Exposure to Normobaric Hypoxia Combined with a Mixed Diet Contributes to Improvement in Lipid Profile in Trained Cyclists
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.3. Training Program
2.4. Measurements during the Experiment
- Castelli’s risk index I (CRI-I) = TC/HDL-C
- Castelli’s risk index II (CRI-II) = LDL-C/HDL-C
- Atherogenic index of plasma (AIP) = log10(TG/HDL-C)
2.5. Diets during the Experiment
2.6. Statistical Analysis
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Czuba, M.; Fidos-Czuba, O.; Płoszczyca, K.; Zając, A.; Langfort, J. Comparison of the effect of intermittent hypoxic training vs. the live high, train low strategy on aerobic capacity and sports performance in cyclists in normoxia. Biol. Sport 2017, 35, 39–48. [Google Scholar] [CrossRef]
- Czuba, M.; Bril, G.; Płoszczyca, K.; Piotrowicz, Z.; Chalimoniuk, M.; Roczniok, R.; Zembroń-Łacny, A.; Gerasimuk, D.; Langfort, J. Intermittent Hypoxic Training at Lactate Threshold Intensity Improves Aiming Performance in Well-Trained Biathletes with Little Change of Cardiovascular Variables. BioMed Res. Int. 2019, 2019, 1287506–17. [Google Scholar] [CrossRef]
- Millet, G.P.; Debevec, T.; Brocherie, F.; Malatesta, D.; Girard, O. Therapeutic Use of Exercising in Hypoxia: Promises and Limitations. Front. Physiol. 2016, 7, 224. [Google Scholar] [CrossRef]
- Cannon, C.P. Cardiovascular disease and modifiable cardiometabolic risk factors. Clin. Cornerstone 2007, 8, 11–28. [Google Scholar] [CrossRef]
- Manninen, V.; Tenkanen, L.; Koskinen, P.; Huttunen, J.K.; Mantarri, M.; Heinomen, O.P.; Frick, M.H. Joint effects of serum triglyceride and LDL cholesterol and HDL concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment. Circulation 1992, 85, 37–45. [Google Scholar] [CrossRef]
- Kannel, W.B. Risk stratification of dyslipidemia: Insights from the Framingham Study. Curr. Med. Chem. Hematol. Agents 2005, 3, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Dobiášová, M.; Frohlich, J. The plasma parameter log (TG/HDL-C) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FERHDL). Clin. Biochem. 2001, 34, 583–588. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, D. Effects of aerobic exercise on lipids and lipoproteins. Lipids Health Dis. 2017, 16, 132. [Google Scholar] [CrossRef]
- Ratajczak, M.; Skrypnik, D.; Bogdanski, P.; Mądry, E.; Walkowiak, J.; Szulińska, M.; Maciaszek, J.; Kręgielska-Narożna, M.; Karolkiewicz, J. Effects of Endurance and Endurance–Strength Training on Endothelial Function in Women with Obesity: A Randomized Trial. Int. J. Environ. Res. Public Health 2019, 16, 4291. [Google Scholar] [CrossRef] [PubMed]
- Haskell, W.L. Health consequences of physical activity: Understanding and challenges regarding dose-response. Med. Sci. Sports Exerc. 1994, 26, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Kraus, W.E.; Houmard, J.A.; Duscha, B.D.; Knetzger, K.J.; Wharton, M.B.; McCartney, J.S.; Bales, C.W.; Henes, S.; Samsa, G.P.; Otvos, J.D.; et al. Effects of the Amount and Intensity of Exercise on Plasma Lipoproteins. N. Engl. J. Med. 2002, 347, 1483–1492. [Google Scholar] [CrossRef]
