Temporal Changes in Breast Milk Fatty Acids Contents: A Case Study of Malay Breastfeeding Women
Abstract
:1. Introduction
2. Methodology
2.1. Ethics Approval and Consent to Participate
2.2. Study Design and Subjects
2.3. Inclusion and Exclusion Criteria
2.3.1. Inclusion Criteria
- Apparently healthy Malay women aged 20–40 years
- Women breastfeeding throughout the milk collection period
- Infant born singleton, gestational age ≥ 37 weeks, birth weight ≥ 2500 g
2.3.2. Exclusion Criteria
- Infant at recruitment older than 2 weeks to exclude colostrum milk feeding
- Breastfeeding women on special diets
- Breastfeeding women taking dietary supplements including fatty acid supplements
- Breastfeeding women fasting during milk collection period
- Breastfeeding women or child feeling sick at recruitment
2.4. Subject Recruitment Process
2.5. Collection of Milk Samples
2.6. Determination of Breast Milk Fatty Acids
2.7. Maternal Dietary Intake Assessment
2.8. Statistical Analysis
3. Results
3.1. Socio-Demographic Background
3.2. Breast Milk Fatty Acid Concentrations
3.3. Maternal Dietary Intake
4. Discussion
Strengths and Limitations of Study
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, M. Human Milk Biochemistry and Infant Formula: Manufacturing Technology; Elsevier: Cambridge, UK, 2014. [Google Scholar]
- Ballard, O.; Morrow, A.L. Human Milk Composition. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gila-Díaz, A.; Arribas, S.M.; Algara, A.; Martin-Cabrejas, M.A.; De Pablo, Á.L.; De Pipaón, M.S.; Ramiro-Cortijo, D. A Review of Bioactive Factors in Human Breastmilk: A Focus on Prematurity. Nutrients 2019, 11, 1307. [Google Scholar] [CrossRef] [Green Version]
- Bravi, F.; Wiens, F.; DeCarli, A.; Pont, A.D.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef] [Green Version]
- Innis, S.M. Impact of maternal diet on human milk composition and neurological development of infants. Am. J. Clin. Nutr. 2014, 99, 734S–741S. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kang, S.; Jung, B.-M.; Yi, H.; Jung, J.A.; Chang, N. Breast milk fatty acid composition and fatty acid intake of lactating mothers in South Korea. Br. J. Nutr. 2017, 117, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Kelishadi, R.; Hadi, B.; Iranpour, R.; Khosravi-Darani, K.; Mirmoghtadaee, P.; Farajian, S.; Poursafa, P. A study on lipid content and fatty acid of breast milk and its association with mother’s diet composition. J. Res. Med. Sci. 2012, 17, 824–827. [Google Scholar]
- Tian, H.-M.; Wu, Y.-X.; Lin, Y.-Q.; Chen, X.-Y.; Yu, M.; Lu, T.; Xie, L. Dietary patterns affect maternal macronutrient intake levels and the fatty acid profile of breast milk in lactating Chinese mothers. Nutrients 2019, 58, 83–88. [Google Scholar] [CrossRef]
- Whitfield, K.C.; Shahab-Ferdows, S.; Kroeun, H.; Sophonneary, P.; Green, T.J.; Allen, L.H.; Hampel, D. Macro- and Micronutrients in Milk from Healthy Cambodian Mothers: Status and Interrelations. J. Nutr. 2020, 150, 1461–1469. [Google Scholar] [CrossRef]
- Muskiet, F.A.J.; Van Goor, S.A.; Kuipers, R.S.; Velzing-Aarts, F.V.; Smit, E.N.; Bouwstra, H.; Dijck-Brouwer, D.A.J.; Boersma, E.R.; Hadders-Algra, M. Long-chain polyunsaturated fatty acids in maternal and infant nutrition. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 135–144. [Google Scholar] [CrossRef]
- Institute for Public Health (IPH). National Institutes of Health. National Health and Morbidity Survey (NHMS) 2016: Maternal and Child Health; Ministry of Health: Kuala Lumpur, Malaysia, 2016; Volume 2.
