Effects of Beta-Alanine Supplementation on Physical Performance in Aerobic–Anaerobic Transition Zones: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategies
2.2. Inclusion and Exclusion Criteria
2.3. Chronic and Acute Supplementation
2.4. Outcome Measures
2.5. Publication Bias
2.6. Quality Assessment of the Experiments
2.7. Statistical Analysis
3. Results
3.1. Main Search
3.2. Effect of BA on Time Trial Tests
3.3. Effect of BA on the Limited Time Test
3.4. Effect of BA on the Limited Distance Test
3.5. Effect of BA Supplementation on Secondary Outcomes
3.6. Paresthesia
4. Discussion
4.1. Effect of BA on the Time Trial Test and Time to Exhaustion Test
4.2. Effect of BA on Secondary Outcomes
4.3. Limitations
5. Conclusions
6. Practical Applications
Author Contributions
Funding
Conflicts of Interest
References
- Santesteban, V.; Ibánez, J. Ayudas ergogénicas en el deporte. Nutr. Hosp. 2017, 34, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Derave, W.; Tipton, K.D. Dietary supplements for aquatic sports. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 437–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frączek, B.; Warzecha, M.; Tyrała, F.; Pięta, A. Prevalence of the use of effective ergogenic aids among professional athletes. Rocz. Panstw. Zakl. Hig. 2016, 67, 271–278. [Google Scholar] [PubMed]
- López-Samanes, Á.; Moreno, V.; Kovacs, M.S.; Pallarés, J.G.; Mora, R.; Ortega, J. Use of nutritional supplements and ergogenic aids in professional tennis players. Nutr. Hosp. 2017, 34, 1463–1468. [Google Scholar] [PubMed]
- Kresta, J.Y.; Oliver, J.M.; Jagim, A.R.; Fluckey, J.; Riechman, S.; Kelly, K.; Meininger, C.; Mertens-Talcott, S.U.; Rasmussen, C.; Kreider, R.B. Effects of 28 days of beta-alanine and creatine supplementation on muscle carnosine, body composition and exercise performance in recreationally active females. J. Int. Soc. Sports Nutr. 2014, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Galdames, S.; Huerta, Á.; Pastene, A. Efecto de la suplementación aguda con bicarbonato sódico sobre el rendimiento en la cancha con obstáculos en pentatletas militares profesionales. Arch. Med. del Deport. 2020, in press. [Google Scholar]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef] [Green Version]
- Jordan, T.; Lukaszuk, J.; Misic, M.; Umoren, J. Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA) during treadmill running: Pre/post 2 treatment experimental design. J. Int. Soc. Sports Nutr. 2010, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Trexler, E.T.; Smith-Ryan, A.E.; Stout, J.R.; Hoffman, J.R.; Wilborn, C.D.; Sale, C.; Kreider, R.B.; Jäger, R.; Earnest, C.P.; Bannock, L.; et al. International society of sports nutrition position stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 2015, 12. [Google Scholar] [CrossRef] [Green Version]
- Stegen, S.; Bex, T.; Vervaet, C.; Vanhee, L.; Achten, E.; Derave, W. β-Alanine dose for maintaining moderately elevated muscle carnosine levels. Med. Sci. Sports Exerc. 2014, 46, 1426–1432. [Google Scholar] [CrossRef]
- Bex, T.; Chung, W.; Baguet, A.; Achten, E.; Derave, W. Exercise Training and Beta-Alanine-Induced Muscle Carnosine Loading. Front. Nutr. 2015, 2, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeling, P.; Binnie, M.J.; Goods, P.S.R.; Sim, M.; Burke, L.M. Evidence-based supplements for the enhancement of athletic performance. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Blancquaert, L.; Everaert, I.; Missinne, M.; Baguet, A.; Stegen, S.; Volkaert, A.; Petrovic, M.; Vervaet, C.; Achten, E.; De Maeyer, M.; et al. Effects of histidine and β-alanine supplementation on human muscle carnosine storage. Med. Sci. Sports Exerc. 