- Banfi, G.; Colombini, A.; Lombardi, G.; Lubkowska, A. Metabolic markers in sports medicine. Adv. Clin. Chem. 2012, 56, 1–54. [Google Scholar] [CrossRef]
- Tater, D.; Leglise, D.; Person, B.; Lambert, D.; Bercovici, J.-P. Lipoproteins Status in Professional Football Players After Period of Vacation and One Month After a New Intensive Training Program. Horm. Metab. Res. 1987, 19, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Durstine, J.L.; Grandjean, P.W.; Davis, P.G.; Ferguson, M.A.; Alderson, N.L.; DuBose, K.D. Blood lipid and lipoprotein adaptations to exercise: A quantitative analysis. Sports Med. 2001, 31, 1033–1062. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Schena, F.; Salvagno, G.L.; Montagnana, M.; Ballestrieri, F.; Guidi, G.C. Comparison of the lipid profile and lipoprotein(a) between sedentary and highly trained subjects. Clin. Chem. Lab. Med. 2006, 44, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-H.; Park, J.-E.; Choi, I.-H.; Cho, K.-H. Enhanced functional and structural properties of high-density lipoproteins from runners and wrestlers compared to throwers and lifters. BMB Rep. 2009, 42, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Cioni, G.; Berni, A.; Gensini, G.F.; Abbate, R.; Boddi, M. Impaired femoral vascular compliance and endothelial dysfunction in 30 healthy male soccer players: Competitive sports and local detrimental effects. Sports Health 2015, 7, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Imamoglu, O.; Atan, T.; Kishali, N.F.; Burmaoglu, G.; Akyol, P.; Yildirim, K. Comparison of lipid and lipoprotein values in men and women differing in training status. Biol. Sport. 2005, 22, 261–270. [Google Scholar]
- Petridou, A.; Lazaridou, D.; Mougios, V. Lipidemic Profile of Athletes and Non-Athletes with Similar Body Fat. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 425–432. [Google Scholar] [CrossRef]
- Jonnalagadda, S.S.; Rosenbloom, C.A.; Skinner, R. Dietary practices, attitudes, and physiological status of collegiate freshman football players. J. Strength Cond. Res. 2001, 15, 507–513. [Google Scholar]
- Buell, J.L.; Calland, D.; Hanks, F.; Johnston, B.; Pester, B.; Sweeney, R.; Thorne, R. Presence of Metabolic Syndrome in Football Linemen. J. Athl. Train. 2008, 43, 608–616. [Google Scholar] [CrossRef]
- Creighton, B.C.; Hyde, P.N.; Maresh, C.M.; Kraemer, W.J.; Phinney, S.D.; Volek, J.S. Paradox of hypercholesterolaemia in highly trained, keto-adapted athletes. BMJ Open Sport Exerc. Med. 2018, 4, e000429. [Google Scholar] [CrossRef]
- Nansseu, J.R.; Moor, V.J.A.; Takam, R.D.M.; Zing-Awona, B.; Azabji-Kenfack, M.; Tankeu, F.; Tchoula, C.M.; Moukette, B.M.; Ngogang, J.Y. Cameroonian professional soccer players and risk of atherosclerosis. BMC Res. Notes 2017, 10, 186. [Google Scholar] [CrossRef]
