Comparison of Various Methods to Determine Added Sugars Intake to Assess the Association of Added Sugars Intake and Micronutrient Adequacy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Participants
2.2. Estimation of Added Sugars Intake
2.3. Intake of Micronutrients
2.4. Statistical Analyses
3. Results
3.1. Added Sugars Deciles
3.2. Calcium Intake Inadequacy by Deciles of Added Sugars
3.3. Potassium Intake by Deciles of Added Sugars
3.4. Dietary Fiber Intake by Deciles of Added Sugars
3.5. Vitamin D Intake Inadequacy by Deciles of Added Sugars
3.6. Comparison of Methods
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Centers for Disease Control and Prevention National Center for Health Statistics. About the National Health and Nutrition Examination Survey. Available online: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm (accessed on 21 May 2019).
- Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J. Nutr. 2006, 136, 2594–2599. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.E.; Byers, T. Dietary assessment resource manual. J. Nutr. 1994, 124 (Suppl. 11), 2245s–2317s. [Google Scholar] [CrossRef] [PubMed]
- Biró, G.; Hulshof, K.F.; Ovesen, L.; Amorim Cruz, J.A. Selection of methodology to assess food intake. Eur. J. Clin. Nutr. 2002, 56, S25–S32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutishauser, I.H. Dietary intake measurements. Public Health Nutr. 2005, 8, 1100–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef] [PubMed]
- Dodd, K.W.; Guenther, P.M.; Freedman, L.S.; Subar, A.F.; Kipnis, V.; Midthune, D.; Tooze, J.A.; Krebs-Smith, S.M. Statistical methods for estimating usual intake of nutrients and foods: A review of the theory. J. Am. Diet. Assoc. 2006, 106, 1640–1650. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, K.; Boeing, H.; Dufour, A.; Volatier, J.L.; Telman, J.; Virtanen, M.; Becker, W.; De Henauw, S. Estimating the distribution of usual dietary intake by short-term measurements. Eur. J. Clin. Nutr. 2002, 56 (Suppl. 2), S53–S62. [Google Scholar] [CrossRef] [Green Version]
- Tooze, J.A.; Kipnis, V.; Buckman, D.W.; Carroll, R.J.; Freedman, L.S.; Guenther, P.M.; Krebs-Smith, S.M.; Subar, A.F.; Dodd, K.W. A mixed-effects model approach for estimating the distribution of usual intake of nutrients: The NCI method. Stat Med. 2010, 29, 2857–2868. [Google Scholar] [CrossRef] [Green Version]
- Dekkers, A.L.; Verkaik-Kloosterman, J.; van Rossum, C.T.; Ocké, M.C. SPADE, a new statistical program to estimate habitual dietary intake from multiple food sources and dietary supplements. J. Nutr. 2014, 144, 2083–2091. [Google Scholar] [CrossRef] [Green Version]
- Nusser, S.M.; Carriquiry, A.L.; Dodd, K.W.; Fuller, W.A. A semiparametric transformation approach to estimating usual daily intake distributions. J. Am. Stat Assoc. 1996, 91, 1440–1449. [Google Scholar] [CrossRef]
- Guenther, P.M.; Kott, P.S.; Carriquiry, A.L. Development of an approach for estimating usual nutrient intake distributions at the population level. J. Nutr. 1997, 127, 1106–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Midthune, D.; Guenther, P.M.; Krebs-Smith, S.M.; Kipnis, V.; Dodd, K.W.; Buckman, D.W.; Tooze, J.A.; Freedman, L.; Carroll, R.J. A new multivariate measurement error model with zero-inflated dietary data, and its application to dietary assessment. Ann. Appl. Stat 2011, 5, 1456–1487. [Google Scholar] [CrossRef] [PubMed]
- Souverein, O.W.; Dekkers, A.L.; Geelen, A.; Haubrock, J.; de Vries, J.H.; Ocké, M.C.; Harttig, U.; Boeing, H.; van’t Veer, P. Comparing four methods to estimate usual intake distributions. Eur. J. Clin. Nutr. 2011, 65, S92–S101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laureano, G.H.; Torman, V.B.; Crispim, S.P.; Dekkers, A.L.; Camey, S.A. Comparison of the ISU, NCI, MSM, and SPADE methods for estimating usual intake: A simulation study of nutrients consumed daily. Nutrients 2016, 8, 166. [Google Scholar] [CrossRef] [PubMed]
- Goedhart, P.W.; van der Voet, H.; Knüppel, S.; Dekkers, A.L.M.; Dodd, K.W.; Boeing, H.; van Klaveren, J. A Comparison by Simulation of Different Methods to Estimate the Usual Intake Distribution for Episodically Consumed Foods; European Food Safety Authority: Parma, Italy, 2012. [Google Scholar]
- Dietary Guidelines Advisory Committee. 2015–2020 Dietary Guidelines for Americans. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 21 May 2019).