- Tan, S.S.; Khor, G.L.; Stoutjesdijk, E.; Ng, K.W.T.; Khouw, I.; Bragt, M.; Schaafsma, A.; Dijck-Brouwer, D.; Muskiet, F.A.J. Case study of temporal changes in maternal dietary intake and the association with breast milk mineral contents. J. Food Compos. Anal. 2020, 89, 103468. [Google Scholar] [CrossRef]
- Ishak, S.; Adzan, N.A.M.; Quan, L.K.; Shafie, M.H.; Rani, N.A.; Ramli, K.G. Knowledge and Beliefs About Breastfeeding Are Not Determinants for Successful Breastfeeding. Breastfeed. Med. 2014, 9, 308–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fok, D.; Aris, I.M.; Ho, J.; Lim, S.B.; Chua, M.C.; Pang, W.W.; Saw, S.-M.; Kwek, K.; Godfrey, K.M.; Kramer, M.S.; et al. A Comparison of Practices During the Confinement Period among Chinese, Malay, and Indian Mothers in Singapore. Birth 2016, 43, 247–254. [Google Scholar] [CrossRef]
- Yusoff, Z.M.; Amat, A.; Naim, D.; Othman, S. Postnatal Care Practices among the Malays, Chinese and Indians: A Comparison. In SHS Web Conference; EDP Sciences: Les Ulis, France, 2018; Volume 45, p. 05002. [Google Scholar] [CrossRef] [Green Version]
- Paulaviciene, I.J.; Liubsys, A.; Molyte, A.; Eidukaite, A.; Usonis, V. Circadian changes in the composition of human milk macronutrients depending on pregnancy duration: A cross-sectional study. Int. Breastfeed. J. 2020, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Muskiet, F.A.; Van Doormaal, J.J.; Martini, I.A.; Wolthers, B.G.; Van Der Slik, W. Capillary gas chromatographic profiling of total long-chain fatty acids cholesterol in biological materials. J. Chromatogr. B Biomed. Sci. Appl. 1983, 278, 231–244. [Google Scholar] [CrossRef]
- Volmer, M.; Meiborg, G.; Muskiet, F.A. Simultaneous capillary gas chromatographic profiling of medium- and long-chain fatty acid methyl esters with split injection. J. Chromatogr. B Biomed. Sci. Appl. 1988, 434, 385–394. [Google Scholar] [CrossRef]
- Li, C.; Solomons, N.W.; Scott, M.E.; Koski, K.G. Minerals and Trace Elements in Human Breast Milk Are Associated with Guatemalan Infant Anthropometric Outcomes within the First 6 Months. J. Nutr. 2016, 146, 2067–2074. [Google Scholar] [CrossRef] [PubMed]
- Tee, E.S.; Mohd Ismail, N.; Mohd Nasir, A.; Khatijah, I. Nutrient Composition of Malaysian Foods, 4th ed.; Malaysian Food Composition Database Programmeme c/o Institute for Medical Research: Kuala Lumpur, Malaysia, 1997. [Google Scholar]
- Agriculture Research Service. USDA Food Composition Databases; Nutrient Data Laboratory, Human Nutrition Research Center: Beltsville, MD, USA, 2016. [Google Scholar]
- Foods Standards Australia New Zealand. Australia Food, Supplement and Nutrient Database (AUSNUT) 2011–2013; FSANZ: Canberra, Australia, 2015.
- National Coordinating Committee on Food and Nutrition (NCCFN), Ministry of Health Malaysia. Recommended Nutrient Intakes for Malaysia 2017. Available online: nutrition.moh.gov.my/wp-content/uploads/2017/05/FA-Buku-RNI.pdf (accessed on 20 June 2020).
