Use of Plastics with Hot Food among Saudi Pregnant Women Is Associated with Increased Concentrations of A1C, Thyroid-Stimulating Hormone, and Homocysteine and Decreased Concentrations of Vitamins and Minerals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochemical Parameters
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rather, I.A.; Koh, W.Y.; Paek, W.K.; Lim, J. The sources of chemical contaminants in food and their health implications. Front. Pharmacol. 2017, 8, 830. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Singh, P.K.; Singh, R.P.; Singh, P.; Singh, R.L. Chapter 2-Food Hazards: Physical, Chemical, and Biological. In Food Safety and Human Health, 1st ed.; Elsevier: Amsterdam, The Netherland, 2019; pp. 15–65. ISBN 978-0-12-816333-7. [Google Scholar]
- MALEK, C. Arab News. 2018. Available online: https://www.arabnews.com/node/1330096/middle-east (accessed on 20 August 2020).
- Whitehead, R. Foodnavigator-Asia. July 2017. Available online: https://www.foodnavigator-asia.com/Article/2017/07/12/Saudiexe...n?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright (accessed on 20 August 2020).
- Żwierełło, W.; Maruszewska, A.; Skórka-Majewicz, M.; Goschorska, M.; Baranowska-Bosiacka, I.; Dec, K.; Styburski, D.; Nowakowska, A.; Gutowska, I. The influence of polyphenols on metabolic disorders caused by compounds released from plastics-Review. Chemosphere 2020, 240, 124901. [Google Scholar] [CrossRef] [PubMed]
- Groh, K.J.; Backhaus, T.; Carney-Almroth, B.; Geueke, B.; Inostroza, P.A.; Lennquist, A.; Leslie, H.A.; Maffini, M.; Slunge, D.; Trasande, L.; et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total Environ. 2019, 651, 3253–3268. [Google Scholar] [CrossRef] [PubMed]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A Detailed review study on potential effects of microplastics and additives of concern on human health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef][Green Version]
- Ehlert, K.A.; Beumer, C.W.E.; Groot, M.C.E. Migration of bisphenol A into water from polycarbonate baby bottles during microwave heating. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2008, 25, 904–910. [Google Scholar] [CrossRef]
- Harkin, C. A review on plastic bioaccumulation, potential health effects and the potential to enhance biotransformation using herbal medicine and nutritional supplements. Int. J. Complement Altern. Med. 2020, 13, 18–26. [Google Scholar] [CrossRef]
- Bommarito, P.A.; Martin, E.; Fry, R.C. Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome. Epigenomics 2017, 9, 333–350. [Google Scholar] [CrossRef][Green Version]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Pacyga, D.C.; Sathyanarayana, S.; Strakovsky, R.S. Dietary predictors of phthalate and bisphenol exposures in pregnant women. Adv. Nutr. 2019, 10, 803–815. [Google Scholar] [CrossRef]
- Rafati, R.M.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar] [CrossRef]
- Xu, J.; Huang, G.; Guo, T.L. Developmental bisphenol A exposure modulates immune-related diseases. Toxics 2016, 4, 23. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rowdhwal, S.S.; Chen, J. Toxic effects of di-2-ethylhexyl phthalate: An overview. BioMed Res. Int. 2018, 2018, 1750368. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tran, N.Q.V.; Miyake, K. Neurodevelopmental disorders and environmental toxicants: Epigenetics as an underlying mechanism. Int. J. Genom. 2017, 2017, 7526592. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ferguson, K.K.; McElrath, T.F.; Meeker, J.D. Environmental phthalate exposure and preterm birth. JAMA Pediatr. 2014, 168, 61–67. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, Y.; Mustieles, V.; Yland, J.; Braun, J.M.; Williams, P.L.; Attaman, J.A.; Ford, J.B.; Calafat, A.M.; Hauser, R.; Messerlian, C. Association of parental preconception exposure to phthalates and phthalate substitutes with preterm birth. JAMA Netw. Open 2020, 3, e202159. [Google Scholar] [CrossRef]
- Filardi, T.; Panimolle, F.; Lenzi, A.; Morano, S. Bisphenol A and phthalates in diet: An emerging link with pregnancy complications. Nutrients 2020, 12, 525. [Google Scholar] [CrossRef][Green Version]
- Hammouda, S.; Abd Al-Halim, O. Serum levels of some micronutrients and congenital malformations: A prospective cohort study in healthy Saudi Arabian first-trimester pregnant women. Int. J. Vitam. Nutr. Res. 2013, 83, 346–354. [Google Scholar] [CrossRef]
- Kasemsup, R.; Neesanan, N. Knowledge, attitudes and practices relating to plastic containers for food and drinks. J. Med. Assoc. Thai. 2011, 94 (Suppl. 3), S121–S125. [Google Scholar]
- Callan, A.C.; Hinwood, A.L.; Heffernan, A.; Eaglesham, G.; Mueller, J.; Odland, J.Ø. Urinary bisphenol A concentrations in pregnant women. Int. J. Hyg. Environ. Health 2013, 216, 641–644. [Google Scholar] [CrossRef]
- Mariscal-Arcas, M.; Rivas, A.; Granada, A.; Monteagudo, C.; Murcia, M.A.; Olea-Serrano, F. Dietary exposure assessment of pregnant women to bisphenol-A from cans and microwave containers in Southern Spain. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2009, 47, 506–510. [Google Scholar] [CrossRef]
- Valvi, D.; Monfort, N.; Ventura, R.; Casas, M.; Casas, L.; Sunyer, J.; Vrijheid, M. Variability and predictors of urinary phthalate metabolites in Spanish pregnant women. Int. J. Hyg. Environ. Health 2015, 218, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Casas, M.; Valvi, D.; Luque, N.; Ballesteros-Gomez, A.; Carsin, A.-E.; Fernandez, M.F.; Koch, H.M.; Mendez, M.A.; Sunyer, J.; Rubio, S.; et al. Dietary and sociodemographic determinants of bisphenol A urine concentrations in pregnant women and children. Environ. Int. 2013, 56, 10–18. [Google Scholar] [CrossRef] [PubMed]
- SASO. Polypropylene or Polyethylene Food Packaging Containers for Multi-Use. 2020. Available online: https://saso.gov.sa/ar/mediacenter/public_multimedia/Documents/food packaging containers00.pdf (accessed on 2 July 2020).