- World Health Organization. Guideline: Sugars Intake for Adults and Children; WHO Press: Geneva, Switzerland, 2015. [Google Scholar]
- Wang, H.; Steffen, L.M.; Zhou, X.; Harnack, L.; Luepker, R.V. Consistency between increasing trends in added-sugar intake and body mass index among adults: The Minnesota Heart Survey, 1980–1982 to 2007–2009. Am. J. Public Health 2013, 103, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Sharma, A.; Cunningham, S.A.; Vos, M.B. Consumption of added sugars and indicators of cardiovascular disease risk among US adolescents. Circulation 2011, 123, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.P.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [Green Version]
- Clemens, R.A.; Jones, J.M.; Kern, M.; Lee, S.-Y.; Mayhew, E.J.; Slavin, J.L.; Zivanovic, S. Functionality of sugars in foods and health. Compr. Rev. Food Sci. Food Saf. 2016, 15, 433–470. [Google Scholar] [CrossRef] [Green Version]
- Rippe, J.M.; Angelopoulos, T.J. Relationship between added sugars consumption and chronic disease risk factors: Current understanding. Nutrients 2016, 8, 697. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture Agricultural Research Service. Food Patterns Equivalents Database (FPED). Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fped-overview/ (accessed on 21 May 2019).
- Livingstone, M.B.; Rennie, K.L. Added sugars and micronutrient dilution. Obes. Rev. 2009, 10, 34–40. [Google Scholar] [CrossRef]
- Nicklas, T.A.; O’Neil, C.E.; Fulgoni, V.L. Association of usual intake of added sugars with nutrient adequacy. Int. J. Clin. Nutr. Diet. 2018, 4, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Mok, A.; Ahmad, R.; Rangan, A.; Louie, J.C.Y. Intake of free sugars and micronutrient dilution in Australian adults. Am. J. Clin. Nutr. 2018, 107, 94–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Padilla, E.; Dias, J.A.; Ramne, S.; Olsson, K.; Nälsén, C.; Sonestedt, E. Association between added sugar intake and micronutrient dilution: A cross-sectional study in two adult Swedish populations. Nutr. Metab. 2020, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.T.; Hutchinson, J.; Evans, C.E.L. Non-milk extrinsic sugars intake and food and nutrient consumption patterns among adolescents in the UK National Diet and Nutrition Survey, years 2008–16. Nutrients 2019, 11, 1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulgoni, V.L., 3rd; Gaine, P.C.; Scott, M.O.; Ricciuto, L.; DiFrancesco, L. Association of added sugars intake with micronutrient adequacy in US children and adolescents: NHANES 2009-2014. Curr. Dev. Nutr. 2019, 3, nzz126. [Google Scholar] [CrossRef]
- Fulgoni, V.L., 3rd; Gaine, P.C.; Scott, M.O.; Ricciuto, L.; DiFrancesco, L. Micronutrient dilution and added sugars intake in U.S. adults: Examining this association using NHANES 2009-2014. Nutrients 2020, 12, 985. [Google Scholar] [CrossRef] [Green Version]
- Freedman, L.S.; Schatzkin, A.; Midthune, D.; Kipnis, V. Dealing with dietary measurement error in nutritional cohort studies. J. Natl. Cancer Inst. 2011, 103, 1086–1092. [Google Scholar] [CrossRef] [Green Version]
- Beaton, G.H.; Milner, J.; McGuire, V.; Feather, T.E.; Little, J.A. Source of variance in 24-hour dietary recall data: Implications for nutrition study design and interpretation. Carbohydrate sources, vitamins, and minerals. Am. J. Clin. Nutr. 1983, 37, 986–995. [Google Scholar] [CrossRef]
- Mackerras, D.; Rutishauser, I. 24-hour national dietary survey data: How do we interpret them most effectively? Public Health Nutr. 2005, 8, 657–665. [Google Scholar] [CrossRef] [Green Version]
- Verger, P.; Ireland, J.; Møller, A.; Abravicius, J.A.; De Henauw, S.; Naska, A. Improvement of comparability of dietary intake assessment using currently available individual food consumption surveys. Eur. J. Clin. Nutr. 2002, 56, S18–S24. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture Agricultural Research Service. Food and Nutrient Intakes by Individuals in the United States, by Sex and Age, 1994–96, Nationwide Food Surveys Report No. 96-2; U.S. Department of Agriculture: Beltsville, MD, USA, 1998.
