.; Montoya-Giraldo, M.A.; Zuluaga, A.F. Toxicity induced by multiple high doses of vitamin B12 during pernicious anemia treatment: A case report. Clin. Toxicol. 2020, 58, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Habibe, M.N.; Kellar, J.Z. Niacin Toxicity. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559137/ (accessed on 11 July 2021).
- Hemminger, A.; Wills, B.K. Vitamin B6 Toxicity. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554500/ (accessed on 13 July 2021).
- Pharmawin Vertiwin. Available online: https://www.pharmawin.it/prodotto/vertiwin/ (accessed on 13 July 2021).
- Takumida, M.; Anniko, M.; Ohtani, M. Radical scavengers for Ménière’s disease after failure of conventional therapy: A pilot study. Acta Otolaryngol. 2003, 123, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Travica, N.; Ried, K.; Sali, A.; Scholey, A.; Hudson, I.; Pipingas, A. Vitamin C status and cognitive function: A systematic review. Nutrients 2017, 9, 960. [Google Scholar] [CrossRef] [PubMed]
- Cerullo, G.; Negro, M.; Parimbelli, M.; Pecoraro, M.; Perna, S.; Liguori, G.; Rondanelli, M.; Cena, H.; D’Antona, G. The Long History of Vitamin C: From Prevention of the Common Cold to Potential Aid in the Treatment of COVID-19. Front. Immunol. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Bigelow, R.T.; Carey, J.P. Randomized controlled trial in support of vitamin D and calcium supplementation for BPPV. Neurology 2020, 95, 371–372. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, J.H.; Kim, J.S. Update on benign paroxysmal positional vertigo. J. Neurol. 2021, 268, 1995–2000. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Kim, J.-S.; Kim, H.-J.; Choi, J.-Y.; Koo, J.-W.; Choi, K.-D.; Park, J.-Y.; Lee, S.-H.; Choi, S.-Y.; Oh, S.-Y.; et al. Prevention of benign paroxysmal positional vertigo with vitamin D supplementation. Neurology 2020, 95, e1117–e1125. [Google Scholar] [CrossRef]
- Büki, B.; Jünger, H.; Lundberg, Y.W. Vitamin D supplementation may improve symptoms in Meniere’s disease. Med. Hypotheses 2018, 116, 44–46. [Google Scholar] [CrossRef]
- Galior, K.; Grebe, S.; Singh, R. Development of vitamin D toxicity from overcorrection of vitamin D deficiency: A review of case reports. Nutrients 2018, 10, 953. [Google Scholar] [CrossRef] [Green Version]
- Joachims, H.Z.; Segal, J.; Golz, A.; Netzer, A.; Goldenberg, D. Antioxidants in treatment of idiopathic sudden hearing loss. Otol. Neurotol. 2003, 24, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Owen, K.N.; Dewald, O. Vitamin E Toxicity. Available online: https://www.ncbi.nlm.nih.gov/books/NBK564373/ (accessed on 13 July 2021).
- Agnew, U.M.; Slesinger, T.L. Zinc Toxicity. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554548/ (accessed on 13 July 2021).