- Kłapcińska, B.; Kempa, K.; Sobczak, A.; Sadowska-Krępa, E.; Jagsz, S.; Szołtysek, I. Evaluation of Autoantibodies Against Oxidized LDL (oLAB) and Blood Antioxidant Status in Professional Soccer Players. Int. J. Sports Med. 2004, 26, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Degoutte, F.; Jouanel, P.; Bègue, R.J.; Colombier, M.; Lac, G.; Pequignot, J.M.; Filaire, E. Food Restriction, Performance, Biochemical, Psychological, and Endocrine Changes in Judo Athletes. Int. J. Sports Med. 2006, 27, 9–18. [Google Scholar] [CrossRef]
- Sadowska-Krępa, E.; Kłapcińska, B.; Podgórski, T.; Szade, B.; Tyl, K.; Hadzik, A. Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study. Biol. Sport 2015, 32, 161–168. [Google Scholar] [CrossRef]
- Mankowitz, K.; Seipa, R.; Semenkovich, C.F.; Daugherty, A.; Schonfeld, G. Short-term interruption of training affects both fasting and post-prandial lipoproteins. Atherosclerosis 1992, 95, 181–189. [Google Scholar] [CrossRef]
- Petibois, C.; Cassaigne, A.; Gin, H.; Déléris, G. Lipid Profile Disorders Induced by Long-Term Cessation of Physical Activity in Previously Highly Endurance-Trained Subjects. J. Clin. Endocrinol. Metab. 2004, 89, 3377–3384. [Google Scholar] [CrossRef]
- Bhatnagar, A. Environmental Determinants of Cardiovascular Disease. Circ. Res. 2017, 121, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M. Effects of Living at Higher Altitudes on Mortality: A Narrative Review. Aging Dis. 2014, 5, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S. Clinical, biochemical, electrocardiographic and noninvasive hemodynamic assessment of cardiovascular status in natives at high to extreme altitudes (3000m–5500m) of the Himalayan region. Indian Heart J. 1990, 42, 375–379. [Google Scholar]
- Dominguez Coello, S.; Cabrera De León, A.; Bosa Ojeda, F.; Pérez Méndez, L.I.; Díaz González, L.; Aguirre-Jaime, A.J. High density lipoprotein cholesterol increases with living altitude. Int. J. Epidemiol. 2020, 29, 65–70. [Google Scholar] [CrossRef]
- Mohanna, S.; Baracco, R.; Seclen, S. Lipid Profile, Waist Circumference, and Body Mass Index in a High Altitude Population. High Alt. Med. Biol. 2006, 7, 245–255. [Google Scholar] [CrossRef]
- Férézou, J.; Richalet, J.P.; Coste, T.; Rathat, C. Changes in plasma lipids and lipoprotein cholesterol during a high altitude mountaineering expedition (4800 m). Eur. J. Arch. Clin. Exp. Ophthalmol. 1988, 57, 740–745. [Google Scholar] [CrossRef]
- Verratti, V.; Falone, S.; Doria, C.; Pietrangelo, T.; Di Giulio, C. Kilimanjaro Abruzzo expedition: Effects of high-altitude trekking on anthropometric, cardiovascular and blood biochemical parameters. Sport Sci. Health 2015, 11, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Płoszczyca, K.; Langfort, J.; Czuba, M. The Effects of Altitude Training on Erythropoietic Response and Hematological Variables in Adult Athletes: A Narrative Review. Front. Physiol. 2018, 9, 375. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewska, A.; Płoszczyca, K.; Czuba, M. Changes in erythropoietin and vascular endothelial growth factor following the use of different altitude training concepts. J. Sports Med. Phys. Fit. 2020, 60, 677–684. [Google Scholar] [CrossRef]
- Lizamore, C.A.; Hamlin, M.J. The Use of Simulated Altitude Techniques for Beneficial Cardiovascular Health Outcomes in Nonathletic, Sedentary, and Clinical Populations: A Literature Review. High Alt. Med. Biol. 2017, 18, 305–321. [Google Scholar] [CrossRef]
