Understanding the Mechanisms of Diet and Outcomes in Colon, Prostate, and Breast Cancer; Malignant Gliomas; and Cancer Patients on Immunotherapy
Abstract
1. Introduction
2. Methods
3. Colorectal Cancer
4. Prostate Cancer
5. Malignant Gliomas
6. Breast Cancer
7. Immunotherapy
8. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Ohlan, R. Dairy Economy of India: Structural Changes in Consumption and Production. South Asia Res. 2016, 36, 241–260. [Google Scholar] [CrossRef]
- Ferlay, J.S.H.R.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11; International Agency for Research on Cancer: Lyon, France, 2012. [Google Scholar]
- Nosho, K.; Sukawa, Y.; Adachi, Y.; Ito, M.; Mitsuhashi, K.; Kurihara, H.; Kanno, S.; Yamamoto, I.; Ishigami, K.; Igarashi, H.; et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J. Gastroenterol. 2016, 22, 557–566. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, S.J.; Li, J.V.; Lahti, L.; Ou, J.; Carbonero, F.; Mohammed, K.; Posma, J.M.; Kinross, J.; Wahl, E.; Ruder, E.; et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 2015, 6, 6342. [Google Scholar] [CrossRef] [PubMed]
- Segain, J.P.; De La Blétiere, D.R.; Bourreille, A.; Leray, V.; Gervois, N.; Rosales, C.; Ferrier, L.; Bonnet, C.; Blottiere, H.M.; Galmiche, J.P. Butyrate inhibits inflammatory responses through NFkappaB inhibition: Implications for Crohn’s disease. Gut 2000, 47, 397–403. [Google Scholar] [CrossRef]
- Borges-Canha, M.; Portela-Cidade, J.P.; Dinis-Ribeiro, M.; Leite-Moreira, A.F.; Pimentel-Nunes, P. Role of colonic microbiota in colorectal carcinogenesis: A systematic review. Rev. Esp. Enferm. Dig. 2015, 107, 659–671. [Google Scholar] [CrossRef]
- Van Blarigan, E.L.; Fuchs, C.S.; Niedzwiecki, D.; Zhang, S.; Saltz, L.B.; Mayer, R.J.; Mowat, R.B.; Whittom, R.; Hantel, A.; Benson, A.; et al. Association of Survival With Adherence to the American Cancer Society Nutrition and Physical Activity Guidelines for Cancer Survivors After Colon Cancer Diagnosis: The CALGB 89803/Alliance Trial. JAMA Oncol. 2018, 4, 783–790. [Google Scholar] [CrossRef]
- Soret, R.; Chevalier, J.; De Coppet, P.; Poupeau, G.; Derkinderen, P.; Segain, J.P.; Neunlist, M. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 2010, 138, 1772–1782. [Google Scholar] [CrossRef]
- Yue, Y.; Ye, K.; Lu, J.; Wang, X.; Zhang, S.; Liu, L.; Yang, B.; Nassar, K.; Xu, X.; Pang, X.; et al. Probiotic strain Lactobacillus plantarum YYC-3 prevents colon cancer in mice by regulating the tumour microenvironment. Biomed Pharm. 2020, 127, 110159. [Google Scholar] [CrossRef]
- Escamilla, J.; Lane, M.A.; Maitin, V. Cell-Free Supernatants from Probiotic Lactobacillus casei and Lactobacillus rhamnosus GG Decrease Colon Cancer Cell Invasion In Vitro. Nutr. Cancer 2012, 64, 871–878. [Google Scholar] [CrossRef]
- Cipolla, B.G.; Mandron, E.; Lefort, J.M.; Coadou, Y.; Della Negra, E.; Corbel, L.; Le Scodan, R.; Azzouzi, A.R.; Mottet, N. Effect of Sulforaphane in Men with Biochemical Recurrence after Radical Prostatectomy. Cancer Prev. Res. (Phila) 2015, 8, 712–719. [Google Scholar] [CrossRef]