- Wu, L.M.; Ekladious, A.; Wheeler, L.; Mohamad, A.A. Wilson disease: Copper deficiency and iatrogenic neurological complications with zinc therapy. Intern. Med. J. 2020, 50, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Barceloux, D.G. Copper. Clin. Toxicol. 1999, 37, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Altissimi, G.; Colizza, A.; Cianfrone, G.; De Vincentiis, M.; Greco, A.; Taurone, S.; Musacchio, A.; Ciofalo, A.; Turchetta, R.; Angeletti, D.; et al. Drugs inducing hearing loss, tinnitus, dizziness and vertigo: An updated guide. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7946–7952. [Google Scholar] [CrossRef]
- Li, M.; Chen, P.Z.; Yue, Q.X.; Li, J.Q.; Chu, R.A.; Zhang, W.; Wang, H. Pungent ginger components modulates human cytochrome P450 enzymes in vitro. Acta Pharmacol. Sin. 2013, 34, 1237–1242. [Google Scholar] [CrossRef]
- Leistner, E.; Drewke, C. Ginkgo biloba and Ginkgotoxin. J. Nat. Prod. 2010, 73, 86–92. [Google Scholar] [CrossRef]
- Kehr, J.; Yoshitake, S.; Ijiri, S.; Koch, E.; Nöldner, M.; Yoshitake, T. Ginkgo biloba leaf extract (EGb 761®) and its specific acylated flavonol constituents increase dopamine and acetylcholine levels in the rat medial prefrontal cortex: Possible implications for the cognitive enhancing properties of EGb 761®. Int. Psychogeriatrics 2012, 24, 25–34. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, Y.; Sun, Z.; Wang, D.; Qu, G.; Ma, X.; Fan, F.; Zhang, L.; Li, S.; Zhang, X. Identification of a novel cytochrome P450 enzyme that catalyzes the C-2α hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories. Metab. Eng. 2019, 51, 70–78. [Google Scholar] [CrossRef]
- Agus, Z.S. Mechanisms and causes of hypomagnesemia. Curr. Opin. Nephrol. Hypertens. 2016, 25, 301–307. [Google Scholar] [CrossRef]
- Arnold, C.; Konkel, A.; Fischer, R.; Schunck, W.H. Cytochrome p450-dependent metabolism of ω-6 and ω-3 long-chain polyunsaturated fatty acids. Pharmacol. Rep. 2010, 62, 536–547. [Google Scholar] [CrossRef]
- Pan, Y.; Abd-Rashid, B.A.; Ismail, Z.; Ismail, R.; Mak, J.W.; Pook, P.C.K.; Er, H.M.; Ong, C.E. In vitro effects of active constituents and extracts of Orthosiphon stamineus on the activities of three major human cDNA-expressed cytochrome P450 enzymes. Chem. Biol. Interact. 2011, 190, 1–8. [Google Scholar] [CrossRef]
- Pan, Y.; Abd-Rashid, B.A.; Ismail, Z.; Ismail, R.; Mak, J.W.; Pook, P.C.K.; Er, H.M.; Ong, C.E. In vitro modulatory effects of Andrographis paniculata, Centella asiatica and Orthosiphon stamineus on cytochrome P450 2C19 (CYP2C19). J. Ethnopharmacol. 2011, 133, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.S.; Choo, B.K.M.; Ahmed, P.K.; Othman, I.; Shaikh, M.F. Orthosiphon stamineus proteins alleviate pentylenetetrazol-induced seizures in Zebrafish. Biomedicines 2020, 8, 191. [Google Scholar] [CrossRef]
- Zheng, L.; Lu, Y.; Cao, X.; Huang, Y.; Liu, Y.; Tang, L.; Liao, S.G.; Wang, A.M.; Li, Y.J.; Lan, Y.Y.; et al. Evaluation of the impact of Polygonum capitatum, a traditional Chinese herbal medicine, on rat hepatic cytochrome P450 enzymes by using a cocktail of probe drugs. J. Ethnopharmacol. 2014, 158, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.C.; Lin, S.P.; Hou, Y.C. A new herb-drug interaction of Polygonum cuspidatum, a resveratrol-rich nutraceutical, with carbamazepine in rats. Toxicol. Appl. Pharmacol. 2012, 263, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.-C.; Xiao, P.-G. Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Salviabased Drug Discovery. Curr. Drug Metab. 2017, 18, 1071–1084. [Google Scholar] [CrossRef]
- Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H. Bin Bioactive compounds and bioactivities of ginger (Zingiber officinale roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Fernández, R.L. Efficacy and safety of oral CDP-choline. Drug surveillance study in 2817 cases. Arzneimittelforschung 1983, 33, 1073–1080. [Google Scholar]