2017, 49, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Jagim, A.R.; Wright, G.A.; Brice, A.G. Effects of Beta Alanine supplementation on sprint endurance. J. Strength Cond. Res. 2013, 27, 526–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, R.C.; Wise, J.A.; Price, K.A.; Kim, H.J.; Kim, C.K.; Sale, C. Determinants of muscle carnosine content. Amino Acids 2012, 43, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Artioli, G.; Gualano, B.; Smith, A.; Stout, J.; Lancha, A.H. Role of β-alanine supplementation on muscle carnosine and exercise performance. Med. Sci. Sports Exerc. 2010, 42, 1162–1173. [Google Scholar] [CrossRef]
- Huerta, Á.; Contreras-Montilla, O.; Galdames, S.; Jorquera-Aguilera, C.; Fuentes-Kloss, R.; Guisado-Barrilao, R. Efectos de la suplementación con beta alanina sobre una prueba de tiempo límite a velocidad aeróbica máxima en atletas de resistencia. Nutr. Hosp. 2019, 36, 698–705. [Google Scholar] [CrossRef] [Green Version]
- Jagim, A.R.; Harty, P.S.; Camic, C.L. Common ingredient profiles of multi-ingredient pre-workout supplements. Nutrients 2019, 11, 254. [Google Scholar] [CrossRef] [Green Version]
- Osnes, J.B.; Hermansen, L. Acid-base balance after maximal exercise of short duration. J. Appl. Physiol. 1972, 32, 59–63. [Google Scholar] [CrossRef]
- Stout, J.R.; Cramer, J.T.; Zoeller, R.F.; Torok, D.; Costa, P.; Hoffman, J.R.; Harris, R.C.; O’Kroy, J. Effects of β-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids 2007, 32, 381–386. [Google Scholar] [CrossRef]
- Smith-Ryan, A.E.; Fukuda, D.H.; Stout, J.R.; Kendall, K.L. High velocity intermittent running: Effects of Beta alanine Supplementation. J. Strength Cond. Res. 2012, 26, 2798–2805. [Google Scholar] [CrossRef]
- Smith, A.E.; Stout, J.R.; Kendall, K.L.; Fukuda, D.H.; Cramer, J.T. Exercise-induced oxidative stress: The effects of β-alanine supplementation in women. Amino Acids 2012, 43, 77–90. [Google Scholar] [CrossRef]
- Décombaz, J.; Beaumont, M.; Vuichoud, J.; Bouisset, F.; Stellingwerff, T. Effect of slow-release β-alanine tablets on absorption kinetics and paresthesia. Amino Acids 2012, 43, 67–76. [Google Scholar] [CrossRef]
- Domínguez, R.; Lougedo, J.H.; Maté-Muñoz, J.L.; Garnacho-Castaño, M.V. Efectos de la suplementación con ß-alanina sobre el rendimiento deportivo. Nutr. Hosp. 2015, 31, 155–169. [Google Scholar] [CrossRef]
- Kindermann, W.; Simon, G.; Keul, J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur. J. Appl. Physiol. 1979, 42, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Kindermann, W.; Meyer, T. Lactate threshold concepts: How valid are they? Sports Med. 2009, 39, 469–490. [Google Scholar] [CrossRef]
- Wilson, J.M.; Wilson, G.J.; Zourdos, M.C.; Smith, A.E.; Stout, J. Beta-alanine supplementation improves aerobic and anaerobic indices of performance. Strength Cond. J. 2010, 32, 71–78. [Google Scholar] [CrossRef]
- Beasley, L.; Smith, L.; Antonio, J.; Gordon, D.; Johnstone, J.; Roberts, J. The effect of two β-alanine dosing strategies on 30-minute rowing performance: A randomized, controlled trial. J. Int. Soc. Sports Nutr. 2018, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bellinger, P.M.; Minahan, C.L. The effect of β-alanine supplementation on cycling time trials of different length. Eur. J. Sport Sci. 2016, 16, 829–836. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6. [Google Scholar] [CrossRef] [Green Version]
- Huerta, Á.; Dominguez, A.; Barahona-Fuentes, G. The effect of supplementation with L-arginine and L-citrulline on physical performance: A systematic review. Nutr. Hosp. 2019, 36, 1389–1402. [Google Scholar] [CrossRef] [PubMed]
