The Mediterranean Diet Benefit on Cardiovascular Hemodynamics and Erectile Function in Chronic Heart Failure Male Patients by Decoding Central and Peripheral Vessel Rheology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Sample
2.3. Bioethics
2.4. Dietary Assessment and Evaluation of Adherence to the Mediterranean Diet
2.5. Measurements
2.6. Cardiac Ultrasound and Ergometric Parameters
2.7. Vascular Measurements
2.8. Evaluation of Erectile Dysfunction
2.9. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michas, M.M.G.; Magriplis, E.; Panagiotakos, D.; Chourdakis, M.; Micha, R.; Filippatos, G.; Zampelas, A.; Dimakopoulos, I.; Karageorgou, D.; Mitsopoulou, A.-V.; et al. Heart failure in Greece: The Hellenic National Nutrition and Health Survey (HNNHS). Hell. J. Cardiol. 2020. [CrossRef] [PubMed]
- Corona, G.; Rastrelli, G.; Boddi, V.; Monami, M.; Melani, C.; Balzi, D.; Sforza, A.; Forti, G.; Mannucci, E.; Maggi, M. Prolactin levels independently predict major cardiovascular events in patients with erectile dysfunction. Int. J. Androl. 2011, 34, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Georgiopoulos, G.; Lambrinoudaki, I.; Athanasouli, F.; Armeni, E.; Koliviras, A.; Augoulea, A.; Rizos, D.; Papamichael, C.; Protogerou, A.; Stellos, K.; et al. Prolactin as a predictor of endothelial dysfunction and arterial stiffness progression in menopause. J. Hum. Hypertens. 2017, 31, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Haring, R.; Friedrich, N.; Völzke, H.; Vasan, R.S.; Felix, S.B.; Dörr, M.; Zu Schwabedissen, H.E.M.; Nauck, M.; Wallaschofski, H. Positive association of serum prolactin concentrations with all-cause and cardiovascular mortality. Eur. Heart J. 2014, 35, 1215–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parissis, J.; Farmakis, D.; Fountoulaki, K.; Rigas, A.; Nikolaou, M.; Paraskevaidis, I.A.; Bistola, V.; Venetsanou, K.; Ikonomidis, I.; Anastasiou-Nana, M.; et al. Clinical and neurohormonal correlates and prognostic value of serum prolactin levels in patients with chronic heart failure. Eur. J. Heart Fail. 2013, 15, 1122–1130. [Google Scholar] [CrossRef] [Green Version]
- Therkelsen, K.E.; Abraham, T.M.; Pedley, A.; Massaro, J.M.; Sutherland, P.; Hoffmann, U.; Fox, C.S. Association Between Prolactin and Incidence of Cardiovascular Risk Factors in the Framingham Heart Study. J. Am. Heart Assoc. 2016, 5, e002640. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, T.; Hild, E.; Kobsar, A.; Siegemund, A.; Spilcke-Liss, E.; Hentschel, B.; Stumpf, C.; Daniel, W.G.; Garlichs, C.; Eigenthaler, M.; et al. Enhanced platelet activation by prolactin in patients with ischemic stroke. Thromb. Haemost. 2006, 96, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Horseman, N.D.; Gregerson, K.A. Prolactin actions. J. Mol. Endocrinol. 2014, 52, R95–R106. [Google Scholar] [CrossRef] [Green Version]
- Armeni, E.; Stergiotis, S.; Chatzivasiliou, P.; Augoulea, A.; Rizos, D.; Kaparos, G.; Panoulis, K.; Georgiopoulos, G.; Stamatelopoulos, K.; Kyrkou, A.; et al. High-normal prolactin levels are associated with lower carotid intima media thickness but greater arterial stiffness and an overall improved metabolic profile in premenopausal women. Maturitas 2019, 124, 155. [Google Scholar] [CrossRef]
- Keys, A.; Mienotti, A.; Karvonen, M.J.; Aravanis, C.; Blackburn, H.; Buzina, R.; Djordjevic, B.S.; Dontas, A.S.; Fidanza, F.; Keys, M.H.; et al. The diet and 15-year death rate in the seven countries study. Am. J. Epidemiology 1986, 124, 903–915. [Google Scholar] [CrossRef]
