Associations between Dietary Glycemic Index and Glycemic Load Values and Cardiometabolic Risk Factors in Adults: Findings from the China Health and Nutrition Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Intake Data Collection and Assessment
2.3. Calculations of Dietary GI and GL Values
2.4. Assessment of Covariates
2.5. Assessment of CMRF
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. The Associations between Dietary GI and GL Values and CMRF
3.3. Associations between Dietary GI and GL Values and CMRF Based on Potential Effect Modifiers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. The Top 10 Causes of Death. Available online: http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 16 November 2020).
- Shen, C.; Ge, J. Epidemic of Cardiovascular Disease in China. Circulation 2018, 138, 342–344. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Sakak, F.; Maroofi, M.; Rahmani, J.; Bellissimo, N.; Hekmatdoost, A. Serum uric acid and risk of cardiovascular mortality: A systematic review and dose-response meta-analysis of cohort studies of over a million participants. BMC Cardiovasc. Disord. 2019, 19, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Wang, H.; Zeng, X.; Yin, P.; Zhu, J.; Chen, W.; Li, X.; Wang, L.; Wang, L.; Liu, Y.; et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 394, 1145–1158. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, D.D.; Ley, S.H.; Howard, A.G.; He, Y.; Lu, Y.; Danaei, G.; Hu, F.B. Potential Impact of Time Trend of Life-Style Factors on Cardiovascular Disease Burden in China. J. Am. Coll. Cardiol. 2016, 68, 818–833. [Google Scholar] [CrossRef]
- Willett, W.; Rockstrom, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [Green Version]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. EFSA J. 2010, 8, 1462. [Google Scholar] [CrossRef] [Green Version]
- Matthan, N.R.; Ausman, L.M.; Meng, H.; Tighiouart, H.; Lichtenstein, A.H. Estimating the reliability of glycemic index values and potential sources of methodological and biological variability. Am. J. Clin. Nutr. 2016, 104, 1004–1013. [Google Scholar] [CrossRef]
- Augustin, L.S.; Kendall, C.W.; Jenkins, D.J.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef] [Green Version]
- Aziz, A.; Dumais, L.; Barber, J. Health Canada’s evaluation of the use of glycemic index claims on food labels. Am. J. Clin. Nutr. 2013, 98, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shikany, J.M.; Tinker, L.F.; Neuhouser, M.L.; Ma, Y.; Patterson, R.E.; Phillips, L.S.; Liu, S.; Redden, D.T. Association of glycemic load with cardiovascular disease risk factors: The Women’s Health Initiative Observational Study. Nutrition 2010, 26, 641–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denova-Gutierrez, E.; Huitron-Bravo, G.; Talavera, J.O.; Castanon, S.; Gallegos-Carrillo, K.; Flores, Y.; Salmeron, J. Dietary glycemic index, dietary glycemic load, blood lipids, and coronary heart disease. J. Nutr. Metab. 2010, 2010. [Google Scholar] [CrossRef] [PubMed]
- Mosdol, A.; Witte, D.R.; Frost, G.; Marmot, M.G.; Brunner, E.J. Dietary glycemic index and glycemic load are associated with high-density-lipoprotein cholesterol at baseline but not with increased risk of diabetes in the Whitehall II study. Am. J. Clin. Nutr. 2007, 86, 988–994. [Google Scholar] [CrossRef] [Green Version]
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Rogers, G.; Yoshida, M.; Saltzman, E.; Jacques, P.F. Dietary carbohydrates and cardiovascular disease risk factors in the Framingham offspring cohort. J. Am. Coll. Nutr. 2009, 28, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Ford, E.S.; Liu, S. Glycemic index and serum high-density lipoprotein cholesterol concentration among us adults. Arch. Intern. Med. 2001, 161, 572–576. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Sasaki, S.; Takahashi, Y.; Okubo, H.; Hosoi, Y.; Horiguchi, H.; Oguma, E.; Kayama, F. Dietary glycemic index and load in relation to metabolic risk factors in Japanese female farmers with traditional dietary habits. Am. J. Clin. Nutr. 2006, 83, 1161–1169. [Google Scholar] [CrossRef] [Green Version]
- Juanola-Falgarona, M.; Salas-Salvado, J.; Buil-Cosiales, P.; Corella, D.; Estruch, R.; Ros, E.; Fito, M.; Recondo, J.; Gomez-Gracia, E.; Fiol, M.; et al. Dietary Glycemic Index and Glycemic Load Are Positively Associated with Risk of Developing Metabolic Syndrome in Middle-Aged and Elderly Adults. J. Am. Geriatr. Soc. 2015, 63, 1991–2000. [Google Scholar] [CrossRef]
- Sacks, F.M.; Carey, V.J.; Anderson, C.A.; Miller, E.R., 3rd; Copeland, T.; Charleston, J.; Harshfield, B.J.; Laranjo, N.; McCarron, P.; Swain, J.; et al. Effects of high vs low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: The OmniCarb randomized clinical trial. JAMA 2014, 312, 2531–2541. [Google Scholar] [CrossRef]
- Nakashima, M.; Sakurai, M.; Nakamura, K.; Miura, K.; Yoshita, K.; Morikawa, Y.; Ishizaki, M.; Murakami, K.; Kido, T.; Naruse, Y.; et al. Dietary glycemic index, glycemic load and blood lipid levels in middle-aged Japanese men and women. J. Atheroscler. Thromb. 2010, 17, 1082–1095. [Google Scholar] [CrossRef] [Green Version]