Decile 2 | 1 Day Intake | 2 Day Average Intake | UI/NCI | UI/MCMC |
---|---|---|---|---|
Children (2–18 years) | ||||
1 | ≤5.2 | ≤6.4 | ≤10.8 | ≤12.1 |
2 | >5.2 to ≤7.5 | >6.4 to ≤8.5 | >10.8 to ≤12.0 | >12.1 to ≤12.7 |
3 | >7.5 to ≤9.5 | >8.5 to ≤10.0 | >12.0 to ≤12.9 | >12.7 to ≤13.2 |
4 | >9.5 to ≤11.5 | >10.0 to ≤11.5 | >12.9 to ≤13.6 | >13.2 to ≤13.5 |
5 | >11.5 to ≤13.5 | >11.5 to ≤13.0 | >13.6 to ≤14.2 | >13.5 to ≤13.8 |
6 | >13.5 to ≤15.6 | >13.0 to ≤14.8 | >14.2 to ≤15.0 | >13.8 to ≤14.0 |
7 | >15.6 to ≤17.8 | >14.8 to ≤16.8 | >15.0 to ≤15.8 | >14.0 to ≤14.2 |
8 | >17.8 to ≤20.8 | >16.8 to ≤19.0 | >15.8 to ≤16.8 | >14.2 to ≤14.5 |
9 | >20.8 to ≤25.8 | >19.0 to ≤22.6 | >16.8 to ≤18.2 | >14.5 to ≤15.0 |
10 | >25.8 | >22.6 | >18.2 | >15.0 |
Adults (≥19 years) | ||||
1 | ≤2.6 | ≤3.8 | ≤6.8 | ≤11.1 |
2 | >2.6 to ≤4.9 | >3.8 to ≤5.8 | >6.8 to ≤8.5 | >11.1 to ≤11.3 |
3 | >4.9 to ≤7.0 | >5.8 to ≤7.5 | >8.5 to ≤9.8 | >11.3 to ≤11.5 |
4 | >7.0 to ≤9.0 | >7.5 to ≤9.2 | >9.8 to ≤10.8 | >11.5 to ≤12.0 |
5 | >9.0 to ≤11.1 | >9.2 to ≤10.8 | >10.8 to ≤11.9 | >12.0 to ≤12.5 |
6 | >11.1 to ≤13.6 | >10.8 to ≤12.8 | >11.9 to ≤13.2 | >12.5 to ≤12.7 |
7 | >13.6 to ≤16.3 | >12.8 to ≤15.1 | >13.2 to ≤14.7 | >12.7 to ≤13.0 |
8 | >16.3 to ≤19.5 | >15.1 to ≤18.1 | >14.7 to ≤16.5 | >13.0 to ≤13.3 |
9 | >19.5 to ≤25.3 | >18.1 to ≤22.9 | >16.5 to ≤19.4 | >13.3 to ≤13.7 |
10 | >25.3 | >22.9 | >19.4 | >13.7 |
Decile | 1 Day Intake | 2 Day Average Intake | UI/NCI | UI/MCMC |
---|---|---|---|---|
Children (2–18 years) | ||||
1 | 40.8 ± 3.7 | 32.7 ± 3.9 | 27.2 ± 3.2 | 4.41 ± 0.70 |
2 | 28.9 ± 2.8 | 28.3 ± 2.1 | 25.2 ± 2.2 | 32.6 ± 1.9 |
3 | 26.5 ± 2.5 | 33.3 ± 2.7 | 27.7 ± 3.3 | 50.0 ± 2.9 |
4 | 30.0 ± 2.5 | 30.1 ± 3.0 | 35.2 ± 2.5 | 29.5 ± 3.1 |
5 | 33.3 ± 2.4 | 34.6 ± 3.4 | 32.9 ± 2.5 | 48.2 ± 2.2 |
6 | 41.4 ± 3.7 | 43.4 ± 3.7 | 42.7 ± 3.6 | 45.8 ± 3.3 |
7 | 45.8 ± 4.5 | 47.3 ± 4.1 | 47.4 ± 3.6 | 45.4 ± 4.0 |