- Chang, N.; A Jung, J.; Kim, H.; Jo, A.; Kang, S.; Lee, S.-W.; Yi, H.; Kim, J.; Yim, J.-G.; Jung, B.-M. Macronutrient composition of human milk from Korean mothers of full term infants born at 37–42 gestational weeks. Nutr. Res. Pract. 2015, 9, 433–438. [Google Scholar] [CrossRef]
- Bzikowska-Jura, A.; Czerwonogrodzka-Senczyna, A.; Jasińska-Melon, E.; Mojska, H.; Oledzka, G.; Wesołowska, A.; Szostak-Węgierek, D. The Concentration of Omega-3 Fatty Acids in Human Milk Is Related to Their Habitual but Not Current Intake. Nutrients 2019, 11, 1585. [Google Scholar] [CrossRef] [Green Version]
- Sambanthamurthi, R. Chemistry and biochemistry of palm oil. Prog. Lipid Res. 2000, 39, 507–558. [Google Scholar] [CrossRef]
- Innis, S.M. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008, 1237, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B. Human Milk Lipids. Ann. Nutr. Metab. 2016, 69, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koletzko, B.; Thiel, I.; Abiodun, P.O. The fatty acid composition of human milk in Europe and Africa. J. Pediatr. 1992, 120, S62–S70. [Google Scholar] [CrossRef]
- Yuhas, R.; Pramuk, K.; Lien, E.L. Human milk fatty acid composition from nine countries varies most in DHA. Lipids 2006, 41, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Floris, L.; Stahl, B.; Abrahamse-Berkeveld, M.; Teller, I. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot. Essent. Fat. Acids 2020, 156, 102023. [Google Scholar] [CrossRef] [Green Version]
- Innis, S.M. Palmitic Acid in Early Human Development. Crit. Rev. Food Sci. Nutr. 2016, 56, 1952–1959. [Google Scholar] [CrossRef]
- Giuffrida, F.; Cruz-Hernandez, C.; Bertschy, E.; Fontannaz, P.; ElMelegy, I.M.; Tavazzi, I.; Marmet, C.; Sanchez-Bridge, B.; Thakkar, S.K.; De Castro, C.A.; et al. Temporal Changes of Human Breast Milk Lipids of Chinese Mothers. Nutrients 2016, 8, 715. [Google Scholar] [CrossRef] [Green Version]
- Moossavi, S.; Atakora, F.; Miliku, K.; Sepehri, S.; Robertson, B.; Duan, Q.L.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Moraes, T.J.; et al. Integrated Analysis of Human Milk Microbiota with Oligosaccharides and Fatty Acids in the CHILD Cohort. Front. Nutr. 2019, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, S.K.; De Castro, C.A.; Beauport, L.; Tolsa, J.F.; Fumeaux, C.J.F.; Affolter, M.; Giuffrida, F. Temporal Progression of Fatty Acids in Preterm and Term Human Milk of Mothers from Switzerland. Nutrients 2019, 11, 112. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.; Lassek, W.D.; Gaulin, S.J.; Evans, R.W.; Woo, J.G.; Geraghty, S.R.; Davidson, B.S.; Morrow, A.L.; Kaplan, H.S.; Gurven, M.D. Fatty acid composition in the mature milk of Bolivian forager-horticulturalists: Controlled comparisons with a US sample. Matern. Child Nutr. 2012, 8, 404–418. [Google Scholar] [CrossRef] [Green Version]