- Sahyoun, N.R.; Anderson, A.L.; Kanaya, A.M.; Koh-Banerjee, P.; Kritchevsky, S.B.; de Rekeneire, N.; Tylavsky, F.A.; Schwartz, A.V.; Lee, J.S.; Harris, T.B. Dietary glycemic index and load, measures of glucose metabolism, and body fat distribution in older adults. Am. J. Clin. Nutr. 2005, 82, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Amano, Y.; Kawakubo, K.; Lee, J.S.; Tang, A.C.; Sugiyama, M.; Mori, K. Correlation between dietary glycemic index and cardiovascular disease risk factors among Japanese women. Eur. J. Clin. Nutr. 2004, 58, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- van Dam, R.M.; Visscher, A.W.; Feskens, E.J.; Verhoef, P.; Kromhout, D. Dietary glycemic index in relation to metabolic risk factors and incidence of coronary heart disease: The Zutphen Elderly Study. Eur. J. Clin. Nutr. 2000, 54, 726–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega-Lopez, S.; Ausman, L.M.; Griffith, J.L.; Lichtenstein, A.H. Interindividual variability and intra-individual reproducibility of glycemic index values for commercial white bread. Diabetes Care 2007, 30, 1412–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouns, F.; Bjorck, I.; Frayn, K.N.; Gibbs, A.L.; Lang, V.; Slama, G.; Wolever, T.M. Glycaemic index methodology. Nutr. Res. Rev. 2005, 18, 145–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juraschek, S.P.; McAdams-Demarco, M.; Gelber, A.C.; Sacks, F.M.; Appel, L.J.; White, K.J.; Miller, E.R., 3rd. Effects of Lowering Glycemic Index of Dietary Carbohydrate on Plasma Uric Acid Levels: The OmniCarb Randomized Clinical Trial. Arthritis Rheumatol. 2016, 68, 1281–1289. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, H.; Chen, J.; Li, L.; Wang, H.; Li, J.; Wang, L. Relationship between Glycemic Load and Blood Lipid Level in Hospitalized Adult Chinese. Iran. J. Public Health 2015, 44, 318–324. [Google Scholar]
- Lin, X.; Chen, C.; Lin, D.; Xu, M.; Yuan, Z.; He, F.; Yan, L. Dietary glycemic load and metabolic status in newly diagnosed type 2 diabetes in southeastern China. Asia Pac. J. Clin. Nutr. 2018, 27, 375–382. [Google Scholar] [CrossRef]
- Cheng, G.; Xue, H.; Luo, J.; Jia, H.; Zhang, L.; Dai, J.; Buyken, A.E. Relevance of the dietary glycemic index, glycemic load and genetic predisposition for the glucose homeostasis of Chinese adults without diabetes. Sci. Rep. 2017, 7, 400. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M.; Du, S.; Zhai, F.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey-monitoring and understanding socio-economic and health change in China, 1989–2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhai, F.Y.; Du, S.F.; Popkin, B.M. The China Health and Nutrition Survey, 1989–2011. Obes. Rev. 2014, 15 (Suppl. 1), 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Su, C.; Wang, H.; Wang, Z.; Wang, Y.; Zhang, B. Secular Trends in Energy and Macronutrient Intakes and Distribution among Adult Females (1991–2015): Results from the China Health and Nutrition Survey. Nutrients 2018, 10, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wang, H.; Zhang, B.; Popkin, B.M.; Du, S. Elevated Fat Intake Increases Body Weight and the Risk of Overweight and Obesity among Chinese Adults: 1991–2015 Trends. Nutrients 2020, 12, 3272. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Zhang, X.; Xiang, Y.B.; Yang, G.; Li, H.; Gao, Y.T.; Zheng, W.; Shu, X.O. Adherence to dietary guidelines and mortality: A report from prospective cohort studies of 134,000 Chinese adults in urban Shanghai. Am. J. Clin. Nutr. 2014, 100, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Zhao, J.; Wu, Y.; Wang, H.; Wang, Z.; Wang, Y.; Zhang, B. Temporal Trends in Dietary Macronutrient Intakes among Adults in Rural China from 1991 to 2011: Findings from the CHNS. Nutrients 2017, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Batis, C.; Sotres-Alvarez, D.; Gordon-Larsen, P.; Mendez, M.A.; Adair, L.; Popkin, B. Longitudinal analysis of dietary patterns in Chinese adults from 1991 to 2009. Br. J. Nutr. 2014, 111, 1441–1451. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, G.; Pan, X. Chinese Food Composition; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Yang, Y.; He, M.; Pan, X. Chinese Food Composition·2004; Peking University Medical Press: Beijing, China, 2005. [Google Scholar]
- Yang, Y.; Wang, G.; Pan, X. Chinese Food Composition 2002; Peking University Medical Press: Beijing, China, 2002. [Google Scholar]
- Dodd, H.; Williams, S.; Brown, R.; Venn, B. Calculating meal glycemic index by using measured and published food values compared with directly measured meal glycemic index. Am. J. Clin. Nutr. 2011, 94, 992–996. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [Green Version]