8 | 47.6 ± 2.7 | 42.1 ± 4.4 | 49.2 ± 4.3 | 53.5 ± 4.0 |
9 | 59.3 ± 3.6 | 59.5 ± 3.8 | 60.4 ± 3.7 | 53.6 ± 5.1 |
10 | 73.7 ± 4.1 | 75.5 ± 4.3 | 75.7 ± 4.0 | 63.1 ± 5.9 |
β 2 | 4.04 ± 0.94 | 4.19 ± 0.75 | 4.89 ± 0.62 | 7.85 ± 1.48 |
p3 | 0.0027 | 0.0005 | 0.0001 | 0.0007 |
Adults (≥19 years) | ||||
1 | 52.7 ± 2.4 | 52.4 ± 2.5 | 54.9 ± 2.0 | 56.1 ± 2.7 |
2 | 42.9 ± 2.3 | 44.5 ± 2.6 | 45.6 ± 1.8 | 55.1 ± 1.6 |
3 | 34.9 ± 2.8 | 34.3 ± 2.6 | 36.3 ± 2.6 | 51.2 ± 2.0 |
4 | 37.2 ± 2.2 | 36.8 ± 2.4 | 36.7 ± 2.6 | 58.7 ± 2.2 |
5 | 36.2 ± 2.1 | 37.5 ± 2.4 | 35.7 ± 3.0 | 40.8 ± 2.0 |
6 | 34.7 ± 2.1 | 33.9 ± 2.2 | 34.3 ± 2.1 | 32.0 ± 2.3 |
7 | 39.3 ± 2.7 | 40.4 ± 1.9 | 38.8 ± 1.9 | 29.9 ± 2.6 |
8 | 39.2 ± 2.6 | 40.4 ± 2.2 | 37.7 ± 1.9 | 30.9 ± 2.2 |
9 | 47.4 ± 1.9 | 45.1 ± 2.2 | 42.7 ± 2.4 | 31.4 ± 1.7 |
10 | 60.4 ± 2.0 | 62.0 ± 2.6 | 61.5 ± 2.1 | 39.0 ± 2.9 |
β 2 | 1.10 ± 0.96 | 0.62 ± 0.97 | 0.04 ± 1.03 | −3.40 ± 0.70 |
p3 | 0.2844 | 0.5444 | 0.9719 | 0.0012 |
Decile | 1 Day Intake | 2 Day Average Intake | UI/NCI | UI/MCMC |
---|---|---|---|---|
Children (2–18 years) | ||||
1 | 0.76 ± 0.19 | 0.74 ± 0.18 | 1.93 ± 0.60 | 4.96 ± 1.31 |
2 | 1.24 ± 0.38 | 1.27 ± 0.49 | 2.26 ± 0.56 | 1.04 ± 0.37 |
3 | 1.27 ± 0.49 | 1.81 ± 0.42 | 1.07 ± 0.43 | 0.44 ± 0.20 |
4 | 1.38 ± 0.47 | 1.13 ± 0.35 | 0.64 ± 0.27 | 0.65 ± 0.29 |
5 | 1.36 ± 0.39 | 1.03 ± 0.29 | 1.21 ± 0.43 | 0.33 ± 0.11 |
6 | 0.92 ± 0.27 | 0.62 ± 0.22 | 0.43 ± 0.18 | 0.32 ± 0.12 |
7 | 0.52 ± 0.27 | 0.46 ± 0.17 | 0.19 ± 0.12 | 0.39 ± 0.16 |
8 | 0.45 ± 0.23 | 0.53 ± 0.22 | 0.25 ± 0.13 | 0.29 ± 0.16 |
9 | 0.56 ± 0.23 | 0.36 ± 0.16 | 0.08 ± 0.05 | 0.11 ± 0.05 |
10 | 0.11 ± 0.06 | 0.09 ± 0.05 | 0.01 ± 0.03 | 0.07 ± 0.04 |
β 2 | −0.16 ± 0.02 | −0.15 ± 0.02 | −0.13 ± 0.03 | −0.07 ± 0.02 |
p3 | <0.0001 | <0.0001 | 0.0008 | 0.0073 |
Adults (≥19 years) | ||||
1 | 1.86 ± 0.37 | 2.41 ± 0.71 | 2.38 ± 0.50 | 2.69 ± 0.51 |