- Park, H.-Y.; Lim, K. Effects of Hypoxic Training versus Normoxic Training on Exercise Performance in Competitive Swimmers. J. Sports Sci. Med. 2017, 16, 480–488. [Google Scholar]
- Park, H.-Y.; Kim, J.; Park, M.-Y.; Chung, N.; Hwang, H.; Nam, S.-S.; Lim, K. Exposure and Exercise Training in Hypoxic Conditions as a New Obesity Therapeutic Modality: A Mini Review. J. Obes. Metab. Syndr. 2018, 27, 93–101. [Google Scholar] [CrossRef]
- Bailey, D.M.; Davies, B.; Baker, J. Training in hypoxia: Modulation of metabolic and cardiovascular risk factors in men. Med. Sci. Sports Exerc. 2000, 32, 1058–1066. [Google Scholar] [CrossRef]
- Wiesner, S.; Haufe, S.; Engeli, S.; Mutschler, H.; Haas, U.; Luft, F.; Jordan, J. Influences of Normobaric Hypoxia Training on Physical Fitness and Metabolic Risk Markers in Overweight to Obese Subjects. Obesity 2010, 18, 116–120. [Google Scholar] [CrossRef]
- Morishima, T.; Kurihara, T.; Hamaoka, T.; Goto, K. Whole body, regional fat accumulation, and appetite-related hormonal response after hypoxic training. Clin. Physiol. Funct. Imaging 2014, 34, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Gatterer, H.; Haacke, S.; Burtscher, M.; Faulhaber, M.; Melmer, A.; Ebenbichler, C.; Strohl, K.P.; Högel, J.; Netzer, N.C. Normobaric Intermittent Hypoxia over 8 Months Does Not Reduce Body Weight and Metabolic Risk Factors—A Randomized, Single Blind, Placebo-Controlled Study in Normobaric Hypoxia and Normobaric Sham Hypoxia. Obes. Facts 2015, 8, 200–209. [Google Scholar] [CrossRef]
- Netzer, N.C.; Chytra, R.; Küpper, T. Low intense physical exercise in normobaric hypoxia leads to more weight loss in obese people than low intense physical exercise in normobaric sham hypoxia. Sleep Breath. 2007, 12, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Shi, Q.; Nie, J.; Tong, T.K.; Song, L.; Yi, L.; Hu, Y. High-Intensity Interval Training in Normobaric Hypoxia Improves Cardiorespiratory Fitness in Overweight Chinese Young Women. Front. Physiol. 2017, 8, 175. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Cardenosa, A.; Camacho-Cardenosa, M.; Brazo-Sayavera, J.; Burtscher, M.; Timón, R.; Olcina, G. Effects of High-Intensity Interval Training Under Normobaric Hypoxia on Cardiometabolic Risk Markers in Overweight/Obese Women. High Alt. Med. Biol. 2018, 19, 356–366. [Google Scholar] [CrossRef]
- Zembron-Lacny, A.; Tylutka, A.; Wacka, E.; Wawrzyniak-Gramacka, E.; Hiczkiewicz, D.; Kasperska, A.; Czuba, M. Intermittent Hypoxic Exposure Reduces Endothelial Dysfunction. BioMed Res. Int. 2020, 2020, 6479630. [Google Scholar] [CrossRef]
- Castelli, W.P.; Abbott, R.D.; McNamara, P.M. Summary estimates of cholesterol used to predict coronary heart disease. Circulation 1983, 67, 730–734. [Google Scholar] [CrossRef]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Lira, F.S.; Rosa, J.C.; Lima-Silva, A.E.; Souza, H.A.; Caperuto, E.C.; Seelaender, M.C.; Damaso, A.R.; Oyama, L.M.; Santos, R.V. Sedentary subjects have higher PAI-1 and lipoproteins levels than highly trained athletes. Diabetol. Metab. Syndr. 2010, 2, 7. [Google Scholar] [CrossRef]