- Brand-Miller, J.C.; Thomas, M.; Swan, V.; Ahmad, Z.I.; Petocz, P.; Colagiuri, S. Physiological Validation of the Concept of Glycemic Load in Lean Young Adults. J. Nutr. 2003, 133, 2728–2732. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef]
- Bouchard, C.; Tremblay, A.; Leblanc, C.; Lortie, G.; Savard, R.; Thériault, G. A method to assess energy expenditure in children and adults. Am. J. Clin. Nutr. 1983, 37, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Li, J.; Li, S.; Zhang, B.; Du, S.; Gordon-Larsen, P.; Adair, L.; Popkin, B. The expanding burden of cardiometabolic risk in China: The China Health and Nutrition Survey. Obes. Rev. 2012, 13, 810–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joint Committee for Developing Chinese guidelines on Prevention Treatment of Dyslipidemia in Adults. Chinese guidelines on prevention and treatment of dyslipidemia in adults. Zhonghua Xin Xue Guan Bing Za Zhi 2007, 35, 390–419. [Google Scholar]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33 (Suppl. 1), S62–S69. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; He, T.; Yu, K.; Lu, Q.; Alkasir, R.; Guo, G.; Xue, Y. Markers of Iron Status Are Associated with Risk of Hyperuricemia among Chinese Adults: Nationwide Population-Based Study. Nutrients 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Min, H.S.; Kang, J.Y.; Sung, J.; Kim, M.K. Blood Triglycerides Levels and Dietary Carbohydrate Indices in Healthy Koreans. J. Prev. Med. Public Health 2016, 49, 153–164. [Google Scholar] [CrossRef]
- Hosseinpour-Niazi, S.; Sohrab, G.; Asghari, G.; Mirmiran, P.; Moslehi, N.; Azizi, F. Dietary glycemic index, glycemic load, and cardiovascular disease risk factors: Tehran Lipid and Glucose Study. Arch. Iran. Med. 2013, 16, 401–407. [Google Scholar]
- Jenkins, D.J.A.; Kendall, C.W.C.; McKeown-Eyssen, G.; Josse, R.G.; Silverberg, J.; Booth, G.L.; Vidgen, E.; Josse, A.R.; Nguyen, T.H.; Corrigan, S.; et al. Effect of a Low–Glycemic Index or a High–Cereal Fiber Diet on Type 2 Diabetes: A Randomized Trial. JAMA 2008, 300, 2742–2753. [Google Scholar] [CrossRef] [Green Version]
- Maki, K.C.; Rains, T.M.; Kaden, V.N.; Raneri, K.R.; Davidson, M.H. Effects of a reduced-glycemic-load diet on body weight, body composition, and cardiovascular disease risk markers in overweight and obese adults. Am. J. Clin. Nutr. 2007, 85, 724–734. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Ganji, V. Dietary patterns and cardiovascular disease risk among Chinese adults: A prospective cohort study. Eur. J. Clin. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Gibert, Y.; Dwyer, K.M. The adenosine, adrenergic and opioid pathways in the regulation of insulin secretion, beta cell proliferation and regeneration. Pancreatology 2018, 18, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Sessa, G.; Salvatore, T.; Sasso, F.C.; Giugliano, D.; Lefebvre, P.J.; Torella, R. The involvement of the opioid system in human obesity: A study in normal weight relatives of obese people. J. Clin. Endocrinol. Metab. 1996, 81, 713–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.Z.; Flickinger, B.D.; Williamson-Hughes, P.S.; Empie, M.W. Lack of association between dietary fructose and hyperuricemia risk in adults. Nutr. Metab. 2010, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Sun, J.; Zhang, P.; Zhong, F.; Cai, J.; Ma, A. Association of dietary fiber intake with hyperuricemia in U.S. adults. Food Funct. 2019, 10, 4932–4940. [Google Scholar] [CrossRef]
- Khosroshahi, H.T.; Abedi, B.; Ghojazadeh, M.; Samadi, A.; Jouyban, A. Effects of fermentable high fiber diet supplementation on gut derived and conventional nitrogenous product in patients on maintenance hemodialysis: A randomized controlled trial. Nutr. Metab. 2019, 16, 18. [Google Scholar] [CrossRef] [Green Version]
- Dessein, P.H.; Shipton, E.A.; Stanwix, A.E.; Joffe, B.I.; Ramokgadi, J. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: A pilot study. Ann. Rheum. Dis. 2000, 59, 539–543. [Google Scholar] [CrossRef] [Green Version]
- Koguchi, T.; Koguchi, H.; Nakajima, H.; Takano, S.; Yamamoto, Y.; Innami, S.; Maekawa, A.; Tadokoro, T. Dietary fiber suppresses elevation of uric acid and urea nitrogen concentrations in serum of rats with renal dysfunction induced by dietary adenine. Int. J. Vitam. Nutr. Res. 2004, 74, 253–263. [Google Scholar] [CrossRef]
- Shi, Z. Cadmium Intake, Dietary Patterns and Hyperuricemia Among Adults in China. Expo. Health 2020. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, J.; Shang, Y.; Sun, B. Health risk assessment of cadmium via dietary intake by adults in China. J. Sci. Food Agric. 2014, 94, 373–380. [Google Scholar] [CrossRef]
- Fox, I.H.; Kelley, W.N. Studies on the mechanism of fructose-induced hyperuricemia in man. Metab. Clin. Exp. 1972, 21, 713–721. [Google Scholar] [CrossRef]
- Ludwig, D.S. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 2002, 287, 2414–2423. [Google Scholar] [CrossRef] [PubMed]