2 | 3.76 ± 0.70 | 3.46 ± 0.63 | 3.24 ± 0.65 | 2.66 ± 0.50 |
3 | 4.75 ± 0.71 | 5.41 ± 0.84 | 4.77 ± 0.81 | 3.11 ± 0.57 |
4 | 4.08 ± 0.57 | 3.83 ± 0.71 | 3.72 ± 0.64 | 3.57 ± 0.53 |
5 | 3.59 ± 0.74 | 3.28 ± 0.64 | 3.65 ± 0.67 | 2.51 ± 0.69 |
6 | 3.48 ± 0.57 | 3.32 ± 0.50 | 2.90 ± 0.37 | 3.14 ± 0.47 |
7 | 2.40 ± 0.66 | 2.24 ± 0.47 | 2.37 ± 0.52 | 3.10 ± 0.60 |
8 | 1.39 ± 0.24 | 2.00 ± 0.55 | 2.07 ± 0.55 | 3.60 ± 0.49 |
9 | 1.03 ± 0.31 | 1.11 ± 0.22 | 1.13 ± 0.22 | 2.97 ± 0.47 |
10 | 0.44 ± 0.11 | 0.39 ± 0.10 | 0.34 ± 0.10 | 1.97 ± 0.14 |
β 2 | −0.33 ± 0.08 | −0.47 ± 0.7 | −0.42 ± 0.08 | −0.31 ± 0.07 |
p3 | 0.0045 | 0.0002 | 0.0005 | 0.0029 |
Decile | 1 Day Intake | 2 Day Average Intake | UI/NCI | UI/MCMC |
---|---|---|---|---|
Children (2–18 years) | ||||
1 | 1.26 ± 0.51 | 1.48 ± 0.71 | 2.27 ± 0.88 | 4.00 ± 1.03 |
2 | 2.42 ± 0.53 | 3.18 ± 0.74 | 2.25 ± 0.64 | 1.57 ± 0.56 |
3 | 1.52 ± 0.56 | 1.27 ± 0.45 | 1.88 ± 0.49 | 1.13 ± 0.39 |
4 | 1.57 ± 0.45 | 1.72 ± 0.51 | 1.06 ± 0.54 | 1.21 ± 0.48 |
5 | 1.11 ± 0.35 | 0.82 ± 0.38 | 1.59 ± 0.66 | 0.70 ± 0.33 |
6 | 0.92 ± 0.35 | 0.75 ± 0.28 | 0.67 ± 0.25 | 0.76 ± 0.26 |
7 | 0.90 ± 0.41 | 0.54 ± 0.26 | 0.46 ± 0.17 | 0.95 ± 0.36 |
8 | 0.58 ± 0.20 | 0.47 ± 0.22 | 0.39 ± 0.18 | 0.46 ± 0.26 |
9 | 0.14 ± 0.08 | 0.17 ± 0.07 | 0.19 ± 0.10 | 0.28 ± 0.15 |
10 | 0.03 ± 0.03 | 0.01 ± 0.04 | 0.03 ± 0.02 | 0.28 ± 0.13 |
β 2 | −0.21 ± 0. 0.2 | −0.21 ± 0.03 | −0.20 ± 0.02 | −0.16 ± 0.3 |
p3 | <0.0001 | <0.0001 | <0.0001 | 0.0019 |
Adults (≥19 years) | ||||
1 | 6.74 ± 1.2 | 8.42 ± 1.41 | 7.16 ± 1.28 | 17.6 ± 2.0 |
2 | 12.2 ± 1.3 | 12.2 ± 1.6 | 11.0 ± 1.9 | 12.8 ± 1.2 |
3 | 13.2 ± 2.0 | 14.3 ± 2.1 | 13.1 ± 1.8 | 13.3 ± 1.4 |
4 | 14.1 ± 1.7 | 14.3 ± 2.0 | 13.5 ± 1.7 | 15.6 ± 2.1 |
5 | 10.9 ± 1.4 | 14.4 ± 1.4 | 13.1 ± 1.8 | 7.31 ± 1.03 |
6 | 11.6 ± 1.2 | 10.9 ± 1.6 | 11.3 ± 1.6 | 5.04 ± 0.94 |
7 | 8.11 ± 1.16 | 7.19 ± 1.10 | 6.55 ± 1.16 | 4.75 ± 0.82 |