- Chicharro, J.; Vicente, D.; Cancino, J. Fisiología del Entrenamiento Aeróbico. Una Visión Integrada, 1st ed.; Editorial Medicap Panamericana: Barcelona, España, 2013; ISBN 978-84-9835-279-5. [Google Scholar]
- Berthon, P.; Fellmann, N.; Bedu, M.; Beaune, B.; Dabonneville, M.; Coudert, J.; Chamoux, A. A 5-min running field test as a measurement of maximal aerobic velocity. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.K.; Fu, F.H.; Chow, B.C. Reliability of a 5-min running field test and its accuracy in VO2max evaluation. J. Sports Med. Phys. Fitness 2001, 41, 318. [Google Scholar] [PubMed]
- Chung, W.; Baguet, A.; Bex, T.; Bishop, D.J.; Derave, W. Doubling of muscle carnosine concentration does not improve laboratory 1-Hr cycling time-trial performance. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borg, G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand. J. Work. Environ. Health 1990, 16, 55–58. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Version 5; London, U., Ed.; Cochrane: Chichester, UK, 2011. [Google Scholar]
- Hedges, L. V Distribution theory for Glass’s estimator of e ect size and related estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Cambridge, A.P., Ed.; Associated Press: Cambridge, MA, USA, 2013; ISBN 1483276481. [Google Scholar]
- Higgins, J.; Thompson, S.; Deeks, J.; Altman, D. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Baguet, A.; Bourgois, J.; Vanhee, L.; Achten, E.; Derave, W. Important role of muscle carnosine in rowing performance. J. Appl. Physiol. 2010, 109, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Bellinger, P.M.; Minahan, C.L. Metabolic consequences of β-alanine supplementation during exhaustive supramaximal cycling and 4000-m time-trial performance. Appl. Physiol. Nutr. Metab. 2016, 41, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Bellinger, P.M.; Minahan, C.L. Additive benefits of β-Alanine supplementation and sprint-interval training. Med. Sci. Sports Exerc. 2016, 48, 2417–2425. [Google Scholar] [CrossRef] [PubMed]
- Cochran, A.J.R.; Percival, M.E.; Thompson, S.; Gillen, J.B.; MacInnis, M.J.; Potter, M.A.; Tarnopolsky, M.A.; Gibala, M.J. β-Alanine supplementation does not augment the skeletal muscle adaptive response to 6 weeks of sprint interval training. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Ducker, K.J.; Dawson, B.; Wallman, K.E. Effect of beta-alanine supplementation on 2000-m rowing-ergometer performance. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 336–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobson, R.M.; Harris, R.C.; Martin, D.; Smith, P.; Macklin, B.; Gualano, B.; Sale, C. Effect of β-alanine, with and without sodium bicarbonate on 2000 m Rowing Performance. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Santana, J.O.; Freitas, M.C.; dos Santos, D.M.; Rossi, F.E.; Lira, F.S.; Rosa-Neto, J.C.; Caperuto, E.C. Beta-alanine supplementation improved 10-km running time trial in physically active adults. Front. Physiol. 2018, 9, 1105. [Google Scholar] [CrossRef] [PubMed]
- Furst, T.; Massaro, A.; Miller, C.; Williams, B.T.; LaMacchia, Z.M.; Horvath, P.J. β-Alanine supplementation increased physical performance and improved executive function following endurance exercise in middle aged individuals. J. Int. Soc. Sports Nutr. 2018, 15, 32. [Google Scholar] [CrossRef] [Green Version]
- Ghiasvand, R.; Askari, G.; Malekzadeh, J.; Hajishafiee, M.; Daneshvar, P.; Akbari, F.; Bahreynian, M. Effects of six weeks of β-alanine administration on VO2max, time to exhaustion and lactate concentrations in physical education students. Int. J. Prev. Med. 2012, 3, 559. [Google Scholar]