- German, J.B.; Dillard, C.J. Saturated Fats: A Perspective from Lactation and Milk Composition. Lipids 2010, 45, 915–923. [Google Scholar] [CrossRef] [Green Version]
- Ooi, E.M.M.; Watts, G.F.; Ng, T.W.; Barrett, P.H.R. Effect of Dietary Fatty Acids on Human Lipoprotein Metabolism: A Comprehensive Update. Nutrients 2015, 7, 4416–4425. [Google Scholar] [CrossRef] [Green Version]
- Ramiro-Cortijo, D.; Singh, P.; Liu, Y.; Medina-Morales, E.; Yakah, W.; Freedman, S.D.; Martin, C.R. Breast Milk Lipids and Fatty Acids in Regulating Neonatal Intestinal Development and Protecting against Intestinal Injury. Nutrients 2020, 12, 534. [Google Scholar] [CrossRef] [Green Version]
- Leghi, E.G.; Middleton, P.F.; Netting, M.J.; Wlodek, E.M.; Geddes, D.T.; Muhlhausler, B.S. A Systematic Review of Collection and Analysis of Human Milk for Macronutrient Composition. J. Nutr. 2020, 150, 1652–1670. [Google Scholar] [CrossRef]
- Fields, D.A.; Schneider, C.R.; Pavela, G. A narrative review of the associations between six bioactive components in breast milk and infant adiposity. Obesity 2016, 24, 1213–1221. [Google Scholar] [CrossRef] [Green Version]
Stage of Lactation | |||
---|---|---|---|
Breast Milk Fatty Acids Contents % of Total Fatty Acids | Transitional Milk (T1) 2–3 Weeks (n = 8) | Early Milk (T2) >3–8 Weeks (n = 26) | Mature Milk (T3) >8–16 Weeks (n = 26) |
Mean ± SD | |||
6:0 (Caproic acid) | 0.11 ± 0.02 | 0.12 ± 0.01 | 0.13 ± 0.01 |
8:0 (Caprylic acid) | 0.42 ± 0.03 | 0.45 ± 0.03 | 0.42 ± 0.02 |
10:0 (Capric acid) | 2.29 ± 0.23 | 2.13 ± 0.15 | 2.09 ± 0.07 |
12:0 (Lauric acid) | 9.61 ± 0.84 a | 8.14 ± 0.77 b | 8.96 ± 0.46 a,b |
14:0 (Myristic acid) | 7.22 ± 0.55 a | 6.20 ± 0.55 b | 7.42 ± 0.41 a |
14:1 n-5 (Myristoleic acid) | 0.04 ± 0.01 a | 0.13 ± 0.01 b | 0.09 ± 0.01 a,b |
16:0 (Palmitic acid) | 25.2 ± 1.25 a | 26.3 ± 0.35 b | 26.8 ± 0.47 b |
16:1 n-7 (Palmitoleic acid) | 3.09 ± 0.38 | 3.26 ± 0.19 | 2.61 ± 0.17 |
18:0 (Stearic acid) | 4.26 ± 0.04 | 4.81 ± 0.14 | 4.70 ± 0.13 |
18:1 n-7 (Vaccenic acid) | 1.58 ± 0.26 | 1.85 ± 0.06 | 1.53 ± 0.09 |
18:1 n-9 (Oleic acid) | 33.0 ± 1.11 a,b | 33.7 ± 0.81 a | 32.5 ± 0.47 b |
18:2 n-6 (Linoleic acid) | 10.1 ± 0.60 | 10.1 ± 0.32 | 9.83 ± 0.26 |
18:3 n-3 (α-Linolenic acid) | 0.44 ± 0.2 | 0.35 ± 0.02 | 0.32 ± 0.03 |
18:3 n-6 (γ-Linolenic acid) | 0.09 ± 0.02 | 0.09 ± 0.01 | 0.08 ± 0.01 |
20:0 (Arachidic acid) | 0.14 ± 0.01 | 0.15 ± 0.01 | 0.16 ± 0.01 |
20:1 n-9 (Eicosenoic acid) | 0.31 ± 0.04 | 0.30 ± 0.01 | 0.29 ± 0.02 |
20:2 n-6 (Eicosadienoic acid) | 0.20 ± 0.01 | 0.20 ± 0.01 | 0.19 ± 0.02 |
20:3 n-6 (Dihomo--linolenic acid) | 0.33 ± 0.04 | 0.31 ± 0.02 | 0.30 ± 0.02 |
20:4 n-6 (Arachidonic acid) (ARA) | 0.43 ± 0.04 | 0.38 ± 0.02 | 0.37 ± 0.02 |
20:5 n-3 (Eicosapentaenoic acid) (EPA) | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.07 ± 0.01 |
22:0 (Behenic acid) | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.08 ± 0.01 |