- de Mello Fontanelli, M.; Sales, C.H.; Carioca, A.A.F.; Marchioni, D.M.; Fisberg, R.M. The relationship between carbohydrate quality and the prevalence of metabolic syndrome: Challenges of glycemic index and glycemic load. Eur. J. Nutr. 2018, 57, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Buyken, A.E.; Mitchell, P.; Ceriello, A.; Brand-Miller, J. Optimal dietary approaches for prevention of type 2 diabetes: A life-course perspective. Diabetologia 2010, 53, 406–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boden, G.; Chen, X.; Ruiz, J.; White, J.V.; Rossetti, L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J. Clin. Investig. 1994, 93, 2438–2446. [Google Scholar] [CrossRef]
- Rossetti, L.; Giaccari, A.; DeFronzo, R.A. Glucose toxicity. Diabetes Care 1990, 13, 610–630. [Google Scholar] [CrossRef]
- Salvatore, T.; Nevola, R.; Pafundi, P.C.; Monaco, L.; Ricozzi, C.; Imbriani, S.; Rinaldi, L.; Sasso, F.C. Incretin Hormones: The Link between Glycemic Index and Cardiometabolic Diseases. Nutrients 2019, 11, 1878. [Google Scholar] [CrossRef] [Green Version]
- Hollaender, P.L.; Ross, A.B.; Kristensen, M. Whole-grain and blood lipid changes in apparently healthy adults: A systematic review and meta-analysis of randomized controlled studies. Am. J. Clin. Nutr. 2015, 102, 556–572. [Google Scholar] [CrossRef] [Green Version]
- Lia, A.; Hallmans, G.; Sandberg, A.S.; Sundberg, B.; Aman, P.; Andersson, H. Oat beta-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Am. J. Clin. Nutr. 1995, 62, 1245–1251. [Google Scholar] [CrossRef]
- Connolly, M.L.; Tzounis, X.; Tuohy, K.M.; Lovegrove, J.A. Hypocholesterolemic and Prebiotic Effects of a Whole-Grain Oat-Based Granola Breakfast Cereal in a Cardio-Metabolic “At Risk” Population. Front. Microbiol. 2016, 7, 1675. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.M.; Venn, B.J.; Perry, T.; Brown, R.; Wallace, A.; Mann, J.I.; Green, T.J. Another approach to estimating the reliability of glycaemic index. Br. J. Nutr. 2008, 100, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Vrolix, R.; Mensink, R.P. Variability of the glycemic response to single food products in healthy subjects. Contemp. Clin. Trials 2010, 31, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Møller, B.K.; Raben, A.; Pedersen, D.; Tetens, I.; Holst, J.J.; Astrup, A. The use of glycaemic index tables to predict glycaemic index of composite breakfast meals. Br. J. Nutr. 2004, 91, 979–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, H.; Matthan, N.R.; Ausman, L.M.; Lichtenstein, A.H. Effect of macronutrients and fiber on postprandial glycemic responses and meal glycemic index and glycemic load value determinations. Am. J. Clin. Nutr. 2017, 105, 842–853. [Google Scholar] [CrossRef] [Green Version]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Matthan, N.R.; Ausman, L.M.; Lichtenstein, A.H. Effect of prior meal macronutrient composition on postprandial glycemic responses and glycemic index and glycemic load value determinations. Am. J. Clin. Nutr. 2017, 106, 1246–1256. [Google Scholar] [CrossRef] [Green Version]
- Sasso, F.C.; Rinaldi, L.; Lascar, N.; Marrone, A.; Pafundi, P.C.; Adinolfi, L.E.; Marfella, R. Role of Tight Glycemic Control during Acute Coronary Syndrome on CV Outcome in Type 2 Diabetes. J. Diabetes Res. 2018, 2018, 3106056. [Google Scholar] [CrossRef] [Green Version]
- Jovanovski, E.; Zurbau, A.; Vuksan, V. Carbohydrates and endothelial function: Is a low-carbohydrate diet or a low-glycemic index diet favourable for vascular health? Clin. Nutr. Res. 2015, 4, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Sardu, C.; Paolisso, P.; Sacra, C.; Mauro, C.; Minicucci, F.; Portoghese, M.; Rizzo, M.R.; Barbieri, M.; Sasso, F.C.; D’Onofrio, N.; et al. Effects of Metformin Therapy on Coronary Endothelial Dysfunction in Patients with Prediabetes With Stable Angina and Nonobstructive Coronary Artery Stenosis: The CODYCE Multicenter Prospective Study. Diabetes Care 2019, 42, 1946–1955. [Google Scholar] [CrossRef] [Green Version]
- Della Corte, C.M.; Ciaramella, V.; Di Mauro, C.; Castellone, M.D.; Papaccio, F.; Fasano, M.; Sasso, F.C.; Martinelli, E.; Troiani, T.; De Vita, F.; et al. Metformin increases antitumor activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human NSCLC cancer cells. Oncotarget 2016, 7, 4265–4278. [Google Scholar] [CrossRef] [Green Version]
Variables | All | Quintiles of Dietary GI Values | Quintiles of Dietary GL Values | ||||
---|---|---|---|---|---|---|---|
(N = 7886) | Q1 (n = 1550) | Q3 (n = 1589) | Q5 (n = 1578) | Q1 (n = 1574) | Q3 (n = 1576) | Q5 (n = 1582) | |
Median | - | 64.2 | 75.2 | 80.1 | 148.7 | 210.3 | 264.5 |
Age, years | 50 ± 15 | 50 ± 15 | 50 ± 15 | 50 ± 15 | 50 ± 15 | 50 ± 15 | 50 ± 15 |
Gender, n (%) | |||||||
Male | 3690 (46.8) | 654 (42.2) | 755 (47.5) | 772 (48.9) | 716 (45.5) | 752 (47.7) | 760 (48.0) |
Female | 4196 (53.2) | 896 (57.8) | 834 (52.5) | 806 (51.1) | 858 (54.5) | 824 (52.3) | 822 (52.0) |
BMI, kg/m2 | 23.3 ± 3.4 | 23.4 ± 3.4 | 23.4 ± 3.5 | 23.1 ± 3.5 | 23.5 ± 3.4 | 23.3 ± 3.4 | 23.1 ± 3.4 |
Waist-to-hip ratio | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 |