- Farsani, P.A.; Rezaeimanesh, D. The Effect of Six-Week Aerobic Interval Training on Some Blood Lipids and VO2max in Female Athlete Students. Procedia-Soc. Behav. Sci. 2011, 30, 2144–2148. [Google Scholar] [CrossRef]
- Ouerghi, N.; Khammassi, M.; Boukorraa, S.; Feki, M.; Kaabachi, N.; Bouassida, A. Effects of a high-intensity intermittent training program on aerobic capacity and lipid profile in trained subjects. Open Access J. Sports Med. 2014, 5, 243–248. [Google Scholar] [CrossRef]
- Manna, I.; Khanna, G.L.; Dhara, P.C. Effect of Training on Physiological and Biochemical Variables of Soccer Players of Different Age Groups. Asian J. Sports Med. 2010, 1, 5–22. [Google Scholar] [CrossRef]
- Herd, S.L.; Hardman, A.E.; Boobis, L.H.; Cairns, C.J. The effect of 13 weeks of running training followed by 9 d of detraining on postprandial lipaemia. Br. J. Nutr. 1998, 80, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Hardman, A.E.; Lawrence, J.E.M.; Herd, S.L. Postprandial lipemia in endurance-trained people during a short interruption to training. J. Appl. Physiol. 1998, 84, 1895–1901. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.A.; Atkinson, R.A.; Richardson, L.; Koulman, A.; Murray, A.J.; Harridge, S.D.R.; Martin, D.S.; Levett, D.Z.H.; Mitchell, K.; Mythen, M.G.; et al. Metabolomic and lipidomic plasma profile changes in human participants ascending to Everest Base Camp. Sci. Rep. 2019, 9, 2297. [Google Scholar] [CrossRef] [PubMed]
- De Mendoza, S.; Nucete, H.; Ineichen, E.; Salazar, E.; Zerpa, A.; Glueck, C.J. Lipids and Lipoproteins in Subjects at 1000 and 3500 Meter Altitudes. Arch. Environ. Health Int. J. 1979, 34, 308–311. [Google Scholar] [CrossRef]
- Gutwenger, I.; Hofer, G.; Gutwenger, A.K.; Sandri, M.; Wiedermann, C.J. Pilot study on the effects of a 2-week hiking vacation at moderate versus low altitude on plasma parameters of carbohydrate and lipid metabolism in patients with metabolic syndrome. BMC Res. Notes 2015, 8, 103. [Google Scholar] [CrossRef]
- Greie, S.; Humpeler, E.; Gunga, H.C.; Koralewski, E.; Klingler, A.; Mittermayr, M.; Fries, D.; Lechleitner, M.; Hoertnagl, H.; Hoffmann, G.; et al. Improvement of metabolic syndrome markers through altitude specific hiking vacations. J. Endocrinol. Investig. 2006, 29, 497–504. [Google Scholar] [CrossRef]
- Minvaleev, R.S. Comparison of the rates of changes in the lipid spectrumof human blood serum at moderate altitudes. Hum. Physiol. 2011, 37, 355–360. [Google Scholar] [CrossRef]
- Gao, H.; Xu, J.; Zhang, L.; Lu, Y.; Gao, B.; Feng, L. Effects of Living High-Training Low and High on Body Composition and Metabolic Risk Markers in Overweight and Obese Females. BioMed Res. Int. 2020, 2020, 3279710. [Google Scholar] [CrossRef]
- Pialoux, V.; Brugniaux, J.; Rock, E.; Mazur, A.; Schmitt, L.; Richalet, J.-P.; Robach, P.; Clottes, E.; Coudert, J.; Fellmann, N.; et al. Antioxidant status of elite athletes remains impaired 2 weeks after a simulated altitude training camp. Eur. J. Nutr. 2010, 49, 285–292. [Google Scholar] [CrossRef]