- Dávalos, A.; Alvarez-Sabín, J.; Castillo, J.; Díez-Tejedor, E.; Ferro, J.; Martínez-Vila, E.; Serena, J.; Segura, T.; Cruz, V.T.; Masjuan, J.; et al. Citicoline in the treatment of acute ischaemic stroke: An international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet 2012, 380, 349–357. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, L.; Jiang, X.; Shi, S.; Yu, Q.; Chen, Q.; Yao, D.; Pan, Y. A novel diagnostic prediction model for vestibular migraine. Neuropsychiatr. Dis. Treat. 2020, 16, 1845–1852. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- European Food Standards Agency Scientific Opinion on the substantiation of health claims related to docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and brain, eye and nerve development (ID 501, 513, 540), maintenance of normal brain function (ID 4). EFSA J. 2011, 9, 1–30. [CrossRef]
- Ingvardsen, C.J.; Klokker, M. Antisecretory therapy with no improvement in functional level in Ménières disease. Acta Otolaryngol. 2016, 136, 232–235. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, M.; Wang, T.; Sun, J.; Wang, Y.; Xia, M.; Jiang, Y.; Zhou, X.; Wan, J. Research on mechanism of charred hawthorn on digestive through modulating “brain-gut” axis and gut flora. J. Ethnopharmacol. 2019, 245, 1–12. [Google Scholar] [CrossRef]
- Aydin, E.; Babakurban, S.T.; Ozgirgin, O.N.; Ozlüoǧlu, L.N. The relationship of homocysteine, vitamin B12, folic acid levels with vertigo. Kulak Burun Bogaz Ihtis. Derg. 2012, 22, 214–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scaramella, J.G. Hyperhomocysteinemia and left internal jugular vein thrombosis with Ménière’s symptom complex. Ear Nose Throat J. 2003, 82, 856–865. [Google Scholar] [CrossRef]
- Gomez, C.R.; Cruz-Flores, S.; Malkoff, M.D.; Sauer, C.M.; Burch, C.M. Isolated vertigo as a manifestation of vertebrobasilar ischemia. Neurology 1996, 47, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Berkay Yılmaz, Y.; Antika, G.; Boyunegmez Tumer, T.; Fawzi Mahomoodally, M.; Lobine, D.; Akram, M.; Riaz, M.; Capanoglu, E.; Sharopov, F.; et al. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules 2019, 9, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afonso, A.F.; Pereira, O.R.; Fernandes, Â.; Calhelha, R.C.; Silva, A.M.S.; Ferreira, R.C.F.; Cardoso, S.M. Phytochemical composition and bioactive effects of Salvia africana, Salvia officinalis “Icterina” and Salvia mexicana aqueous extracts. Molecules 2019, 24, 4327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, M. Pharmacokinetic drug interactions involving Ginkgo biloba. Drug Metab. Rev. 2013, 45, 353–385. [Google Scholar] [CrossRef] [PubMed]
- Cione, E.; La Torre, C.; Cannataro, R.; Caroleo, M.C.; Plastina, P.; Gallelli, L. Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation. Molecules 2020, 25, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, R.; Gallelli, L.; Cannataro, R.; Perri, M.; Calignano, A.; Citraro, R.; Russo, E.; Gareri, P.; Corsonello, A.; De Sarro, G. When Nutraceuticals Reinforce Drugs Side Effects: A Case Report. Curr. Drug Saf. 2016, 11, 264–266. [Google Scholar] [CrossRef] [PubMed]
- Borel, P.; Caillaud, D.; Cano, N.J. Vitamin D Bioavailability: State of the Art. Crit. Rev. Food Sci. Nutr. 2015, 55, 1193–1205. [Google Scholar] [CrossRef]
- Gröber, U. Magnesium and Drugs. Int. J. Mol. Sci. 2019, 20, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.C.; Wright, A.J. The fluoroquinolones. Mayo Clin. Proc. 1991, 66, 1249–1259. [Google Scholar] [CrossRef]
- Deng, J.; Zhu, X.; Chen, Z.; Fan, C.H.; Kwan, H.S.; Wong, C.H.; Shek, K.Y.; Zuo, Z.; Lam, T.N. A Review of Food–Drug Interactions on Oral Drug Absorption. Drugs 2017, 77, 1833–1855. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, S.-Y.; Fabriaga, E.; Zhang, P.-H.; Zhou, Q. Food-drug interactions precipitated by fruit juices other than grapefruit juice: An update review. J. Food Drug Anal. 2018, 26, 61–71. [Google Scholar] [CrossRef]
- Ronis, M.J.J.; Pedersen, K.B.; Watt, J. Adverse Effects of Nutraceuticals and Dietary Supplements. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 583–601. [Google Scholar] [CrossRef]
- Zhou, S.-F. Drugs Behave as Substrates, Inhibitors and Inducers of Human Cytochrome P450 3A4. Curr. Drug Metab. 2008, 9, 310–322. [Google Scholar] [CrossRef]
- FDA Food and Drug Administration-Tables. Available online: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers (accessed on 13 July 2021).