- Walker, M.E.; Xanthakis, V.; Peterson, L.R.; Duncan, M.S.; Lee, J.; Ma, J.; Bigornia, S.; Moore, L.L.; Quatromoni, P.A.; Vasan, R.S.; et al. Dietary Patterns, Ceramide Ratios, and Risk of All-Cause and Cause-Specific Mortality: The Framingham Offspring Study. J. Nutr. 2020, 150, 2994–3004. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.J.; Roberts, M.B.; Salter, J.; Eaton, C.B. Relationship between Mediterranean Diet Score and atherothrombotic risk: Findings from the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. Atherosclerosis 2010, 210, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Das, U.N.; Stefanadis, C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults. J. Am. Coll. Cardiol. 2004, 44, 152–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’’Rourke, M.F.; Staessen, J.A.; Vlachopoulos, C.; Duprez, D.; Plante, G.E. Clinical applications of arterial stiffness; definitions and reference values. Am. J. Hypertens. 2002, 15, 426–444. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Terentes-Printzios, D.; Laurent, S.; Nilsson, P.M.; Protogerou, A.D.; Aznaouridis, K.; Xaplanteris, P.; Koutagiar, I.; Tomiyama, H.; Yamashina, A.; et al. Association of Estimated Pulse Wave Velocity with Survival: A Secondary Analysis of SPRINT. JAMA Netw. Open 2019, 2, e1912831. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Ioakeimidis, N.; Rokkas, K.; Angelis, A.; Terentes-Printzios, D.; Kratiras, Z.; Georgakopoulos, C.; Tousoulis, D. Central Haemodynamics and Prediction of Cardiovascular Events in Patients with Erectile Dysfunction. Am. J. Hypertens. 2016, 30, 249–255. [Google Scholar] [CrossRef]
- Rosen, R.C.; Cappelleri, J.C.; Smith, M.D.; Lipsky, J.; Peña, B.M. Development and evaluation of an abridged, 5-item version of the International Index of Erectile Function (IIEF-5) as a diagnostic tool for erectile dysfunction. Int. J. Impot. Res. 1999, 11, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Chrysohoou, C.; Pitsavos, C.; Metallinos, G.; Antoniou, C.; Oikonomou, E.; Kotroyiannis, I.; Tsantilas, A.; Tsitsinakis, G.; Tousoulis, D.; Panagiotakos, D.; et al. Cross-sectional relationship of a Mediterranean type diet to diastolic heart function in chronic heart failure patients. Heart Vessel. 2011, 27, 576–584. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Pitsavos, C.; Barbetseas, J.; Kotroyiannis, I.; Brili, S.; Vasiliadou, K.; Papadimitriou, L.; Stefanadis, C. Chronic systemic inflammation accompanies impaired ventricular diastolic function, detected by Doppler imaging, in patients with newly diagnosed systolic heart failure (Hellenic Heart Failure Study). Heart Vessel. 2009, 24, 22–26. [Google Scholar] [CrossRef]
- Yan, A.T.; Yan, R.T.; Cushman, M.; Redheuil, A.; Tracy, R.P.; Arnett, D.K.; Rosen, B.D.; McClelland, R.L.; Bluemke, D.A.; Lima, J.A. Relationship of interleukin-6 with regional and global left-ventricular function in asymptomatic individuals without clinical cardiovascular disease: Insights from the Multi-Ethnic Study of Atherosclerosis. Eur. Heart J. 2010, 31, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Kouvari, M.; Chrysohoou, C.; Aggelopoulos, P.; Tsiamis, E.; Tsioufis, K.; Pitsavos, C.; Tousoulis, D. Mediterranean diet and prognosis of first-diagnosed Acute Coronary Syndrome patients according to heart failure phenotype: Hellenic Heart Failure. Eur J Clin Nutr. 2017. [CrossRef] [PubMed]
- Tektonidis, T.; Åkesson, A.; Gigante, B.; Wolk, A.; Larsson, S.C. A Mediterranean diet and risk of myocardial infarction, heart failure and stroke: A population-based cohort study. Atherosclerosis 2015, 243, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, A.; Di Raimondo, D.; Casuccio, A.; Velardo, M.; Salamone, G.; Cataldi, M.; Corpora, F.; Restivo, V.; Pecoraro, R.; Della Corte, V.; et al. Mediterranean diet adherence and congestive heart failure: Relationship with clinical severity and ischemic pathogenesis. Nutritas 2020, 70, 110584. [Google Scholar] [CrossRef] [PubMed]