- Greer, B.K.; Katalinas, M.E.; Shaholli, D.M.; Gallo, P.M. β-alanine supplementation fails to increase peak aerobic power or ventilatory threshold in aerobically trained males. J. Diet. Suppl. 2014, 13, 165–170. [Google Scholar] [CrossRef]
- Outlaw, J.J.; Smith-Ryan, A.E.; Buckley, A.L.; Urbina, S.L.; Hayward, S.; Wingfield, H.L.; Campbell, B.; Foster, C.; Taylor, L.W.; Wilborn, C.D. Effects of β-alanine on body composition and performance measures in collegiate women. J. Strenght Cond. Res. 2016, 30, 2627–2637. [Google Scholar] [CrossRef]
- Smith-Ryan, A.E.; Woessner, M.N.; Melvin, M.N.; Wingfield, H.L.; Hackney, A.C. The effects of beta-alanine supplementation on physical working capacity at heart rate threshold. Clin. Physiol. Funct. Imaging 2014, 34, 397–404. [Google Scholar] [CrossRef]
- Harris, R.C.; Tallon, M.J.; Dunnett, M.; Boobis, L.; Coakley, J.; Kim, H.J.; Fallowfield, J.L.; Hill, C.A.; Sale, C.; Wise, J.A. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 2006, 30, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Asatoor, A.M.; Bandoh, J.K.; Lant, A.F.; Milne, M.D.; Navab, F. Intestinal absorption of carnosine and its constituent amino acids in man. Gut 1970, 11, 250–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [Green Version]
- Dutka, T.L.; Lamboley, C.R.; McKenna, M.J.; Murphy, R.M.; Lamb, G.D. Effects of carnosine on contractile apparatus Ca2+ sensitivity and sarcoplasmic reticulum Ca2+ release in human skeletal muscle fibers. J. Appl. Physiol. 2012, 112, 728–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Invernizzi, P.L.; Benedini, S.; Saronni, S.; Merati, G.; Bosio, A. The acute administration of carnosine and beta-alanine does not improve running anaerobic performance and has no effect on the metabolic response to exercise. Adv. Phys. Educ. 2013, 03, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Saunders, B.; Elliott-Sale, K.; Artioli, G.G.; Swinton, P.A.; Dolan, E.; Roschel, H.; Sale, C.; Gualano, B. β-Alanine supplementation to improve exercise capacity and performance: A systematic review and meta-Analysis. Br. J. Sports Med. 2017, 51, 658–669. [Google Scholar] [CrossRef]
- Derave, W.; Everaert, I.; Beeckman, S.; Baguet, A. Muscle carnosine metabolism and β-alanine supplementation in relation to exercise and training. Sports Med. 2010, 40, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Quesnele, J.J.; Laframboise, M.A.; Wong, J.J.; Kim, P.; Wells, G.D. The effects of beta-alanine supplementation on performance: A systematic review of the literature. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 14–27. [Google Scholar] [CrossRef]
- Gross, M.; Boesch, C.; Bolliger, C.S.; Norman, B.; Gustafsson, T.; Hoppeler, H.; Vogt, M. Effects of beta-alanine supplementation and interval training on physiological determinants of severe exercise performance. Eur. J. Appl. Physiol. 2014, 114, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Ekblom, B.; Golobarg, A.N. The influence of physical training and other factors on the subjective rating of perceived exertion. Acta Physiol. Scand. 1971, 83, 399–406. [Google Scholar] [CrossRef]
- Bountra, C.; Vaughan-Jones, R. Effect of intracellular and extracellullar pH on contraction in isolated, mammalian cardiac muscle. J. Physiol. 1989, 418, 163–187. [Google Scholar] [CrossRef] [PubMed]
Author | Objective | Subjects | Variables | Test | Supplementation Protocol | Results | Performance in PO |
---|---|---|---|---|---|---|---|