- Macías, Y.; Tabales, J.G.; García-Martín, E.; José, A.G. An update on the pharmacogenomics of NSAID metabolism and the risk of gastrointestinal bleeding. Expert Opin. Drug Metab. Toxicol. 2020, 16, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Wyska, E. Pharmacokinetic considerations for current state-of-the-art antidepressants. Expert Opin. Drug Metab. Toxicol. 2019, 15, 831–847. [Google Scholar] [CrossRef]
- Bolcato, M.; Sanavio, M.; Fassina, G.; Rodriguez, D.; Aprile, A. Healthcare professionals and patient information: A fresh look from the recent Italian law on consent. Clin. Ter. 2021, 172, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Ciliberti, R.; Gorini, I.; Gazzaniga, V.; De Stefano, F.; Gulino, M. The Italian law on informed consent and advance directives: New rules of conduct for the autonomy of doctors and patients in end-of-life care. J. Crit. Care 2018, 48, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, M.; Gori, F.; Papi, L.; Turillazzi, E. A review and analysis of new Italian law 219/2017: “Provisions for informed consent and advance directives treatment”. BMC Med. Ethics 2019, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
Clinical Manifestation | Pathogenesis | Symptoms | Treatment | References |
---|---|---|---|---|
Benign paroxysmal positional vertigo | Mainly idiopathic, but vestibular neuritis, head trauma, and MD may be related to it. Risk factors include advanced age, ear and dental surgery, vitamin D deficiency, perimenopause, and maybe vascular disorders. Dislocation of the otoconia has a crucial role. | Vertigo, nausea, light headiness. | Vestibular maneuvers, vestibular suppressants. | [7,9,10,11,12,13,14,15,16] |
Vestibular neuritis | Uncertain aetiology (e.g., vascular, viral, immunologic, or inflammatory). | Nystagmus, posture alteration, or gait abnormalities. | Vestibular suppressants, steroids, rehabilitation. | [7,9,10] |
Ménière’s disease | Endolymphatic hydrops generated by genetic, autoimmune/allergic, vascular, infectious, and mechanic conditions. | Hearing loss (sensorineural, in the low and middle frequencies), vertigo attacks, tinnitus, aural fullness. | Dietary/lifestyle approach, diuretics, betahistine, antiemetic benzodiazepines, anticholinergics, antihistamines, phenothiazines, ondansetron, surgery. | [7,9,10] |
Bilateral vestibulopathy | The aetiology often remains unclear. Frequent known causes are ototoxic drugs, bilateral MD, meningitis, and genetic mutations. | Postural imbalance and unsteadiness of gait (both worsen in darkness and on uneven ground); oscillopsia (induced by head or body movement). | It may change on the basis of the aetiology. Rehabilitation, vestibular implants, vestibular stimulation. | [17,18] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiarella, G.; Marcianò, G.; Viola, P.; Palleria, C.; Pisani, D.; Rania, V.; Casarella, A.; Astorina, A.; Scarpa, A.; Esposito, M.; et al. Nutraceuticals for Peripheral Vestibular Pathology: Properties, Usefulness, Future Perspectives and Medico-Legal Aspects. Nutrients 2021, 13, 3646. https://doi.org/10.3390/nu13103646
Chiarella G, Marcianò G, Viola P, Palleria C, Pisani D, Rania V, Casarella A, Astorina A, Scarpa A, Esposito M, et al. Nutraceuticals for Peripheral Vestibular Pathology: Properties, Usefulness, Future Perspectives and Medico-Legal Aspects. Nutrients. 2021; 13(10):3646. https://doi.org/10.3390/nu13103646
Chicago/Turabian StyleChiarella, Giuseppe, Gianmarco Marcianò, Pasquale Viola, Caterina Palleria, Davide Pisani, Vincenzo Rania, Alessandro Casarella, Alessia Astorina, Alfonso Scarpa, Massimiliano Esposito, and et al. 2021. "Nutraceuticals for Peripheral Vestibular Pathology: Properties, Usefulness, Future Perspectives and Medico-Legal Aspects" Nutrients 13, no. 10: 3646. https://doi.org/10.3390/nu13103646
APA StyleChiarella, G., Marcianò, G., Viola, P., Palleria, C., Pisani, D., Rania, V., Casarella, A., Astorina, A., Scarpa, A., Esposito, M., Salerno, M., Di Nunno, N., Bolcato, M., Piscopo, A., Cione, E., De Sarro, G., Di Mizio, G., & Gallelli, L. (2021). Nutraceuticals for Peripheral Vestibular Pathology: Properties, Usefulness, Future Perspectives and Medico-Legal Aspects. Nutrients, 13(10), 3646. https://doi.org/10.3390/nu13103646