22:4 n-6 (Docosatetraenoic acid) | 0.10 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.01 |
22:5 n-3 (Docosapentaenoic acid) | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.13 ± 0.01 |
22:5 n-6 (Docosapentaenoic acid) | 0.01 ± 0.01 | 0.06 ± 0.01 | 0.07 ± 0.01 |
22:6 n-3 (Docosahexaenoic acid) (DHA) | 0.45 ± 0.06 | 0.47 ± 0.05 | 0.56 ± 0.05 |
24:0 (Lignoceric acid) | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.08 ± 0.01 |
24:1 n-9 (Nervonic acid) | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.01 |
Sum SFA | 49.4 ± 1.55 a | 48.5 ± 1.20 a | 50.8 ± 0.78 b |
Sum MUFA | 38.2 ± 1.13 a | 39.3 ± 0.95 a | 37.1 ± 0.61 b |
Sum PUFA | 12.4 ± 0.79 | 12.2 ± 0.32 | 12.0 ± 0.34 |
Sum n-3 | 1.06 ± 0.16 | 0.99 ± 0.06 | 1.09 ± 0.08 |
Sum n-5 | 0.04 ± 0.01 a | 0.13 ± 0.01 b | 0.09 ± 0.01 a,b |
Sum n-6 | 11.3 ± 0.65 | 11.2 ± 0.33 | 10.9 ± 0.29 |
Sum n-7 | 4.71 ± 0.47 a,b | 5.11 ± 0.24 a | 4.16 ± 0.24 b |
Sum n-9 | 33.5 ± 1.14 a,b | 34.1 ± 0.82 a | 32.9 ± 0.48 b |
n-6 to n-3 ratio | 10.7 ± 3.92 | 11.3 ± 5.79 | 10.1 ± 3.77 |
ARA to DHA ratio | 0.96 ± 0.66 a | 0.80 ± 0.34 a | 0.66 ± 0.41 b |
Maternal Intake | T1 (n = 20) | T2 (n = 20) | T3 (n = 20) | Overall (n = 20) | * RNI for Lactation | ||||
---|---|---|---|---|---|---|---|---|---|
(Mean ± SD) | %RNI | (Mean ± SD) | %RNI | (Mean ± SD) | %RNI | (Mean ± SD) | %RNI | ||
Energy (kcal/day) | 2270.9 ± 1004.8 a | 94.6 ± 41.9 | 2535.4 ± 983.1 b | 105.6 ± 41.0 | 2435.9 ± 806.1 b | 101.5 ± 33.6 | 2414.1 ± 931.3 | 100.6 ± 38.8 | 2400.0 |
Carbohydrate (g/day) | 338.2 ± 151.6 a | 86.7–112.7 ± 38.9–50.5 | 368.2 ± 164.3 b | 94.4–122.7 ± 42.1–54.8 | 340.5 ± 127.8 a | 87.3–113.5 ± 32.8–42.6 | 348.9 ± 147.8 | 89.5–116.3 ± 37.9–49.3 | 300.0–390.0 |
Protein (g/day) | 83.6 ± 37.9 a | 117.7 ± 53.4 | 100.8 ± 59.9 b | 141.9 ± 84.4 | 94.3 ± 39.7 b | 132.8 ± 55.9 | 92.9 ± 45.8 | 130.8 ± 64.5 | 71.0 |
Fat (g/day) | 64.6 ± 38.9 a | 81.8–97.9 ± 49.2–58.9 | 72.2 ± 37.1 a,b | 91.4–109.4 ± 47.0–56.2 | 77.1 ± 29.3 b | 97.6–116.8 ± 37.1–44.4 | 71.3 ± 35.1 | 90.3–108.0 ± 44.4–53.2 | 66.0–79.0 |
Cholesterol (mg/day) | 163.2 ± 123.6 a | 54.4 ± 41.2 | 412.7 ± 660.7 b | 137.6 ± 220.2 | 285.2 ± 195.6 c | 95.1 ± 65.2 | 287.1 ± 326.6 | 95.7 ± 108.9 | 300 |
Sum of Fatty Acids | |||||||||
SFA (g) | 16.2 ± 11.9 | 60.7 ± 44.6 | 17.3 ± 10.9 | 64.8 ± 40.8 | 16.6 ± 11.1 | 62.2 ± 41.6 | 16.7 ± 11.3 | 62.5 ± 42.3 | 26.7 |
MUFA (g) | 12.6 ± 8.0 a | 31.5–39.4 ± 20.0–25.0 | 16.2 ± 10.2 b | 40.5–50.6 ± 25.5–31.9 | 15.0 ± 9.3 b | 37.5–46.9 ± 23.3–29.1 | 14.6 ± 9.2 | 36.5–45.6 ± 23.0–28.8 | 32.0–40.0 |
PUFA (g) | 8.1 ± 7.1 a | 37.0–57.4 ± 32.4–50.4 | 11.2 ± 6.7 b | 51.1–79.4 ± 30.6–47.5 | 10.3 ± 6.5 b | 47.0–73.0 ± 29.7–46.1 | 9.9 ± 6.8 | 45.2–70.2 ± 31.1–48.2 | 14.1–21.9 |
SFA (%) | 25.1 a | 24.0 a | 21.5 b | 23.4 | |||||
MUFA (%) | 19.5 a | 22.4 b | 19.5 a | 20.5 | |||||
PUFA (%) | 12.5 a | 15.5 b | 13.4 a,b | 13.9 |