- Bergström, H.; Ekström, L.; Warnqvist, A.; Bergman, P.; Björkhem-Bergman, L. Variations in biomarkers of dyslipidemia and dysbiosis during the menstrual cycle: A pilot study in healthy volunteers. BMC Women’s Health 2021, 21, 166. [Google Scholar] [CrossRef]
- Tin’Kov, A.N.; Aksenov, V.A. Effects of Intermittent Hypobaric Hypoxia on Blood Lipid Concentrations in Male Coronary Heart Disease Patients. High Alt. Med. Biol. 2002, 3, 277–282. [Google Scholar] [CrossRef]
- Ge, M.-X.; Shao, R.-G.; He, H.-W. Advances in understanding the regulatory mechanism of cholesterol 7α-hydroxylase. Biochem. Pharmacol. 2019, 164, 152–164. [Google Scholar] [CrossRef]
- Johnson, P.R. Down-regulation of bile acid synthesis and a metabolic co-activator under hypoxic conditions—Implications in obstructive sleep apnea. Med. Hypotheses 2008, 71, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.; Park, B.; Park, H. Hypoxic repression of CYP7A1 through a HIF-1α- and SHP-independent mechanism. BMB Rep. 2016, 49, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Klein-Szanto, A.J.; Bassi, D.E. Keep recycling going: New approaches to reduce LDL-C. Biochem. Pharmacol. 2019, 164, 336–341. [Google Scholar] [CrossRef]
- Wei, C.; Penumetcha, M.; Santanam, N.; Liu, Y.-G.; Garelnabi, M.; Parthasarathy, S. Exercise might favor reverse cholesterol transport and lipoprotein clearance: Potential mechanism for its anti-atherosclerotic effects. Biochim. Biophys. Acta-Gen. Subj. 2005, 1723, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Wilund, K.R.; Feeney, L.A.; Tomayko, E.J.; Chung, H.R.; Kim, K. Endurance exercise training reduces gallstone development in mice. J. Appl. Physiol. 2008, 104, 761–765. [Google Scholar] [CrossRef][Green Version]
- Schmitz, G.; Langmann, T. Transcriptional regulatory networks in lipid metabolism control ABCA1 expression. Biochim. et Biophys. Acta-Mol. Cell Biol. Lipids 2005, 1735, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, I. Recent advances in physiological lipoprotein metabolism. Clin. Chem. Lab. Med. 2014, 52, 1695–1727. [Google Scholar] [CrossRef] [PubMed]
- Haskell, W.L. The Influence of Exercise Training on Plasma Lipids and Lipoproteins in Health and Disease. Acta Med. Scand. 2009, 220, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Muscella, A.; Stefàno, E.; Marsigliante, S. The effects of exercise training on lipid metabolism and coronary heart disease. Am. J. Physiol. Circ. Physiol. 2020, 319, H76–H88. [Google Scholar] [CrossRef] [PubMed]
- Haufe, S.; Wiesner, S.; Engeli, S.; Luft, F.; Jordan, J. Influences of Normobaric Hypoxia Training on Metabolic Risk Markers in Human Subjects. Med. Sci. Sports Exerc. 2008, 40, 1939–1944. [Google Scholar] [CrossRef]
- Du, X.; Girard, O.; Fan, R.Y.; Ma, F. Effects of Active and Passive Hypoxic Conditioning for 6 Weeks at Different Altitudes on Blood Lipids, Leptin, and Weight in Rats. High Alt. Med. Biol. 2020, 21, 243–248. [Google Scholar] [CrossRef]