Systolic blood pressure, mm Hg | 124.3 ± 18.6 | 124.0 ± 18.9 | 124.1 ± 18.7 | 124.6 ± 19.1 | 123.9 ± 18.8 | 124.4 ± 18.7 | 124.3 ± 18.7 |
Diastolic blood pressure, mm Hg | 80.4 ± 11.3 | 80.1 ± 11.2 | 80.7 ± 11.2 | 80.5 ± 11.6 | 80.0 ± 11.0 | 80.2 ± 11.4 | 81.1 ± 11.7 |
Urbanization index, n (%) | |||||||
Low | 2623 (33.3) | 264 (17.0) | 505 (31.8) | 797 (50.5) | 215 (13.7) | 428 (27.2) | 1013 (64.0) |
Medium | 2600 (33.0) | 526 (33.9) | 575 (36.2) | 478 (30.3) | 470 (29.9) | 620 (39.3) | 409 (25.9) |
High | 2663 (33.7) | 760 (49.1) | 509 (32.0) | 303 (19.2) | 889 (56.4) | 528 (33.5) | 160 (10.1) |
Region, n (%) | |||||||
North | 3311 (42.0) | 572 (36.9) | 684 (43.0) | 700 (44.4) | 560 (35.6) | 592 (37.6) | 864 (54.6) |
South | 4575 (58.0) | 978 (63.1) | 905 (57.0) | 878 (55.6) | 1014 (64.4) | 984 (62.4) | 718 (45.4) |
High school and above, n (%) | 1901 (24.1) | 526 (33.9) | 371 (23.4) | 227 (14.4) | 572 (36.3) | 376 (23.9) | 189 (12.0) |
Alcohol consumption, n (%) | 2601 (33.0) | 532 (34.3) | 540 (34.0) | 484 (30.7) | 581 (36.9) | 514 (32.6) | 486 (30.7) |
Current smoker, n (%) | 2214 (28.1) | 396 (25.6) | 461 (29.0) | 467 (29.6) | 413 (26.2) | 475 (30.1) | 466 (29.5) |
Physical activity, METs-h/week | 69.0 ± 100.1 | 53.9 ± 88.2 | 70.4 ± 100.4 | 81.6 ± 107.8 | 44.7 ± 79.5 | 65.4 ± 94.3 | 99.2 ± 117.2 |
Total energy intake, kcal/day | 1729.7 ± 14.5 | 1731.7 ± 19.8 | 1728.4 ± 13.5 | 1729.7 ± 9.9 | 1731.0 ± 25.5 | 1729.6 ± 10.0 | 1729.3 ± 6.8 |
Total dietary fiber intake, g/day | 10.9 ± 5.3 | 13.6 ± 7.0 | 11.1 ± 5.1 | 8.5 ± 3.1 | 12.8 ± 7.5 | 10.6 ± 4.8 | 10.0 ± 3.4 |
PUFA/SFA ratio | 0.7 ± 3.4 | 0.6 ± 0.8 | 0.6 ± 0.8 | 0.7 ± 1.1 | 0.6 ± 0.7 | 0.6 ± 0.6 | 1.2 ± 7.6 |
Carbohydrate intake, % energy | 67.6 ± 10.5 | 61.4 ± 11.1 | 67.1 ± 9.2 | 73.8 ± 8.4 | 53.9 ± 7.9 | 67.7 ± 4.6 | 80.5 ± 3.8 |
Fat intake, % energy | 18.0 ± 9.2 | 22.9 ± 9.5 | 18.4 ± 8.2 | 13.2 ± 7.9 | 29.2 ± 7.8 | 18.1 ± 4.7 | 7.1 ± 3.3 |
Protein intake, % energy | 14.4 ± 3.0 | 15.7 ± 3.7 | 14.6 ± 2.7 | 13.0 ± 2.1 | 16.8 ± 3.6 | 14.2 ± 2.3 | 12.4 ± 1.6 |
Hypercholesterolemia, n (%) | 726 (9.2) | 169 (10.9) | 148 (9.3) | 133 (8.4) | 172 (10.9) | 151 (9.6) | 119 (7.5) |
Low HDL-cholesterol, n (%) | 774 (9.9) | 132 (8.5) | 149 (9.4) | 136 (8.6) | 165 (10.5) | 149 (9.5) | 153 (9.7) |
Elevated LDL-cholesterol, n (%) | 858 (10.9) | 191 (12.3) | 182 (11.5) | 158 (10.0) | 199 (12.6) | 175 (11.1) | 143 (9.0) |
Hypertriglyceridemia, n (%) | 1414 (18.0) | 282 (18.2) | 313 (19.7) | 232 (14.7) | 294 (18.7) | 290 (18.4) | 253 (16.0) |
Hyperglycemia, n (%) | 931 (11.8) | 188 (12.1) | 202 (12.7) | 174 (11.0) | 189 (12.0) | 196 (12.4) | 161 (10.2) |
Hyperuricemia, n (%) | 1199 (15.2) | 256 (16.6) | 260 (16.4) | 187 (11.9) | 286 (18.2) | 255 (16.2) | 182 (11.5) |
Variables | Quintiles of Dietary GI Values | p-Trend 2 | ||||
---|---|---|---|---|---|---|
Q1 (n = 1550) | Q2 (n = 1584) | Q3 (n = 1589) | Q4 (n = 1585) | Q5 (n = 1578) | ||
Range | <68.7 | 68.7–73.5 | 73.6–76.6 | 76.7–78.8 | ≥78.9 | |
Median | 64.2 | 71.5 | 75.2 | 77.8 | 80.1 | |
Hypercholesterolemia | ||||||
Cases, n | 169 | 144 | 148 | 132 | 133 | |
Model 1 | 1.00 (Ref) | 1.23 (0.97, 1.55) | 1.19 (0.94, 1.50) | 1.35 (1.06, 1.72) | 1.33 (1.05, 1.69) | 0.0077 |
Model 2 | 1.00 (Ref) | 1.23 (0.97, 1.57) | 1.09 (0.85, 1.40) | 1.11 (0.85, 1.46) | 1.12 (0.84, 1.49) | 0.46 |
Low HDL-cholesterol | ||||||
Cases, n | 132 | 182 | 149 | 175 | 136 | |
Model 1 | 1.00 (Ref) | 0.72 (0.57, 0.91) | 0.90 (0.70, 1.15) | 0.75 (0.60, 0.96) | 0.99 (0.77, 1.27) | 0.60 |
Model 2 | 1.00 (Ref) | 0.72 (0.56, 0.92) | 0.90 (0.69, 1.17) | 0.77 (0.59, 1.01) | 0.93 (0.69, 1.26) | 0.41 |
Elevated LDL-cholesterol | ||||||
Cases, n | 191 | 186 | 182 | 141 | 158 | |
Model 1 | 1.00 (Ref) | 1.06 (0.85, 1.31) | 1.08 (0.87, 1.35) | 1.44 (1.15, 1.82) | 1.26 (1.01, 1.58) | 0.0037 |
Model 2 | 1.00 (Ref) | 1.03 (0.82, 1.29) | 0.96 (0.76, 1.21) | 1.16 (0.89, 1.50) | 1.04 (0.79, 1.36) | 0.62 |
Hypertriglyceridemia | ||||||
Cases, n | 282 | 281 | 313 | 306 | 232 | |
Model 1 | 1.00 (Ref) | 1.03 (0.86, 1.24) | 0.91 (0.76, 1.08) | 0.93 (0.78, 1.11) | 1.29 (1.07, 1.56) | 0.22 |
Model 2 | 1.00 (Ref) | 1.05 (0.86, 1.27) | 0.88 (0.72, 1.07) | 0.89 (0.73, 1.10) | 1.20 (0.95, 1.51) | 0.92 |
Hyperglycemia | ||||||
Cases, n | 188 | 201 | 202 | 166 | 174 | |
Model 1 | 1.00 (Ref) | 0.95 (0.77, 1.18) | 0.95 (0.77, 1.17) | 1.18 (0.95, 1.48) | 1.12 (0.90, 1.39) | 0.16 |
Model 2 | 1.00 (Ref) | 0.98 (0.79, 1.23) | 0.98 (0.78, 1.23) | 1.18 (0.92, 1.51) | 1.14 (0.88, 1.48) | 0.26 |
Hyperuricemia | ||||||
Cases, n | 256 | 254 | 260 | 242 | 187 | |
Model 1 | 1.00 (Ref) | 1.01 (0.84, 1.22) | 1.10 (0.91, 1.33) | 1.47 (1.20, 1.81) | 1.04 (0.86, 1.26) | 0.0027 |
Model 2 | 1.00 (Ref) | 0.97 (0.79, 1.20) | 1.06 (0.85, 1.32) | 1.35 (1.05, 1.73) | 1.03 (0.84, 1.26) | 0.13 |
Variables | Quintiles of Dietary GL Values | p-Trend 2 | ||||
---|---|---|---|---|---|---|
Q1 (n = 1574) | Q2 (n = 1577) | Q3 (n = 1576) | Q4 (n = 1577) | Q5 (n = 1582) | ||