8 | 5.37 ± 0.67 | 5.57 ± 0.90 | 5.47 ± 0.70 | 4.64 ± 0.91 |
9 | 3.36 ± 0.47 | 3.75 ± 0.45 | 3.12 ± 0.34 | 2.87 ± 0.69 |
10 | 0.82 ± 0.19 | 0.66 ± 0.13 | 0.50 ± 0.09 | 2.96 ± 0.68 |
β 2 | −1.43 ± 0.26 | −1.66 ± 0.26 | −1.54 ± 0.27 | −1.39 ± 0.21 |
p3 | 0.0007 | 0.0002 | 0.0004 | 0.0002 |
Decile | 1 Day Intake | 2 Day Average Intake | UI/NCI | UI/MCMC |
---|---|---|---|---|
Children (2–18 years) | ||||
1 | 91.4 ± 1.5 | 89.8 ± 2.6 | 90.5 ± 2.1 | 92.0 ± 2.4 |
2 | 88.2 ± 2.3 | 90.0 ± 2.0 | 88.6 ± 2.0 | 85.5 ± 1.4 |
3 | 85.3 ± 1.9 | 89.6 ± 2.6 | 87.4 ± 2.4 | 93.0 ± 1.3 |
4 | 87.7 ± 2.5 | 87.8 ± 2.0 | 88.6 ± 1.9 | 93.7 ± 1.5 |
5 | 90.3 ± 1.9 | 89.4 ± 2.2 | 90.6 ± 1.5 | 89.6 ± 1.3 |
6 | 93.9 ± 1.5 | 93.4 ± 1.6 | 92.2 ± 1.4 | 92.6 ± 1.5 |
7 | 94.7 ± 1.4 | 94.7 ± 1.4 | 94.2 ± 1.5 | 91.8 ± 2.0 |
8 | 94.5 ± 1.3 | 93.6 ± 1.7 | 93.1 ± 1.6 | 90.3 ± 1.5 |
9 | 95.6 ± 0.9 | 96.7 ± 1.0 | 97.0 ± 0.9 | 93.5 ± 1.4 |
10 | 98.6 ± 0.4 | 98.7 ± 0.5 | 98.5 ± 0.5 | 94.2 ± 1.0 |
β 2 | 1.22 ± 0.19 | 1.29 ± 0.15 | 1.32 ± 0.14 | 0.55 ± 0.22 |
p3 | 0.0002 | <0.0001 | <0.0001 | 0.0378 |
Adults (≥19 years) | ||||
1 | 96.8 ± 0.9 | 96.5 ± 0.8 | 96.4 ± 0.7 | 92.9 ± 1.1 |
2 | 94.3 ± 1.1 | 94.6 ± 1.1 | 95.2 ± 0.8 | 93.1 ± 0.8 |
3 | 91.2 ± 1.1 | 93.3 ± 1.0 | 93.0 ± 1.2 | 93.7 ± 0.7 |
4 | 92.1 ± 1.3 | 93.4 ± 1.1 | 91.7 ± 1.4 | 94.9 ± 1.2 |
5 | 93.0 ± 1.1 | 93.7 ± 0.9 | 93.3 ± 1.0 | 94.4 ± 0.7 |
6 | 93.9 ± 0.8 | 92.9 ± 1.0 | 94.1 ± 0.9 | 94.8 ± 0.9 |
7 | 94.7 ± 0.7 | 93.8 ± 1.4 | 92.4 ± 1.2 | 94.9 ± 0.9 |
8 | 95.1 ± 0.8 | 94.9 ± 1.2 | 94.8 ± 0.8 | 95.3 ± 0.8 |
9 | 96.1 ± 0.8 | 96.4 ± 0.8 | 96.3 ± 0.7 | 95.3 ± 0.8 |
10 | 98.2 ± 0.5 | 98.5 ± 0.5 | 98.5 ± 0.4 | 97.0 ± 0.9 |
β 2 | 0.41 ± 0.20 | 0.39 ± 0.18 | 0.35 ± 0.19 | 0.37 ± 0.05 |
p3 | 0.0758 | 0.0602 | 0.1051 | 0.0001 |
Regression Coefficient | 1 Day Intake | 2 Day Average Intake | UI/NCI | UI/MCMC |
---|---|---|---|---|
Children (2–18 years) | ||||