- Fitó, M.; Estruch, R.; Salas-Salvadó, J.; Martínez-Gonzalez, M.A.; Arós, F.; Vila, J.; Corella, D.; Díaz, O.; Sáez, G.; De La Torre, R.; et al. Effect of the Mediterranean diet on heart failure biomarkers: A randomized sample from the PREDIMED trial. Eur. J. Heart Fail. 2014, 16, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Sartori, M.; Conti, F.F.; Dias, D.D.S.; Dos Santos, F.; Machi, J.F.; Palomino, Z.; Casarini, D.E.; Rodrigues, B.; De Angelis, K.; Irigoyen, M.-C. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice. Front. Physiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Linthout, S.; Tschöpe, C. Inflammation—Cause or Consequence of Heart Failure or Both? Curr. Heart Fail. Rep. 2017, 14, 251–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeNardo, S.J.; Nandyala, R.; Freeman, G.L.; Pierce, G.L.; Nichols, W.W. Pulse Wave Analysis of the Aortic Pressure Waveform in Severe Left Ventricular Systolic Dysfunction. Circ. Heart Fail. 2010, 3, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Bauersachs, J.; König, T.; Van Der Meer, P.; Petrie, M.C.; Hilfiker-Kleiner, D.; Mbakwem, A.; Hamdan, R.; Jackson, A.M.; Forsyth, P.; De Boer, R.A.; et al. Pathophysiology, diagnosis and management of peripartum cardiomyopathy: A position statement from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy. Eur. J. Heart Fail. 2019, 21, 827–843. [Google Scholar] [CrossRef]
- Landberg, E.; Dahlström, U.; Alehagen, U. Serum prolactin and macroprolactin in heart failure: No relation to established laboratory or clinical parameters. Ann. Clin. Biochem. Int. J. Lab. Med. 2011, 48, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Limas, C.J.; Kroupis, C.; Haidaroglou, A.; Cokkinos, D.V. Hyperprolactinaemia in patients with heart failure: Clinical and immunogenetic correlations. Eur. J. Clin. Investig. 2002, 32, 74–78. [Google Scholar] [CrossRef]
- Jiang, X.; Li, C.-L.; He, D.-S.; Mao, Z.-G.; Liu, D.-H.; Fan, X.; Hu, B.; Zhu, Y.; Wang, H.-J. Increased carotid intima media thickness is associated with prolactin levels in subjects with untreated prolactinoma: A pilot study. Pituitary 2013, 17, 232–239. [Google Scholar] [CrossRef]
- Ozdemir, E.D.; Caglar, G.S.; Akgul, E.; Cengiz, S.D.; Tombak, G. The association between prolactin, high-sensitivity C-reactive protein and Framingham risk score in menopause. Gynecol. Obstet. Investig. 2014, 78, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.H.; Korcarz, C.E.; Hurst, R.T.; Lonn, E.; Kendall, C.B.; Mohler, E.R.; Najjar, S.S.; Rembold, C.M.; Post, W.S. Use of Carotid Ultrasound to Identify Subclinical Vascular Disease and Evaluate Cardiovascular Disease Risk: A Consensus Statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force Endorsed by the Society for Vascular Medicine. J. Am. Soc. Echocardiogr. 2008, 21, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Chirinos, J.A.; Kips, J.G.; Jacobs, D.R., Jr.; Brumback, L.; Duprez, D.A.; Kronmal, R.; Bluemke, D.A.; Townsend, R.R.; Vermeersch, S.; Segers, P. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 2012, 60, 2170–2177. [Google Scholar] [CrossRef] [PubMed]
Clinical and Biochemical Parameters | MedDietScore Tertiles | p-Value | ||
---|---|---|---|---|
<28 | 28–32 | ≥32 | p | |
Age (years) | 62.7 ± 8.6 | 67.3 ± 6.7 | 64.5 ± 9.9 | 0.34 |
BMI (kg/m2) | 30.0 ± 4.7 | 27.6 ± 3.4 | 27.9 ± 3.0 | 0.19 |
Diabetes Mellitus (%) | 28.6 | 35.7 | 16.7 | 0.55 |
Hyperlipidemia (%) | 55.0 | 41.2 | 35.0 | 0.35 |
Hypertension (%) | 75.2 | 57.8 | 73.5 | 0.53 |
EF (%) | 27.7 ± 6.7 | 28.9 ± 4.7 | 26.5 ± 4.7 | 0.60 |
METS (per min/day) | 6.6 ± 2.1 | 7.7 ± 2.7 | 6.3 ± 2.6 | 0.29 |