- Gilde, A.J.; Van Bilsen, M. Peroxisome proliferator-activated receptors (PPARS): Regulators of gene expression in heart and skeletal muscle. Acta Physiol. Scand. 2003, 178, 425–434. [Google Scholar] [CrossRef]
- Zoll, J.; Ponsot, E.; Dufour, S.; Doutreleau, S.; Ventura-Clapier, R.; Vogt, M.; Hoppeler, H.; Richard, R.; Flück, M. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J. Appl. Physiol. 2006, 100, 1258–1266. [Google Scholar] [CrossRef]
- Debevec, T.; Simpson, E.J.; Macdonald, I.A.; Eiken, O.; Mekjavić, I.B. Exercise Training during Normobaric Hypoxic Confinement Does Not Alter Hormonal Appetite Regulation. PLoS ONE 2014, 9, e98874. [Google Scholar] [CrossRef]
- Wood, G.; Murrell, A.; Van Der Touw, T.; Smart, N. HIIT is not superior to MICT in altering blood lipids: A systematic review and meta-analysis. BMJ Open Sport Exerc. Med. 2019, 5, e000647. [Google Scholar] [CrossRef]
- Ahmadi, A.; Sheikholeslami-Vatani, D.; Ghaeeni, S.; Baazm, M. The effects of different training modalities on monocarboxylate transporters MCT1 and MCT4, hypoxia inducible factor-1α (HIF-1α), and PGC-1α gene expression in rat skeletal muscles. Mol. Biol. Rep. 2021, 48, 2153–2161. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Wan, Y.; Yang, B.; Huggins, C.E.; Li, D. Effects of low-fat compared with high-fat diet on cardiometabolic indicators in people with overweight and obesity without overt metabolic disturbance: A systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 2017, 119, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, N.; Vinknes, K.; Veierød, M.B.; Retterstøl, K. Low-carbohydrate diets increase LDL-cholesterol, and thereby indicate increased risk of CVD. Br. J. Nutr. 2016, 115, 2264–2266. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Michalczyk, M.M.; Maszczyk, A.; Stastny, P. The Effects of Low-Energy Moderate-Carbohydrate (MCD) and Mixed (MixD) Diets on Serum Lipid Profiles and Body Composition in Middle-Aged Men: A Randomized Controlled Parallel-Group Clinical Trial. Int. J. Environ. Res. Public Health 2020, 17, 1332. [Google Scholar] [CrossRef] [PubMed]
- Katsiki, N.; Mikhailidis, D.P.; Bajraktari, G.; Miserez, A.R.; Cicero, A.F.; Bruckert, E.; Serban, M.-C.; Mirrakhimov, E.; Alnouri, F.; Reiner, Ž.; et al. Statin therapy in athletes and patients performing regular intense exercise—Position paper from the International Lipid Expert Panel (ILEP). Pharmacol. Res. 2020, 155, 104719. [Google Scholar] [CrossRef] [PubMed]
Day | Microcycle 1 | Microcycle 2 | Microcycle 3 |
---|---|---|---|
1 | T1 + 2 h endurance training (60–75% of WRLT) | T2 + 2 h endurance training (60–75% of WRLT) | T3 + 2 h endurance training (60–75% of WRLT) |
2 | 3–4 h of endurance training 60–75% of WRLT with high-speed intervals (2 × 6 × 10 s-max) | 3–4 h of endurance training 60–75% of WRLT with high-speed intervals (2 × 6 × 10 s-max) | 3–4 h of endurance training 60–75% of WRLT with high-speed intervals (2 × 6 × 10 s-max) |
3 | T1 + 2 h endurance training (60–75% of WRLT) | T2 + 2 h endurance training (60–75% of WRLT) | T3 + 2 h endurance training (60–75% of WRLT) |