Malaysia Mean ± SD | China Mean ± SD | South Korea Mean ± SD | Canada Mean ± SD | Switzerland Median (IQR) | Poland Mean ± SD | * Bolivia Mean ± SD/Median (IQR) | * USA Mean ± SD/Median (IQR) | |
---|---|---|---|---|---|---|---|---|
C14:0 myristic acid | 7.42 ± 0.41 | 4.2 ± 1.7 | 5.97 ± 1.80 | 6.27 (1.93) | 9.5 ± 2.5 | 9.81 ± 4.18 | 8.67 ± 2.81 | |
C16:0 palmitic acid | 26.8 ± 0.47 | 19.8 ± 2.6 | 20.90 ± 2.76 | 23.29 (3.31) | 19.7 ± 2.5 | 24.96 ± 3.13 | 20.00 ± 2.64 | |
C18:0 stearic acid | 4.70 ± 0.13 | 5.1 ± 1.1 | 6.54 ± 1.31 | 6.75 (1.69) | 6.4 ± 1.5 | 5.54 ± 1.49 | 6.67 ± 1.51 | |
Total SFA | 49.1 ± 4.9 | 36.2 ± 4.7 | 42.1 ± 5.6 | 39.75 ± 5.00 | 43.86 (5.93) | 41.9 ± 4.9 | ||
Oleic Acid C18:1 n-9 | 32.5 ± 0.47 | 31.9 ± 3.6 | 37.05 ± 3.59 | 37.67 (4.82) | 35.4 ± 3.1 | |||
Total MUFA | 38.5 ± 3.8 | 36.9 ± 4.1 | 36.3 ± 4.9 | 43.06 ± 3.59 | 43.84 (4.96) | 39.6 ± 3.1 | ||
Total PUFA | 12.3 ± 1.8 | 21.5 ± 4.7 | 11.77 (3.43) | 15.1 ± 3.4 | ||||
Total n-3 PUFA | 1.05 ± 0.10 | 1.9 ± 0.9 | 3.01 ± 1.3 | 2.39 ± 0.70 | 1.11 (0.36) | 2.7 ± 0.9 | 3.44 | 2.00 |
α-Linolenic Acid C18:3 | 0.37 ± 0.08 | 1.5 ± 0.9 | 1.92 ± 0.61 | 0.74 (0.30) | 1.5 ± 0.6 | 1.64 (0.60–2.68) | 1.39 (0.61–2.17) | |
EPA C20:5 | 0.06 ± 0.01 | 0.05 ± 0.07 | 0.15 ± 0.12 | 0.08 ± 0.05 | 0.06 (0.04) | 0.2 ± 0.1 | 1.17 (0.04–0.30) | 0.06 (0.02–0.10) |
DHA C22:6 | 0.49 ± 0.05 | 0.5 ± 0.2 | 0.67 ± 0.47 | 0.18 ± 0.12 | 0.28 (0.17) | 0.7 ± 0.3 | 0.62 (0.31–0.93) | 0.13 (0.04–0.21) |
Total n-6 PUFA | 11.2 ± 0.42 | 24.1 ± 5.0 | 18.2 ± 3.9 | 14.80 ± 3.09 | 10.61 (3.17) | 12.1 ± 2.7 | 12.47 | 20.58 |
Linoleic Acid C18:2 | 10.0 ± 0.40 | 22.8 ± 4.9 | 13.62 ± 3.01 | 9.35 (2.90) | 11.1 ± 2.6 | 9.31 (3.86–14.8) | 18.1 (12.8–24.1) | |
Arachidonic Acid C20:4 | 0.39 ± 30.03 | 0.7 ± 0.2 | 0.48 ± 0.13 | 0.38 ± 0.09 | 0.20 (0.04) | 0.5 ± 0.1 | 0.96 (0.44–1.48) | 0.56 (0.43–0.69) |
n-6–n-3 ratio | 10.1 ± 3.77 | 12.5 ± 5.5 | 6.7 ± 2.0 | 6.53 ± 1.72 | 9.58 (3.31) | 4.6 ± 1.0 | 3.48 | 7.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khor, G.L.; Tan, S.S.; Stoutjesdijk, E.; Ng, K.W.T.; Khouw, I.; Bragt, M.; Schaafsma, A.; Dijck-Brouwer, D.A.J.; Muskiet, F.A.J. Temporal Changes in Breast Milk Fatty Acids Contents: A Case Study of Malay Breastfeeding Women. Nutrients 2021, 13, 101. https://doi.org/10.3390/nu13010101
Khor GL, Tan SS, Stoutjesdijk E, Ng KWT, Khouw I, Bragt M, Schaafsma A, Dijck-Brouwer DAJ, Muskiet FAJ. Temporal Changes in Breast Milk Fatty Acids Contents: A Case Study of Malay Breastfeeding Women. Nutrients. 2021; 13(1):101. https://doi.org/10.3390/nu13010101
Chicago/Turabian StyleKhor, Geok Lin, Seok Shin Tan, Eline Stoutjesdijk, Kock Wai Tony Ng, Ilse Khouw, Marjolijn Bragt, Anne Schaafsma, D. A. Janneke Dijck-Brouwer, and Frits A. J. Muskiet. 2021. "Temporal Changes in Breast Milk Fatty Acids Contents: A Case Study of Malay Breastfeeding Women" Nutrients 13, no. 1: 101. https://doi.org/10.3390/nu13010101