Range | <170.0 | 170.0–198.0 | 198.1–221.8 | 221.9–247.3 | ≥247.4 | |
Median | 148.7 | 185.4 | 210.3 | 233.7 | 264.5 | |
Hypercholesterolemia | ||||||
Cases, n | 172 | 162 | 151 | 122 | 119 | |
Model 1 | 1.00 (Ref) | 1.07 (0.86, 1.35) | 1.16 (0.92, 1.46) | 1.46 (1.15, 1.87) | 1.51 (1.18, 1.93) | < 0.0010 |
Model 2 | 1.00 (Ref) | 1.08 (0.85, 1.36) | 1.14 (0.89, 1.46) | 1.33 (1.00, 1.75) | 1.25 (0.93, 1.68) | 0.06 |
Low HDL-cholesterol | ||||||
Cases, n | 165 | 143 | 149 | 164 | 153 | |
Model 1 | 1.00 (Ref) | 1.18 (0.93, 1.49) | 1.13 (0.89, 1.42) | 1.02 (0.81, 1.28) | 1.09 (0.87, 1.38) | 0.81 |
Model 2 | 1.00 (Ref) | 1.19 (0.93, 1.52) | 1.13 (0.88, 1.45) | 1.00 (0.77, 1.32) | 1.08 (0.82, 1.44) | 0.83 |
Elevated LDL-cholesterol | ||||||
Cases, n | 199 | 201 | 175 | 140 | 143 | |
Model 1 | 1.00 (Ref) | 0.99 (0.81, 1.23) | 1.16 (0.94, 1.44) | 1.49 (1.18, 1.87) | 1.46 (1.16, 1.83) | < 0.0010 |
Model 2 | 1.00 (Ref) | 0.98 (0.79, 1.22) | 1.11 (0.88, 1.40) | 1.31 (1.01, 1.71) | 1.16 (0.88, 1.52) | 0.10 |
Hypertriglyceridemia | ||||||
Cases, n | 294 | 289 | 290 | 288 | 253 | |
Model 1 | 1.00 (Ref) | 1.02 (0.85, 1.22) | 1.02 (0.85, 1.22) | 1.03 (0.86, 1.23) | 1.21 (1.01, 1.46) | 0.07 |
Model 2 | 1.00 (Ref) | 0.96 (0.79, 1.16) | 0.91 (0.74, 1.10) | 0.84 (0.68, 1.04) | 0.98 (0.78, 1.23) | 0.53 |
Hyperglycemia | ||||||
Cases, n | 189 | 198 | 196 | 187 | 161 | |
Model 1 | 1.00 (Ref) | 0.95 (0.77, 1.18) | 0.96 (0.78, 1.19) | 1.02 (0.82, 1.26) | 1.21 (0.97, 1.51) | 0.10 |
Model 2 | 1.00 (Ref) | 0.91 (0.73, 1.14) | 0.90 (0.72, 1.14) | 0.87 (0.68, 1.12) | 0.95 (0.73, 1.25) | 0.60 |
Hyperuricemia | ||||||
Cases, n | 286 | 258 | 255 | 218 | 182 | |
Model 1 | 1.00 (Ref) | 1.15 (0.96, 1.38) | 1.39 (1.14, 1.68) | 1.71 (1.40, 2.09) | 1.14 (0.95, 1.37) | < 0.0010 |
Model 2 | 1.00 (Ref) | 1.08 (0.88, 1.32) | 1.26 (1.00, 1.58) | 1.46 (1.14, 1.87) | 1.10 (0.90, 1.34) | 0.0028 |
Variables | Quintiles of Dietary GI Values | p-Trend 2 | p-Interaction | ||||
---|---|---|---|---|---|---|---|
Q1 (n = 1550) | Q2 (n = 1584) | Q3 (n = 1589) | Q4 (n = 1585) | Q5 (n = 1578) | |||
Hypercholesterolemia | |||||||
Age ≥60 | 1.00 (Ref) | 1.28 (0.87, 1.89) | 1.29 (0.87, 1.91) | 1.39 (0.90, 2.14) | 1.64 (1.06, 2.55) | 0.05 | 0.17 |
Age <60 | 1.00 (Ref) | 1.20 (0.88, 1.63) | 0.98 (0.72, 1.35) | 0.98 (0.71, 1.36) | 0.90 (0.64, 1.27) | 0.94 | |
Female | 1.00 (Ref) | 1.11 (0.81, 1.51) | 1.02 (0.74, 1.40) | 0.99 (0.71, 1.39) | 1.15 (0.80, 1.64) | 0.33 | 0.60 |
Male | 1.00 (Ref) | 1.46 (0.99, 2.15) | 1.21 (0.83, 1.77) | 1.31 (0.88, 1.95) | 1.10 (0.73, 1.64) | 0.94 | |
BMI < 24 kg/m2 | 1.00 (Ref) | 1.36 (0.96, 1.93) | 1.43 (0.99, 2.06) | 1.12 (0.78, 1.61) | 1.08 (0.75, 1.56) | 0.74 | 0.17 |
BMI ≥ 24 kg/m2 | 1.00 (Ref) | 1.12 (0.80, 1.57) | 0.87 (0.62, 1.22) | 1.10 (0.76, 1.59) | 1.18 (0.80, 1.75) | 0.52 | |
North | 1.00 (Ref) | 1.55 (1.08, 2.24) | 1.25 (0.87, 1.79) | 1.17 (0.79, 1.72) | 1.61 (1.06, 2.43) | 0.46 | 0.11 |
South | 1.00 (Ref) | 1.03 (0.74, 1.42) | 0.98 (0.70, 1.37) | 1.07 (0.75, 1.52) | 0.85 (0.60, 1.22) | 0.71 | |
Low HDL-cholesterol | |||||||
Age ≥60 | 1.00 (Ref) | 0.59 (0.35, 0.98) | 0.80 (0.46, 1.38) | 0.65 (0.38, 1.12) | 0.91 (0.51, 1.61) | 0.27 | 0.89 |
Age <60 | 1.00 (Ref) | 0.76 (0.57, 1.01) | 0.93 (0.69, 1.25) | 0.81 (0.60, 1.09) | 0.94 (0.68, 1.31) | 0.64 | |
Female | 1.00 (Ref) | 0.77 (0.53, 1.14) | 0.86 (0.58, 1.30) | 0.68 (0.45, 1.01) | 0.88 (0.57, 1.36) | 0.87 | 0.72 |
Male | 1.00 (Ref) | 0.68 (0.49, 0.94) | 0.92 (0.66, 1.29) | 0.83 (0.59, 1.16) | 0.96 (0.67, 1.39) | 0.31 | |
BMI < 24 kg/m2 | 1.00 (Ref) | 0.69 (0.48, 1.00) | 0.95 (0.64, 1.41) | 1.02 (0.68, 1.52) | 1.02 (0.67, 1.54) | 0.73 | 0.21 |
BMI ≥ 24 kg/m2 | 1.00 (Ref) | 0.73 (0.53, 1.02) | 0.86 (0.61, 1.21) | 0.63 (0.45, 0.89) | 0.87 (0.59, 1.27) | 0.16 | |
North | 1.00 (Ref) | 0.81 (0.55, 1.19) | 0.79 (0.54, 1.17) | 0.73 (0.49, 1.08) | 0.74 (0.49, 1.11) | 0.10 | 0.05 |
South | 1.00 (Ref) | 0.64 (0.47, 0.89) | 1.01 (0.71, 1.43) | 0.80 (0.57, 1.14) | 1.25 (0.83, 1.89) | 0.59 | |
Elevated LDL-cholesterol | |||||||
Age ≥60 | 1.00 (Ref) | 1.35 (0.93, 1.95) | 1.20 (0.83, 1.73) | 1.67 (1.10, 2.53) | 1.35 (0.91, 2.01) | 0.07 | 0.18 |
Age <60 | 1.00 (Ref) | 0.88 (0.66, 1.17) | 0.83 (0.62, 1.12) | 0.94 (0.69, 1.29) | 0.88 (0.64, 1.22) | 0.82 | |
Female | 1.00 (Ref) | 0.97 (0.73, 1.29) | 0.90 (0.66, 1.21) | 1.13 (0.81, 1.57) | 1.06 (0.76, 1.49) | 0.73 | 0.87 |
Male | 1.00 (Ref) | 1.14 (0.80, 1.62) | 1.05 (0.74, 1.50) | 1.20 (0.83, 1.75) | 1.01 (0.69, 1.48) | 0.63 | |
BMI < 24 kg/m2 | 1.00 (Ref) | 1.15 (0.84, 1.59) | 1.07 (0.77, 1.48) | 1.13 (0.80, 1.60) | 0.96 (0.69, 1.35) | 0.61 | 0.40 |
BMI ≥ 24 kg/m2 | 1.00 (Ref) | 0.93 (0.68, 1.27) | 0.86 (0.63, 1.19) | 1.18 (0.83, 1.69) | 1.15 (0.79, 1.67) | 0.74 | |
North | 1.00 (Ref) | 1.36 (0.97, 1.92) | 1.10 (0.78, 1.54) | 1.17 (0.81, 1.70) | 1.22 (0.83, 1.78) | 0.94 | 0.21 |
South | 1.00 (Ref) | 0.84 (0.62, 1.13) | 0.86 (0.63, 1.17) | 1.15 (0.82, 1.61) | 0.92 (0.65, 1.29) | 0.38 | |
Hypertriglyceridemia | |||||||
Age ≥60 | 1.00 (Ref) | 1.14 (0.79, 1.66) | 1.05 (0.72, 1.53) | 0.95 (0.65, 1.40) | 1.31 (0.88, 1.96) | 0.53 | 0.86 |