PWV (cm/sec) | 9.3 ± 2.3 | 8.8 ± 1.3 | 8.5 ± 1.3 | 0.56 |
AIx (%) | 24.2 ± 7.1 | 23.1 ± 6.7 | 22.8 ± 4.3 | 0.07 |
IMT (mm) | 1.1 ± 0.2 | 0.8 ± 0.1 | 0.8 ± 0.1 | <0.001 |
Pulse Pressure (mm/Hg) | 36.4 ± 7.2 | 42.4 ± 11.8 | 49.1 ± 19.1 | 0.06 |
SRV (cm/sec) | 8.1 ± 2.0 | 9.6 ± 2.8 | 10.1 ± 2.0 | 0.08 |
LA volume (ml) | 62.6 ± 15.9 | 66.5 ± 41.4 | 60.8 ± 14.1 | 0.88 |
GLPS (%) | −7.2 ± 2.7 | −7.8 ± 4.1 | −11.4 ± 5.6 | 0.10 |
VO2 max (ml/k/min) | 18.5 ± 4.5 | 18.4 ± 3.6 | 18.4 ± 4.1 | 0.99 |
VE/VCO2 | 37.7 ± 7.0 | 37.0 ± 6.4 | 36.2 ± 8.1 | 0.93 |
Prolactin (ng/dL) | 10.3 ± 1.6 | 20.7 ± 10.4 | 12.3 ± 3.9 | 0.05 |
Testosterone (ng/dL) | 389 ± 71 | 403 ± 74 | 538 ± 79 | 0.03 |
SHIM-5 (range 0–25) | 9.1 ± 2.6 | 12.8 ± 4.0 | 13.8 ± 6.0 | 0.006 |
Regression Models | Standardized b-Coefficient | p-Value |
---|---|---|
Model for: PWV | −0.073 | 0.37 |
Model for: AI x | −0.116 | 0.014 |
Model for: IMT (mm) | −0.030 | 0.004 |
Model for: Pulse Pressure (mm/Hg) | 0.239 | 0.169 |
Model for: SRV | 0.348 | 0.019 |
Model for: LA volume | −0.296 | 0.590 |
Model for: GLPS | 0.330 | 0.18 |
Model for: VO2 max | −0.216 | 0.656 |
Model for: VE/VCO2 | 0.465 | 0.431 |
Model for: SHIM-5 | 0.617 | 0.002 |
Model for: Prolactin (ng/mL) | 0.237 | 0.71 |
Model for: Testosterone (ng/mL) | 0.097 | 0.59 |
Testosterone | PWV | IMT | PP | SRV | LA Vol | GLPS | VO2 max | AIx | SHIM-5 | |
---|---|---|---|---|---|---|---|---|---|---|
Prolactin | −0.728 * | −0.073 | 0.070 | 0.253 | 0.707 * | 0.068 | 0.190 | −0.466 * | 0.372 * | −0.689 * |
Testosterone | 0.170 | 0.373 | −0.394 | −0.315 | 0.226 | −0.135 | 0.290 | −0.092 | 0.342 * | |
PWV | 0.292 | 0.037 | −0.750 * | −0.387 | 0.126 | 0.832 * | 0.408 * | 0.552 * | ||
IMT | −0.820 * | −0.458 * | 0.308 | 0.694 * | 0.529 * | 0.151 | −0.324 | |||
PP | 0.479 * | −0.452 * | −0.796 * | −0.279 | −0.533 * | 0.471 * | ||||
SRV | 0.051 | −0.422 * | −0.731 * | −0.094 | −0.391 | |||||
LA vol | 0.324 | −0.542 * | −0.208 | −0.239 | ||||||
GLPS | 0.309 | −0.665 * | −0.636 * | |||||||
VO2 max | −0.284 | 0.225 | ||||||||
AIx | 0.799 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelis, A.; Chrysohoou, C.; Tzorovili, E.; Laina, A.; Xydis, P.; Terzis, I.; Ioakeimidis, N.; Aznaouridis, K.; Vlachopoulos, C.; Tsioufis, K. The Mediterranean Diet Benefit on Cardiovascular Hemodynamics and Erectile Function in Chronic Heart Failure Male Patients by Decoding Central and Peripheral Vessel Rheology. Nutrients 2021, 13, 108. https://doi.org/10.3390/nu13010108
Angelis A, Chrysohoou C, Tzorovili E, Laina A, Xydis P, Terzis I, Ioakeimidis N, Aznaouridis K, Vlachopoulos C, Tsioufis K. The Mediterranean Diet Benefit on Cardiovascular Hemodynamics and Erectile Function in Chronic Heart Failure Male Patients by Decoding Central and Peripheral Vessel Rheology. Nutrients. 2021; 13(1):108. https://doi.org/10.3390/nu13010108
Chicago/Turabian StyleAngelis, Athanasios, Christina Chrysohoou, Evangelia Tzorovili, Aggeliki Laina, Panagiotis Xydis, Ioannis Terzis, Nikos Ioakeimidis, Konstantinos Aznaouridis, Charalambos Vlachopoulos, and Konstantinos Tsioufis. 2021. "The Mediterranean Diet Benefit on Cardiovascular Hemodynamics and Erectile Function in Chronic Heart Failure Male Patients by Decoding Central and Peripheral Vessel Rheology" Nutrients 13, no. 1: 108. https://doi.org/10.3390/nu13010108
APA StyleAngelis, A., Chrysohoou, C., Tzorovili, E., Laina, A., Xydis, P., Terzis, I., Ioakeimidis, N., Aznaouridis, K., Vlachopoulos, C., & Tsioufis, K. (2021). The Mediterranean Diet Benefit on Cardiovascular Hemodynamics and Erectile Function in Chronic Heart Failure Male Patients by Decoding Central and Peripheral Vessel Rheology. Nutrients, 13(1), 108. https://doi.org/10.3390/nu13010108