4 | Strength endurance (gym) Upper body | Strength endurance (gym) Upper body | Strength endurance (gym) Upper body |
5 | T1 + 2 h endurance training (60–75% of WRLT) | T2 + 2 h endurance training (60–75% of WRLT) | T3 + 2 h endurance training (60–75% of WRLT) |
6 | 3–4 h of endurance training 60–75% of WRLT with high-speed intervals (2 × 6 × 10 s-max) | 3–4 h of endurance training 60–75% of WRLT with high-speed intervals (2 × 6 × 10 s-max) | 3–4 h of endurance training 60–75% of WRLT with high-speed intervals (2 × 6 × 10 s-max) |
7 | Day off | Day off | Day off |
Protein (g) | Fat (g) | Carbohydrates (g) | Caloric intake (kcal) |
---|---|---|---|
204 ± 4.2 | 124.9 ± 5.9 | 384.7 ± 8.6 | 3479.5 ± 36.2 |
Variables | LH-TL | IHT | N | |||
---|---|---|---|---|---|---|
Before (S1) | After (S2) | Before (S1) | After (S2) | Before (S1) | After (S2) | |
AIP | 0.046 ± 0.187 | −0.115 * ± 0.181 | 0.132 ± 0.225 | 0.097 ± 0.227 | −0.003 ± 0.221 | −0.004 ± 0.268 |
CRI-I | 2.788 ± 0.511 | 2.345 ** ± 0.403 | 2.822 ± 0.694 | 2.598 ± 0.556 | 2.512 ± 0.706 | 2.390 ± 0.699 |
CRI-II | 1.545 ± 0.409 | 1.182 ** ± 0.350 | 1.470 ± 0.651 | 1.304 ± 0.447 | 1.294 ± 0.644 | 1.142 ± 0.564 |
Variables | LH-TL | IHT | N |
---|---|---|---|
∆TC(mg/dL) | −15.24 * ± 5.32 | −0.79 ± 5.37 | 1.38 ± 5.68 |
∆LDL-C(mg/dL) | −14.45 ± 4.50 | −2.65 ± 4.45 | −7.10 ± 4.78 |
∆HDL-C(mg/dL) | 5.47 ± 2.84 | 3.44 ± 2.82 | 5.76 ± 3.01 |
∆TG(mg/dL) | −22.31 * ± 6.48 | 3.54 ± 6.67 | 0.56 ± 6.88 |
Variables | LH-TL | IHT | N |
---|---|---|---|
AIP | −0.16 # ± 0.05 | −0.02 ± 0.05 | −0.01 ± 0.05 |
CRI-I | −0.42 ± 0.11 | −0.19 ± 0.11 | −0.18 ± 0.11 |
CRI-II | −0.32 ± 0.09 | −0.15 ± 0.09 | −0.20 ± 0.09 |
Variables | LH-TL | IHT | N | |||
---|---|---|---|---|---|---|
Before (S1) | After (S2) | Before (S1) | After (S2) | Before (S1) | After (S2) | |
BM (kg) | 70.4 ± 7.1 | 69.6 ± 6.9 | 70.8 ± 9.4 | 70.5 ± 9.1 | 69.9 ± 5.9 | 70.1 ± 5.4 |
%FAT | 6.9 ± 2.1 | 6.7 ± 1.6 | 10.4 ± 2.6 | 10.8 ± 2.9 | 7.3 ± 1.2 | 7.6 ± 1.2 |
FFM (kg) | 65.5 ± 6.0 | 64.9 ± 6.2 | 63.5 ± 8.9 | 62.9 ± 9.3 | 64.4 ± 6.2 | 64.4 ± 5.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Płoszczyca, K.; Czuba, M.; Langfort, J.; Baranowski, M. Exposure to Normobaric Hypoxia Combined with a Mixed Diet Contributes to Improvement in Lipid Profile in Trained Cyclists. Nutrients 2021, 13, 3481. https://doi.org/10.3390/nu13103481
Płoszczyca K, Czuba M, Langfort J, Baranowski M. Exposure to Normobaric Hypoxia Combined with a Mixed Diet Contributes to Improvement in Lipid Profile in Trained Cyclists. Nutrients. 2021; 13(10):3481. https://doi.org/10.3390/nu13103481
Chicago/Turabian StylePłoszczyca, Kamila, Miłosz Czuba, Józef Langfort, and Marcin Baranowski. 2021. "Exposure to Normobaric Hypoxia Combined with a Mixed Diet Contributes to Improvement in Lipid Profile in Trained Cyclists" Nutrients 13, no. 10: 3481. https://doi.org/10.3390/nu13103481
APA StylePłoszczyca, K., Czuba, M., Langfort, J., & Baranowski, M. (2021). Exposure to Normobaric Hypoxia Combined with a Mixed Diet Contributes to Improvement in Lipid Profile in Trained Cyclists. Nutrients, 13(10), 3481. https://doi.org/10.3390/nu13103481