Chronic effect of BA supplementation in aerobic–anaerobic transition zone | |||||||
Baguet et al. [42] | To investigate if performance is related to the muscle CA content and if BA suppl improves performance in highly trained rowers. | C/A: Rowers M = 16; F = 1 (EG = 8; CG = 9) A: 22.9 ± 4.2 years | I: EG: BA + training CG: PL + training D: PO: TTT | TTT: 2000 m rowing ergometer | Oral suppl of 7 w Total dose 7 w: 245 g EG: BA 5 g/day (5 doses of 1 g, c/2 h) CG: maltodextrin | Time (s) post test: EG = 386.5 vs. CG = 391.5; p > 0.05 The authors declared paresthesia: no | ↔ |
Beasley et al. [28] | To investigate the effect of two BA dosing strategies on 30 min rowing and subsequent sprint performance. | RA: Rowers M = 27 (EG1 = 9; EG2 = 9; CG = 9) A: 24.0 ± 5.0 years | I: EG: BA + training CG: PL + training D: PO: LDT SO: VO2max, [La], RPE, HR | LDT: 30 min rowing ergometer | Oral suppl of 28 d Total dose 28 d: 67.2 g EG1: BA 2.4 g/day (1 dose of 2.4 g, e/24 h) EG2: BA 4.8 g/day (1 dose of 4.8 g, e/48 h) CG: corn flour | Distance (m) post test: GE1 = 7579 vs. CG = 7228; p > 0.05 GE2 = 7575 vs. CG = 7228; p > 0.05 VO2max (LO2·min−1) post test: GE1 = 3.63 vs. CG = 3.33; p > 0.05 GE2 = 3.50 vs. CG = 3.33; p > 0.05 [La] (mmol·L−1) post test: GE1 = 10.0 vs. CG = 9.1; p > 0.05 GE2 = 8.8 vs. CG = 9.1; p > 0.05 RPE (1–10) post test: GE1 = 9.7 vs. CG = 9.6; p > 0.05 GE2 = 9.3 vs. CG = 9.6; p > 0.05 HR (bpm) post test: GE1 = 190 vs. CG = 185; p > 0.05 GE2 = 182 vs. CG = 185; p > 0.05 The authors declared paresthesia: no | ↔ |
Bellinger et al. [43] | To investigate the effects of BA suppl on the resultant blood acidosis, lactate accumulation, and energy provision during supramaximal-intensity cycling, as well as the aerobic and anaerobic contribution to power output during a 4000 m cycling time trial. | C/A: Cyclists M = 17 (EG = 9; CG = 8) A: 24.5 ± 6.2 years | I: EG: BA + training CG: PL + training D: PO: TTT SO: VO2max, [La], RPE | TTT 4000 m cycle ergometer | Oral suppl of 28 d Total dose of 28 d: 179.2 g EG: BA 6.4 g/day (4 dose of 1.6 g, in every meal) CG: dextrose monohydrate | Time (s) post test: EG = 355.6 vs. CG = 360.4; p < 0.05 VO2max (LO2·min−1) post test: EG = 4.45 vs. CG = 4.44; p > 0.05 [La] (mmol·L−1) post test: EG = 15.1 vs. CG = 15.2; p > 0.05 RPE (6–20) post test: EG = 18.8 vs. CG = 18.8; p > 0.05 The authors declared paresthesia: no | ↑ |
Bellinger et al. [29] | To assess the efficacy of BA suppl on cycling time trial of different length in the same group of trained cyclists and to contrast the effects of BA supply on a supramaximal time to fatigue test. | C/A: Cyclists M = 14 (EG = 7; CG = 7 A: 24.8 ± 6.7 years | I: EG: BA + training CG: PL + training D: PO: TTT SO: [La] | TTT 4 km and 10 km cycle ergometer | Oral suppl of 28 d Total dose 28 d: 179.2 g EG: BA 6.4 g/day (4 dose of 1.6 g, with every meal) CG: dextrose monohydrate | 4 km Time (s) post test: EG = 356.6 vs. CG = 357.8; p > 0.05 [La] (mmol·L−1) post test: EG = 15.3 vs. CG = 15.4; p > 0.05 10 km Time (s) post test: EG = 938.1 vs. CG = 929.9: p > 0.05 [La] (mmol·L−1) post test: EG = 11.0 vs. CG = 12.9; p > 0.05 The authors declared paresthesia: yes | 4 km ↔ 10 km ↔ |
Bellinger et al. [44] | To investigate the effects of BA suppl only, and in combination with sprint-interval training, on training intensity, and energy provision and performance during exhaustive supramaximal-intensity cycling and a 4 and 10 km time trial. | C/A: Cyclists M = 14 (EG = 7; CG = 7) A: 25.4 ± 7.2 years | I: EG: BA + training CG: PL + training D: PO: TTT | TTT 4 km and 10 km cycle ergometer | Oral suppl of 9 w Total dose 9 w: 221.2 g EG: BA 6.4 g/day for 4 w (4 doses of 1.6 g, w/every meal) + BA 1.2 g/day for 5 w (3 doses of 400 mg, every 3 to 4 h) CG: dextrose monohydrate | 4 km Time (s) post test: EG = 339.7 vs. CG = 350.1; p > 0.05 10 km Time (s) post test: EG = 918.5 vs. CG = 916.6; p > 0.05 The authors declared paresthesia: no | 4 km ↔ 10 km ↔ |