- Lee, I.; Alakeel, R.; Kim, S.; Al-Sheikh, Y.; Al-mandeel, H.; Alyousef, A.; Kho, Y.; Choi, K. Urinary phthalate metabolites among children in Saudi Arabia: Occurrences, risks, and their association with oxidative stress markers. Sci. Total Environ. 2018, 654, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Steegers-Theunissen, R.P.; Wathen, N.C.; Eskes, T.K.; van Raaij-Selten, B.; Chard, T. Maternal and fetal levels of methionine and homocysteine in early human pregnancy. Br. J. Obstet. Gynaecol. 1997, 104, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Şanlıkan, F.; Altuncu, F.; Özbay, K.; Avcım, M.; Göçmen, A. Does serum homocysteine level have a role in the early pregnancy loss? Perinat. J. 2019, 27, 189–193. [Google Scholar] [CrossRef]
- Aung, M.T.; Johns, L.E.; Ferguson, K.K.; Mukherjee, B.; McElrath, T.F.; Meeker, J.D. Thyroid hormone parameters during pregnancy in relation to urinary bisphenol A concentrations: A repeated measures study. Environ. Int. 2017, 104, 33–40. [Google Scholar] [CrossRef]
- Acconcia, F.; Pallottini, V.; Marino, M. Molecular Mechanisms of Action of BPA. Dose Response 2015, 13. [Google Scholar] [CrossRef][Green Version]
- Ahmed, R.G. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction. Food Chem. Toxicol. 2016, 95, 168–174. [Google Scholar] [CrossRef]
- Da Silva, M.M.; Xavier, L.L.; Gonçalves, C.F.; Santos-Silva, A.P.; Paiva-Melo, F.D.; De Freitas, M.L.; Fortunato, R.S.; Miranda-Alves, L.; Ferreira, A.C. Bisphenol A increases hydrogen peroxide generation by thyrocytes both in vivo and in vitro. Endocr. Connect. 2018, 7, 1196–1207. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dong, H.; Wade, M.G. Application of a nonradioactive assay for high throughput screening for inhibition of thyroid hormone uptake via the transmembrane transporter MCT8. Toxicol. In Vitro 2017, 40, 234–242. [Google Scholar] [CrossRef]
- Alonso-Magdalena, P.; Ropero, A.B.; Carrera, M.P.; Cederroth, C.R.; Baquié, M.; Gauthier, B.R.; Nef, S.; Stefani, E.; Nadal, A. Pancreatic insulin content regulation by the estrogen receptor ER alpha. PLoS ONE 2008, 3, e2069. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Alonso-Magdalena, P.; Morimoto, S.; Ripoll, C.; Fuentes, E.; Nadal, A. The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ. Health Perspect. 2006, 114, 106–112. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hammouda, S.A.I.; Mumena, W.A. Reduced serum concentrations of vitamin B(12) and folate and elevated thyroid-stimulating hormone and homocysteine levels in first-trimester pregnant Saudi women with high A1C concentrations. Nutr. Res. 2019, 72, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Kutbi, H.A.; Hammouda, S.A. Plasma concentrations of vitamin A and E and risk of dysglycemia in first-trimester pregnant Saudi women. Diabetol. Metab. Syndr. 2020, 12, 17. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hammouda, S.; Mohamadin, A. Serum levels of zinc, magnesium and selenium among first trimester pregnant Saudi women with pre-diabetes and diabetes. Endocrinol. Metab. Syndr. 2017, 6. [Google Scholar] [CrossRef]
Daily Use (n = 78) | Weekly Use (n = 289) | Monthly Use (n = 145) | Never Use (n = 228) | p | |