Age <60 | 1.00 (Ref) | 1.02 (0.81, 1.27) | 0.83 (0.66, 1.03) | 0.87 (0.69, 1.10) | 1.16 (0.90, 1.51) | 0.87 | |
Female | 1.00 (Ref) | 1.04 (0.80, 1.36) | 0.93 (0.71, 1.22) | 0.98 (0.74, 1.30) | 1.24 (0.92, 1.67) | 0.60 | 0.85 |
Male | 1.00 (Ref) | 1.05 (0.80, 1.39) | 0.83 (0.63, 1.09) | 0.82 (0.62, 1.08) | 1.16 (0.85, 1.58) | 0.69 | |
BMI < 24 kg/m2 | 1.00 (Ref) | 1.18 (0.89, 1.57) | 1.04 (0.78, 1.38) | 1.06 (0.79, 1.42) | 1.52 (1.11, 2.08) | 0.39 | 0.26 |
BMI ≥ 24 kg/m2 | 1.00 (Ref) | 0.95 (0.73, 1.22) | 0.76 (0.59, 0.99) | 0.77 (0.59, 1.01) | 0.99 (0.73, 1.32) | 0.56 | |
North | 1.00 (Ref) | 1.19 (0.88, 1.61) | 0.81 (0.61, 1.09) | 0.95 (0.70, 1.29) | 1.17 (0.85, 1.62) | 0.90 | 0.35 |
South | 1.00 (Ref) | 0.95 (0.74, 1.22) | 0.94 (0.73, 1.22) | 0.86 (0.66, 1.11) | 1.24 (0.93, 1.67) | 0.85 | |
Hyperglycemia | |||||||
Age ≥60 | 1.00 (Ref) | 0.80 (0.55, 1.16) | 0.78 (0.54, 1.13) | 1.04 (0.69, 1.55) | 1.03 (0.69, 1.53) | 0.87 | 0.58 |
Age <60 | 1.00 (Ref) | 1.10 (0.84, 1.45) | 1.11 (0.84, 1.47) | 1.27 (0.94, 1.71) | 1.21 (0.88, 1.65) | 0.15 | |
Female | 1.00 (Ref) | 1.01 (0.73, 1.38) | 0.85 (0.62, 1.16) | 1.17 (0.82, 1.66) | 1.14 (0.80, 1.62) | 0.93 | 0.61 |
Male | 1.00 (Ref) | 0.96 (0.70, 1.31) | 1.12 (0.81, 1.54) | 1.19 (0.86, 1.66) | 1.14 (0.81, 1.61) | 0.14 | |
BMI < 24 kg/m2 | 1.00 (Ref) | 1.25 (0.90, 1.74) | 1.01 (0.73, 1.39) | 1.36 (0.96, 1.93) | 1.17 (0.84, 1.65) | 0.30 | 0.25 |
BMI ≥ 24 kg/m2 | 1.00 (Ref) | 0.80 (0.60, 1.09) | 0.94 (0.69, 1.29) | 1.04 (0.74, 1.44) | 1.12 (0.78, 1.59) | 0.55 | |
North | 1.00 (Ref) | 1.05 (0.74, 1.51) | 1.01 (0.71, 1.44) | 1.18 (0.80, 1.74) | 0.97 (0.66, 1.41) | 0.16 | 0.42 |
South | 1.00 (Ref) | 0.93 (0.70, 1.24) | 0.95 (0.71, 1.27) | 1.17 (0.86, 1.60) | 1.31 (0.94, 1.83) | 0.0277 | |
Hyperuricemia | |||||||
Age ≥60 | 1.00 (Ref) | 1.07 (0.75, 1.53) | 1.17 (0.81, 1.69) | 1.15 (0.79, 1.68) | 1.60 (1.08, 2.37) | 0.09 | 0.71 |
Age <60 | 1.00 (Ref) | 1.01 (0.79, 1.28) | 0.90 (0.70, 1.15) | 1.02 (0.79, 1.32) | 1.25 (0.94, 1.66) | 0.34 | |
Female | 1.00 (Ref) | 1.06 (0.79, 1.44) | 1.02 (0.75, 1.38) | 1.04 (0.75, 1.43) | 1.42 (1.00, 2.01) | 0.28 | 0.98 |
Male | 1.00 (Ref) | 1.00 (0.76, 1.31) | 0.94 (0.72, 1.24) | 1.06 (0.80, 1.41) | 1.30 (0.96, 1.76) | 0.23 | |
BMI < 24 kg/m2 | 1.00 (Ref) | 1.02 (0.76, 1.35) | 1.15 (0.86, 1.54) | 1.18 (0.87, 1.60) | 1.47 (1.06, 2.02) | 0.10 | 0.42 |
BMI ≥ 24 kg/m2 | 1.00 (Ref) | 1.02 (0.76, 1.35) | 1.15 (0.86, 1.54) | 1.18 (0.87, 1.60) | 1.47 (1.06, 2.02) | 0.61 | |
North | 1.00 (Ref) | 1.07 (0.76, 1.51) | 1.01 (0.72, 1.44) | 1.19 (0.82, 1.72) | 1.40 (0.96, 2.05) | 0.43 | 0.95 |
South | 1.00 (Ref) | 1.01 (0.79, 1.29) | 0.96 (0.75, 1.23) | 1.00 (0.77, 1.30) | 1.33 (0.99, 1.79) | 0.20 |
Variables | Quintiles of Dietary GL Values | p-Trend 2 | p-Interaction | ||||
---|---|---|---|---|---|---|---|
Q1 (n = 1574) | Q2 (n = 1577) | Q3 (n = 1576) | Q4 (n = 1577) | Q5 (n = 1582) | |||
Hypercholesterolemia | |||||||
Age ≥60 | 1.00 (Ref) | 1.03 (0.71, 1.48) | 1.94 (1.28, 2.93) | 1.94 (1.26, 2.99) | 1.72 (1.11, 2.68) | < 0.0010 | 0.0010 |
Age <60 | 1.00 (Ref) | 1.10 (0.81, 1.50) | 0.85 (0.63, 1.15) | 1.05 (0.75, 1.47) | 1.02 (0.72, 1.45) | 0.60 | |
Female | 1.00 (Ref) | 1.17 (0.86, 1.59) | 1.16 (0.84, 1.60) | 1.34 (0.94, 1.89) | 1.18 (0.83, 1.68) | 0.05 | 0.77 |
Male | 1.00 (Ref) | 0.96 (0.67, 1.38) | 1.12 (0.77, 1.63) | 1.32 (0.88, 1.99) | 1.39 (0.90, 2.15) | 0.32 | |
BMI < 24 kg/m2 | 1.00 (Ref) | 1.08 (0.77, 1.52) | 1.35 (0.94, 1.92) | 1.44 (0.98, 2.11) | 1.19 (0.81, 1.76) | 0.24 | 0.52 |
BMI ≥ 24 kg/m2 | 1.00 (Ref) | 1.07 (0.78, 1.49) | 0.98 (0.70, 1.36) | 1.23 (0.85, 1.77) | 1.32 (0.90, 1.94) | 0.17 | |
North | 1.00 (Ref) | 1.21 (0.86, 1.72) | 1.74 (1.17, 2.57) | 1.48 (1.00, 2.19) | 1.55 (1.05, 2.30) | 0.13 | 0.07 |
South | 1.00 (Ref) | 0.99 (0.72, 1.35) | 0.87 (0.63, 1.19) | 1.22 (0.85, 1.75) | 1.04 (0.71, 1.53) | 0.36 | |
Low HDL-cholesterol | |||||||
Age ≥60 | 1.00 (Ref) | 0.97 (0.59, 1.61) | 1.15 (0.68, 1.93) | 0.90 (0.54, 1.49) | 1.24 (0.71, 2.15) | 0.62 | 0.68 |
Age <60 | 1.00 (Ref) | 1.26 (0.95, 1.67) | 1.12 (0.85, 1.49) | 1.04 (0.77, 1.40) | 1.05 (0.77, 1.44) | 0.69 | |
Female | 1.00 (Ref) | 1.05 (0.70, 1.57) | 0.99 (0.66, 1.50) | 0.75 (0.50, 1.13) | 0.77 (0.51, 1.16) | 0.87 | 0.15 |
Male | 1.00 (Ref) | 1.28 (0.94, 1.74) | 1.22 (0.89, 1.67) | 1.21 (0.87, 1.68) | 1.37 (0.97, 1.94) | 0.63 | |
BMI < 24 kg/m2 | 1.00 (Ref) | 0.93 (0.65, 1.35) | 1.18 (0.80, 1.72) | 1.13 (0.76, 1.67) | 1.32 (0.88, 2.01) | 0.30 | 0.0315 |
BMI ≥ 24 kg/m2 | 1.00 (Ref) | 1.44 (1.04, 2.00) | 1.10 (0.79, 1.52) | 0.92 (0.66, 1.29) | 0.94 (0.67, 1.33) | 0.51 | |
North | 1.00 (Ref) | 1.21 (0.82, 1.78) | 0.92 (0.63, 1.35) | 0.81 (0.55, 1.19) | 0.86 (0.59, 1.25) | 0.09 | 0.16 |
South | 1.00 (Ref) | 1.16 (0.85, 1.59) | 1.30 (0.94, 1.81) | 1.18 (0.83, 1.66) | 1.38 (0.93, 2.05) | 0.0352 | |
Elevated LDL-cholesterol | |||||||
Age ≥60 | 1.00 (Ref) | 1.02 (0.72, 1.45) | 1.66 (1.12, 2.44) | 1.60 (1.07, 2.39) | 1.36 (0.90, 2.04) | 0.0137 | 0.09 |