Chung et al. [35] | To investigate whether BA suppl can increase muscle CA stores in endurance-trained athletes, and whether CA loading can improve their endurance performance. | C/A: Cyclists and triathletes M = 27 (EG = 14; CG = 13) A: 30.9 ± 7.9 years | I: EG: BA + training CG: PL + training D: PO: LTT SO: [La], RPE, HR | LTT incremental cycle ergometer (from 50 W, ≥60 rpm until exhaustion) | Oral suppl of 6 w Total dose 6 w 268.8 g EG: BA 6.4 g/day (4 doses of 1.6 g, with every meal) CG: maltodextrin | Time (s) post test: EG = 3696 vs. CG = 3780; p > 0.05 [La] (mmol·L−1) post test: EG = 9.7 vs. CG = 7.3; p > 0.05 RPE (6–20) post test: EG = 19.0 vs. CG = 18.8; p > 0.05 HR (bpm) post test: EG = 181 vs. CG = 180; p > 0.05 The authors declared paresthesia: no | ↔ |
Cochran et al. [45] | To increase skeletal-muscle CA and augment muscle buffering capacity during a 6 week sprint interval training intervention. | PA: Healthy subjects M = 24 (EG = 12; CG = 12) A: 22.5 ± 2.0 years | I: EG: BA + training CG: PL + training D: PO: TTT SO: VO2max | TTT 250 KJ cycle ergometer | Oral suppl of 10 w Total dose 10 w: 224 g EG: BA 3.2 g/day (2 doses of 1.6 g, every 12 h) CG: dextrose | Time (s) post test: EG = 1130 vs. CG = 1125; p > 0.05 VO2max (mL O2·kg−1·min−1) post test: EG = 52.2 vs. CG = 55.4; p > 0.05 The authors declared paresthesia: no | ↔ |
Ducker et al. [46] | To assess if beta-alanine suppl could improve 2000 m rowing-ergometer performance in well-trained male rowers. | C/A: Rowers M = 16 (EG = 7; CG = 9) A: 26.0 ± 9.0 years | I: EG: BA + training CG: PL + training D: PO: TTT SO: [La] | TTT 2000 m rowing ergometer | Oral suppl of 28 d Total dose 28 d: ~ 168 a 196 g (80 mg·kg−1·d−1) EG: BA ~ 6–7 g/day (4 doses of 1.5–1.75 g, with every meal) CG: glucose | Time (s) post test: EG = 391.0 vs. CG = 393.4; p > 0.05 [La] (mmol·L−1) post test: EG = 12.5 vs. CG = 12.4; p > 0.05 The authors declared paresthesia: no | ↔ |
Furst et al. [49] | To investigate the effect of BA suppl on exercise endurance and executive function in a middle-aged human population. | N/T: Healthy subjects M = 8; F = 4 (EG =7; CG = 5) A: 60.5 ± 8.6 years | I: EG: BA + training CG: PL + training D: PO: LTT SO: [La] | LTT at 70% VO2peak cycle ergometer | Oral suppl of 28 d Total dose 28 d: 67.2 g EG: BA 2.4 g/day (3 doses of 800 mg, with every meal) CG: microcrystalline cellulose | Time (s) post test: EG = 876 vs. CG = 522; p > 0.05 [La] (mmol·L−1) post test: EG = 6.6 vs. CG = 4.2; p > 0.05 The authors declared paresthesia: no | ↔ |
Ghiasvand et al. [50] | To assess the effects of alanine suppl on VO2max, time to exhaustion, and lactate concentrations in physical education male students. | RA: Healthy college students M = 39 (EG = 20; CG = 19) A: 21.5 ± 1.1 years | I: EG: BA + training CG: PL + training D: PO: LTT SO: VO2max, [La] | LTT incremental cycle ergometer (from 30 W, ≥70 rpm to exhaustion) | Oral suppl of 6 w Total dose 6 w: 84 g EG: BA 2 g/day (5 doses of 400 mg, with every meal) CG: dextrose | Time (s) post test: EG = 992.4 vs. CG = 926.5; p: < 0.05 VO2max (L O2·min−1) post test: EG = 2.79 vs. CG = 2.81; p < 0.05 [La] (mg·dL−1) post test: EG = 27.9 vs. CG = 36.0; p < 0.05 The authors declared paresthesia: no | ↑ |