---|---|---|---|---|---|
Age, years, mean ± SD | |||||
Pregnant women | 26.6 ± 5.66 | 27.0 ± 5.94 | 29.0 ± 6.00 | 28.2 ± 6.52 | 0.002 1 |
Education level of pregnant women, n (%) | |||||
≤Primary education | 16 (9.82) | 61 (37.4) | 29 (17.8) | 57 (35.0) | 0.321 |
<University degree | 40 (11.0) | 141 (38.6) | 65 (17.8) | 119 (32.6) | |
≥University degree | 22 (10.4) | 86 (40.6) | 51 (24.1) | 53 (25.0) | |
Smoking, spouse, n (%) | 30 (12.5) | 93 (38.8) | 44 (18.3) | 73 (30.4) | 0.654 |
Pre-pregnancy BMI, kg/m2, mean ± SD | 25.1 ± 4.80 | 24.8 ± 5.53 | 25.9 ± 5.88 | 25.3 ± 5.43 | 0.284 |
Daily Use (n = 78) | Weekly Use (n = 289) | Monthly Use (n = 145) | Never Use (n = 228) | p | |
---|---|---|---|---|---|
TSH, mIU/L | 2.01 ± 0.62 | 1.82 ± 0.58 | 1.82 ± 0.54 | 1.75 ± 0.57 | 0.019 1 |
HCY, μmol/L | 7.57 ± 1.01 | 7.22 ± 0.93 | 7.21 ± 0.84 | 7.10 ± 0.88 | 0.005 1 |
A1C, % | 5.07 ± 0.33 | 4.97 ± 0.32 | 4.98 ± 0.31 | 4.93 ± 0.32 | 0.020 1 |
Magnesium, mg/dL | 4.26 ± 0.67 | 4.34 ± 0.67 | 4.31 ± 0.66 | 4.38 ± 0.64 | 0.455 |
Vitamin B12, pmol/L | 539 ± 62.4 | 550 ± 64.5 | 553 ± 49.7 | 556 ± 56.2 | 0.084 |
Folate, nmol/L | 53.3 ± 7.77 | 54.4 ± 7.71 | 55.0 ± 6.18 | 55.3 ± 7.08 | 0.139 |
Vitamin E, mg/L | 29.9 ± 3.91 | 30.7 ± 3.91 | 30.8 ± 3.65 | 31.1 ± 3.80 | 0.097 |
Vitamin A, µg/L | 676 ± 103 | 702 ± 101 | 701 ± 97.4 | 709 ± 100 | 0.102 |
Zinc, μg/dL | 101 ± 13.3 | 104 ± 14.3 | 103 ± 13.2 | 106 ± 14.7 | 0.020 1 |
Selenium, ng/mL | 11.4 ± 2.56 | 12.0 ± 2.54 | 12.0 ± 2.29 | 12.4 ± 2.50 | 0.019 1 |
B | SE | p | 95% Confidence Interval | R-Square | |
---|---|---|---|---|---|
TSH, mIU/L | 0.06 | 0.02 | 0.004 1 | 0.02 to 0.10 | 0.01 |
HCY, μmol/L | 0.11 | 0.03 | 0.001 1 | 0.04 to 0.17 | 0.02 |
A1C, % | 0.03 | 0.01 | 0.005 1 | 0.01 to 0.06 | 0.01 |
Magnesium, mg/dL | −0.03 | 0.02 | 0.216 | −0.08 to 0.02 | <0.01 |
Vitamin B12, pmol/L | −4.22 | 2.15 | 0.051 | −8.44 to 0.01 | 0.01 |
Folate, nmol/L | −0.52 | 0.26 | 0.051 | −1.04 to 0.00 | 0.01 |
Vitamin E, mg/L | −0.31 | 0.14 | 0.027 1 | −0.58 to −0.03 | 0.01 |
Vitamin A,µg/L | −6.89 | 3.65 | 0.060 | −14.1 to 0.28 | 0.01 |
Zinc, μg/dL | −1.33 | 0.51 | 0.010 1 | −2.34 to −0.32 | 0.01 |
Selenium, ng/mL | −0.26 | 0.09 | 0.005 1 | −0.04 to −0.02 | 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, M.H.; Mumena, W.A.; Hammouda, S.A. Use of Plastics with Hot Food among Saudi Pregnant Women Is Associated with Increased Concentrations of A1C, Thyroid-Stimulating Hormone, and Homocysteine and Decreased Concentrations of Vitamins and Minerals. Nutrients 2020, 12, 2609. https://doi.org/10.3390/nu12092609
Alharbi MH, Mumena WA, Hammouda SA. Use of Plastics with Hot Food among Saudi Pregnant Women Is Associated with Increased Concentrations of A1C, Thyroid-Stimulating Hormone, and Homocysteine and Decreased Concentrations of Vitamins and Minerals. Nutrients. 2020; 12(9):2609. https://doi.org/10.3390/nu12092609
Chicago/Turabian StyleAlharbi, Mudi H., Walaa A. Mumena, and Sahar A. Hammouda. 2020. "Use of Plastics with Hot Food among Saudi Pregnant Women Is Associated with Increased Concentrations of A1C, Thyroid-Stimulating Hormone, and Homocysteine and Decreased Concentrations of Vitamins and Minerals" Nutrients 12, no. 9: 2609. https://doi.org/10.3390/nu12092609