Calcium | 4.04 (1.45, 6.64) | 4.19 (2.13, 6.24) | 4.89 (3.18, 6.61) | 7.85 (3.76, 11.93) |
Potassium | −0.16 (−0.20, −0.12) | −0.15 (−0.19, −0.10) | −0.13 (−0.20, −0.06) | −0.07 (−0.13, −0.02) |
Vitamin D | 1.22 (0.69, 1.76) | 1.29 (0.88, 1.70) | 1.32 (0.92, 1.72) | 0.55 (−0.06, 1.17) |
Dietary fiber | −0.21 (−0.28, −0.15) | −0.21 (−0.28, −0.15) | −0.20 (−0.26, −0.14) | −0.16 (−0.25, −0.06) |
Adults (≥19 years) | ||||
Calcium | 1.10 (−1.54, 3.74) | 0.62 (−2.06, 3.30) | 0.04 (−2.80, 2.87) | −3.40 (−5.31, −1.49) * |
Potassium | −0.33 (−0.56, −0.10) | −0.47 (−0.67, −0.26) | −0.42 (−0.63, −0.21) | −0.31 (−0.51, −0.11) |
Vitamin D | 0.41 (−0.14, 0.96) | 0.39 (−0.10, 0.89) | 0.35 (−0.18, 0.87) | 0.37 (0.24, 0.50) |
Dietary fiber | −1.43 (−2.16, −0.70) | −1.66 (−2.39, −0.93) | −1.54 (−2.27, −0.80) | −1.39 (−1.97, −0.81) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fulgoni, V.L., III; Gaine, P.C.; Scott, M.O. Comparison of Various Methods to Determine Added Sugars Intake to Assess the Association of Added Sugars Intake and Micronutrient Adequacy. Nutrients 2020, 12, 2816. https://doi.org/10.3390/nu12092816
Fulgoni VL III, Gaine PC, Scott MO. Comparison of Various Methods to Determine Added Sugars Intake to Assess the Association of Added Sugars Intake and Micronutrient Adequacy. Nutrients. 2020; 12(9):2816. https://doi.org/10.3390/nu12092816
Chicago/Turabian StyleFulgoni, Victor L., III, P. Courtney Gaine, and Maria O. Scott. 2020. "Comparison of Various Methods to Determine Added Sugars Intake to Assess the Association of Added Sugars Intake and Micronutrient Adequacy" Nutrients 12, no. 9: 2816. https://doi.org/10.3390/nu12092816
APA StyleFulgoni, V. L., III, Gaine, P. C., & Scott, M. O. (2020). Comparison of Various Methods to Determine Added Sugars Intake to Assess the Association of Added Sugars Intake and Micronutrient Adequacy. Nutrients, 12(9), 2816. https://doi.org/10.3390/nu12092816