Greer et al. [51] | To determine the effect of 30 days of BA suppl on peak aerobic power and ventilatory threshold in aerobically fit males. | C/A: Aerobically fit males M = 14 (EG = 7; CG = 7) A: 28.8 ± 9.8 years | I: EG: BA + training CG: PL + training D: PO: LTT SO: VO2max | LTT cycle ergometer | Oral suppl of 30 d Total dose 30 d: 159 g EG: BA 3 g/day for 7 d (2 doses of 1.5 g, every 12 h) + BA 6 g/day for 23 d (4 doses of 1.5 g, with every meal) CG: maltodextrin | Time (s) post test: EG = 1304 vs. CG = 1125; p > 0.05 VO2max (L O2·min−1) post test: EG = 4.14 vs. CG = 3.97; p > 0.05 The authors declared paresthesia: yes | ↔ |
Hobson et al. [47] | To examine the effect of BA only and BA with sodium bicarbonate suppl on 2000 m rowing performance. | C/A: Rowers M = 20 (EG = 10; CG = 10) A: 23.0 ± 4.0 years | I: EG: BA + training CG: PL + training D: PO: TTT SO: [La] | TTT 2000 m rowing ergometer | Oral suppl of 30 d Total dose 30 d: 192 g EG: BA 6.4 g/day (4 doses of 1.6 g, every 3–4 h) CG: maltodextrin | Time (s) post test: EG = 410.3 vs. CG = 416.4; BA probability on PL: 96% effect (+) [La] (mmol·L−1) post test: EG = 14.7 vs. CG = 14.5; p > 0.05 The authors declared paresthesia: no | ↑ |
Kresta et al. [5] | To examine the short-term and chronic effects of BA suppl with and without creatine monohydrate on body composition, aerobic, and anaerobic exercise performance and muscle CA and creatine levels in college-aged recreationally active females. | FA: Healthy college students F = 15 (EG = 8; CG = 7) A: 21.5 ± 2.8 years | I: EG: BA + training CG: PL + training D: PO: LTT SO: VO2max | LTT incremental cycle ergometer (from 50 W, ≥70 rpm to exhaustion) | Oral suppl of 28 d Total dose 28 d: ~ 170.8 g (0.1 g·kg−1·d−1) EG: BA ~ 6.1 g/day (around 4 doses of 800 mg, every 4 h) CG: dextrose and maltodextrin | Time (s) post test: EG = 1293 vs. CG = 1083; p > 0.05 VO2max (mL O2·kg−1·min−1) post test: EG = 41.53 vs. CG = 37.90; p > 0.05 The authors declared paresthesia: no | ↔ |
Outlaw et al. [52] | To evaluate the cumulative effect of resistance training and BA suppl on aerobic and anaerobic performance markers, as well as body composition, in collegiate females. | S/E: Untrained collegiate females F = 15 (EG = 7; CG = 8) A: 21.0 ± 2.2 years | I: EG: BA + training CG: PL + training D: PO: LTT SO: VO2max | LTT treadmill | Oral suppl of 8 w Total dose 8 w: 108.8 g (32 doses) EG: BA 3.4 g/day (1 single dose before training) CG: maltodextrin | Time (s) post test: EG = 629.1 vs. CG = 591.1; p > 0.05 VO2max (mL O2·kg−1·min−1) post test: EG = 41.2 vs. CG = 38.6; p > 0.05 The authors declared paresthesia: no | ↔ |
Santana et al. [48] | To investigate the effects of BA suppl on a 10 km running time trial and lactate concentration in physically active adults. | PA: Healthy subjects M = 16 (EG = 8; CG = 8) A: 29.4 ± 3.9 years | I: EG: BA + training CG: PL + training D: PO: TTT SO: [La] | TTT 10 km treadmill | Oral suppl of 23 d Total dose 23 d: 115 g EG: BA 5 g/day (around 3 doses of 1.6 g, every 3 h) CG: resistant starch | Time (s) post test: EG = 3210 vs. CG = 3480; p < 0.05 [La] (mmol·L−1) post test: EG = 6.8 vs. CG = 10.8; p < 0.05 The authors declared paresthesia: no | ↑ |
Smith et al. [22] | To evaluate the effects of 28 days of BA suppl on markers of oxidative stress. | RA: Healthy women F = 24 (EG = 13; CG = 11) A: 21.7 ± 2.1 years | I: EG: BA + training CG: PL + training D: PO: LTT SO: VO2max | LTT incremental in treadmill (from 10 km∙h−1 to exhaustion) | Oral suppl of 28 d Total dose 28 d: 134.4 g EG: BA 4.8 g/day (3 doses of 1.6 g, in intervals) CG: maltodextrin | Time (s) post test: EG = 405 vs. CG = 388; p > 0.05 VO2max (L O2·min−1) post test: EG = 2.71 vs. CG = 2.64; p > 0.05 The authors declared paresthesia: yes | ↔ |