Age <60 | 1.00 (Ref) | 0.95 (0.72, 1.25) | 0.89 (0.67, 1.18) | 1.16 (0.84, 1.60) | 1.04 (0.75, 1.45) | 0.52 | |
Female | 1.00 (Ref) | 1.07 (0.81, 1.43) | 1.16 (0.86, 1.57) | 1.38 (0.99, 1.91) | 1.17 (0.83, 1.63) | 0.06 | 0.89 |
Male | 1.00 (Ref) | 0.87 (0.62, 1.21) | 1.04 (0.73, 1.47) | 1.23 (0.84, 1.80) | 1.15 (0.77, 1.71) | 0.33 | |
BMI < 24 kg/m2 | 1.00 (Ref) | 0.91 (0.67, 1.24) | 1.08 (0.78, 1.50) | 1.32 (0.92, 1.90) | 0.97 (0.68, 1.39) | 0.63 | 0.56 |
BMI ≥ 24 kg/m2 | 1.00 (Ref) | 1.05 (0.78, 1.42) | 1.12 (0.82, 1.54) | 1.29 (0.92, 1.82) | 1.38 (0.96, 1.98) | 0.08 | |
North | 1.00 (Ref) | 1.18 (0.85, 1.66) | 1.57 (1.08, 2.27) | 1.34 (0.92, 1.94) | 1.21 (0.85, 1.75) | 0.62 | 0.09 |
South | 1.00 (Ref) | 0.86 (0.64, 1.14) | 0.89 (0.66, 1.19) | 1.29 (0.92, 1.81) | 1.13 (0.79, 1.63) | 0.06 | |
Hypertriglyceridemia | |||||||
Age ≥60 | 1.00 (Ref) | 0.85 (0.59, 1.23) | 1.10 (0.75, 1.61) | 1.02 (0.69, 1.51) | 0.90 (0.61, 1.33) | 0.87 | 0.18 |
Age <60 | 1.00 (Ref) | 1.00 (0.80, 1.25) | 0.85 (0.68, 1.06) | 0.79 (0.62, 1.00) | 1.00 (0.78, 1.30) | 0.47 | |
Female | 1.00 (Ref) | 1.21 (0.92, 1.59) | 1.04 (0.79, 1.36) | 0.92 (0.69, 1.23) | 0.96 (0.72, 1.29) | 0.89 | 0.07 |
Male | 1.00 (Ref) | 0.77 (0.59, 1.00) | 0.80 (0.61, 1.05) | 0.77 (0.58, 1.03) | 1.00 (0.74, 1.36) | 0.44 | |
BMI < 24 kg/m2 | 1.00 (Ref) | 0.96 (0.72, 1.27) | 1.02 (0.77, 1.36) | 0.94 (0.69, 1.26) | 1.25 (0.90, 1.72) | 0.64 | 0.19 |
BMI ≥ 24 kg/m2 | 1.00 (Ref) | 0.96 (0.75, 1.24) | 0.83 (0.64, 1.07) | 0.78 (0.59, 1.02) | 0.82 (0.62, 1.08) | 0.21 | |
North | 1.00 (Ref) | 0.93 (0.68, 1.26) | 0.83 (0.61, 1.13) | 0.71 (0.52, 0.97) | 0.83 (0.61, 1.13) | 0.0309 | 0.45 |
South | 1.00 (Ref) | 0.97 (0.76, 1.24) | 0.95 (0.75, 1.22) | 0.95 (0.73, 1.23) | 1.12 (0.83, 1.51) | 0.40 | |
Hyperglycemia | |||||||
Age ≥60 | 1.00 (Ref) | 1.16 (0.80, 1.68) | 0.98 (0.68, 1.41) | 1.03 (0.70, 1.51) | 0.97 (0.65, 1.43) | 0.96 | 0.47 |
Age <60 | 1.00 (Ref) | 0.80 (0.61, 1.06) | 0.86 (0.64, 1.15) | 0.79 (0.58, 1.07) | 0.94 (0.68, 1.31) | 0.62 | |
Female | 1.00 (Ref) | 0.87 (0.63, 1.20) | 0.75 (0.54, 1.04) | 0.84 (0.59, 1.19) | 0.95 (0.66, 1.37) | 0.28 | 0.46 |
Male | 1.00 (Ref) | 0.95 (0.70, 1.29) | 1.08 (0.79, 1.48) | 0.90 (0.65, 1.24) | 0.95 (0.67, 1.34) | 0.63 | |
BMI < 24 kg/m2 | 1.00 (Ref) | 0.76 (0.55, 1.05) | 0.97 (0.69, 1.37) | 0.87 (0.61, 1.24) | 0.77 (0.54, 1.11) | 0.22 | 0.06 |
BMI ≥ 24 kg/m2 | 1.00 (Ref) | 1.07 (0.79, 1.44) | 0.84 (0.62, 1.14) | 0.86 (0.62, 1.18) | 1.16 (0.82, 1.65) | 0.67 | |
North | 1.00 (Ref) | 0.93 (0.65, 1.33) | 0.99 (0.68, 1.44) | 0.82 (0.56, 1.19) | 1.04 (0.71, 1.52) | 0.18 | 0.76 |
South | 1.00 (Ref) | 0.90 (0.68, 1.20) | 0.86 (0.64, 1.14) | 0.91 (0.67, 1.24) | 0.88 (0.62, 1.23) | 0.93 | |
Hyperuricemia | |||||||
Age ≥60 | 1.00 (Ref) | 1.04 (0.73, 1.48) | 1.15 (0.80, 1.64) | 1.22 (0.84, 1.77) | 1.79 (1.19, 2.68) | 0.0029 | 0.55 |
Age <60 | 1.00 (Ref) | 1.12 (0.89, 1.42) | 1.05 (0.82, 1.33) | 1.27 (0.98, 1.66) | 1.33 (1.01, 1.76) | 0.06 | |
Female | 1.00 (Ref) | 1.25 (0.93, 1.68) | 1.32 (0.97, 1.80) | 1.40 (1.01, 1.94) | 1.51 (1.08, 2.13) | 0.0094 | 0.47 |
Male | 1.00 (Ref) | 1.00 (0.77, 1.29) | 0.93 (0.72, 1.21) | 1.16 (0.87, 1.55) | 1.42 (1.04, 1.93) | 0.0413 | |
BMI < 24 kg/m2 | 1.00 (Ref) | 1.22 (0.92, 1.62) | 1.17 (0.88, 1.55) | 1.42 (1.05, 1.94) | 1.74 (1.25, 2.42) | 0.0029 | 0.59 |
BMI ≥ 24 kg/m2 | 1.00 (Ref) | 1.00 (0.76, 1.30) | 1.00 (0.76, 1.33) | 1.12 (0.83, 1.52) | 1.25 (0.91, 1.71) | 0.15 | |
North | 1.00 (Ref) | 1.42 (0.99, 2.02) | 0.97 (0.69, 1.36) | 1.26 (0.88, 1.82) | 1.49 (1.04, 2.13) | 1.00 | 0.17 |
South | 1.00 (Ref) | 0.98 (0.77, 1.24) | 1.14 (0.89, 1.46) | 1.25 (0.96, 1.64) | 1.45 (1.07, 1.95) | < 0.0010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Cui, Z.; Meng, S.; Li, T.; Kang, T.; Ye, Q.; Cao, M.; Bi, Y.; Meng, H. Associations between Dietary Glycemic Index and Glycemic Load Values and Cardiometabolic Risk Factors in Adults: Findings from the China Health and Nutrition Survey. Nutrients 2021, 13, 116. https://doi.org/10.3390/nu13010116
Li M, Cui Z, Meng S, Li T, Kang T, Ye Q, Cao M, Bi Y, Meng H. Associations between Dietary Glycemic Index and Glycemic Load Values and Cardiometabolic Risk Factors in Adults: Findings from the China Health and Nutrition Survey. Nutrients. 2021; 13(1):116. https://doi.org/10.3390/nu13010116
Chicago/Turabian StyleLi, Minjuan, Zhixin Cui, Shuangli Meng, Ting Li, Tong Kang, Qi Ye, Mengting Cao, Yuxin Bi, and Huicui Meng. 2021. "Associations between Dietary Glycemic Index and Glycemic Load Values and Cardiometabolic Risk Factors in Adults: Findings from the China Health and Nutrition Survey" Nutrients 13, no. 1: 116. https://doi.org/10.3390/nu13010116
APA StyleLi, M., Cui, Z., Meng, S., Li, T., Kang, T., Ye, Q., Cao, M., Bi, Y., & Meng, H. (2021). Associations between Dietary Glycemic Index and Glycemic Load Values and Cardiometabolic Risk Factors in Adults: Findings from the China Health and Nutrition Survey. Nutrients, 13(1), 116. https://doi.org/10.3390/nu13010116