Smith-Ryan et al. [21] | To evaluate the effects of BA suppl on high-intensity running performance and critical velocity anaerobic running capacity. | RA: Healthy subjects M and F = 50 (EG = 26; CG = 24) A: 21.9 ± 2.7 years | I: EG: BA + training CG: PL + training D: PO: LTT SO: [La] | LTT at 90% Vmax treadmill | Oral suppl of 28 d Total dose 28 d: 134.4 g EG: BA 4.8 g/day (3 doses of 1.6 g, in intervals) CG: maltodextrin | Women Time (s) post test: EG = 313.8 vs. CG = 240.5; p > 0.05 [La] (mmol·L−1) post test: EG = 13.15 vs. CG = 13.8; p > 0.05 Men Time (s) post test: EG = 317.0 vs. CG = 322.6; p > 0.05 [La] (mmol·L−1) post test: EG = 15.7 vs. CG = 13.8; p > 0.05 The authors declared paresthesia: yes | ↔ |
Smith-Ryan et al. [53] | To determine the effect of 28 days of BA suppl on work physical capacity test in heart rate threshold. | FA: Healthy subjects M and F = 30 (EG = 15; CG = 15) A: 21.0 ± 2.1 years | I: EG: BA + training CG: PL + training D: PO: LTT SO: VO2max | LTT incremental cycle ergometer (from 20 W, ≥60 rpm until exhaustion) | Oral suppl of 28 d Total dose 28 d: 1792 g EG: BA 6.4 g/day (4 dose of 1.6 g, every 3–4 h) CG: maltodextrin | Time (s) post test: EG = 690.5 vs. CG = 703.6; p > 0.05 VO2max (mL O2·kg−1·min−1) post test: EG = 39.1 vs. CG = 43.4; p > 0.05 The authors declared paresthesia: no | ↔ |
Acute effect of BA supplementation on aerobic–anaerobic transition zone | |||||||
Huerta et al. [17] | To determine the acute effect of BA suppl on a limited time test at maximum aerobic speed on endurance athletes. | C/A: High-level athletes M and F = 7 (EG = 7; CG = 7) A: 24.2 ± 4.4 years | I: EG: BA + training CG: PL + training D: PO: TTE (LDT and LTT) SO: [La], RPE, HR | TTE (LTT and LDT) at maximum aerobic speed in athletic track | Oral suppl Total dose: 30 mg·kg−1 body mass EG: BA from 1.5–2.1 g/day 60 min before TTE (LDT and LTT) CG: simple carbohydrates | Time (s): EG = 366.5 vs. CG = 326.0; p < 0.05 Distance (m): EG = 1828.6 vs. CG = 1651.4; p > 0.05 [La] (mmol·L−1): EG = 14.80 vs. CG = 13.84; p > 0.05 RPE (1–10): EG = 8.28 vs. CG = 7.60; p > 0.05 HR (bpm): EG = 185.4 vs. CG = 178.8; p > 0.05 The authors declared paresthesia: no | Time ↑ Distance ↔ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huerta Ojeda, Á.; Tapia Cerda, C.; Poblete Salvatierra, M.F.; Barahona-Fuentes, G.; Jorquera Aguilera, C. Effects of Beta-Alanine Supplementation on Physical Performance in Aerobic–Anaerobic Transition Zones: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2490. https://doi.org/10.3390/nu12092490
Huerta Ojeda Á, Tapia Cerda C, Poblete Salvatierra MF, Barahona-Fuentes G, Jorquera Aguilera C. Effects of Beta-Alanine Supplementation on Physical Performance in Aerobic–Anaerobic Transition Zones: A Systematic Review and Meta-Analysis. Nutrients. 2020; 12(9):2490. https://doi.org/10.3390/nu12092490
Chicago/Turabian StyleHuerta Ojeda, Álvaro, Camila Tapia Cerda, María Fernanda Poblete Salvatierra, Guillermo Barahona-Fuentes, and Carlos Jorquera Aguilera. 2020. "Effects of Beta-Alanine Supplementation on Physical Performance in Aerobic–Anaerobic Transition Zones: A Systematic Review and Meta-Analysis" Nutrients 12, no. 9: 2490. https://doi.org/10.3390/nu12092490
APA StyleHuerta Ojeda, Á., Tapia Cerda, C., Poblete Salvatierra, M. F., Barahona-Fuentes, G., & Jorquera Aguilera, C. (2020). Effects of Beta-Alanine Supplementation on Physical Performance in Aerobic–Anaerobic Transition Zones: A Systematic Review and Meta-Analysis. Nutrients, 12(9), 2490. https://doi.org/10.3390/nu12092490