- Alumkal, J.J.; Slottke, R.; Schwartzman, J.; Cherala, G.; Munar, M.; Graff, J.N.; Beer, T.M.; Ryan, C.W.; Koop, D.R.; Gibbs, A.; et al. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Invest. New Drugs 2015, 33, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Aronson, W.J.; Tymchuk, C.N.; Elashoff, R.M.; McBride, W.H.; McLean, C.; Wang, H.; Heber, D. Decreased growth of human prostate LNCaP tumors in SCID mice fed a low-fat, soy protein diet with isoflavones. Nutr. Cancer 1999, 35, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.H.; Barnard, R.J.; Anton, T.; Tran, C.; Elashoff, D.; Heber, D.; Freedland, S.J.; Aronson, W.J. Effect of isocaloric low-fat diet on prostate cancer xenograft progression to androgen independence. Cancer Res. 2004, 64, 1252–1254. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Corr, J.G.; Thaler, H.T.; Tao, Y.; Fair, W.R.; Heston, W.D. Decreased growth of established human prostate LNCaP tumors in nude mice fed a low-fat diet. J. Natl. Cancer Inst. (Bethesda) 1995, 87, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Caso, J.; Masko, E.M.; Ii, J.A.T.; Poulton, S.H.; Dewhirst, M.; Pizzo, S.V.; Freedland, S.J. The effect of carbohydrate restriction on prostate cancer tumor growth in a castrate mouse xenograft model. Prostate 2013, 73, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Freedland, S.J.; Mavropoulos, J.; Wang, A.; Darshan, M.; Demark-Wahnefried, W.; Aronson, W.J.; Cohen, P.; Hwang, D.; Peterson, B.; Fields, T.; et al. Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis. Prostate 2008, 68, 11–19. [Google Scholar] [CrossRef]
- Masko, E.M.; Thomas, J.A.; Antonelli, J.A.; Lloyd, J.C.; Phillips, T.E.; Poulton, S.H.; Dewhirst, M.W.; Pizzo, S.V.; Freedland, S.J. Low-carbohydrate diets and prostate cancer: How low is “low enough”? Cancer Prev. Res. (Phila) 2010, 3, 1124–1131. [Google Scholar] [CrossRef]
- Bagga, D.; Wang, L.; Farias-Eisner, R.; Glaspy, J.A.; Reddy, S.T. Differential effects of prostaglandin derived from ω-6 and ω-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc. Natl. Acad. Sci. USA 2003, 100, 1751–1756. [Google Scholar] [CrossRef]
- Nebeling, L.C.; Miraldi, F.; Shurin, S.B.; Lerner, E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: Two case reports. J. Am. Coll. Nutr. 1995, 14, 202–208. [Google Scholar] [CrossRef]
- Zuccoli, G.; Marcello, N.; Pisanello, A.; Servadei, F.; Vaccaro, S.; Mukherjee, P.; Seyfried, T.N. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutr. Metab. (Lond.) 2010, 7, 33. [Google Scholar] [CrossRef]
- Abdelwahab, M.G.; Fenton, K.E.; Preul, M.C.; Rho, J.M.; Lynch, A.; Stafford, P.; Scheck, A.C. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS ONE 2012, 7, e36197. [Google Scholar] [CrossRef] [PubMed]
- Stafford, P.; Abdelwahab, M.G.; Kim, D.Y.; Preul, M.C.; Rho, J.M.; Scheck, A.C. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr. Metab. (Lond.) 2010, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Thomson, C.A.; Rock, C.L.; Thompson, P.A.; Caan, B.J.; Cussler, E.; Flatt, S.W.; Pierce, J.P. Vegetable intake is associated with reduced breast cancer recurrence in tamoxifen users: A secondary analysis from the Women’s Healthy Eating and Living Study. Breast Cancer Res. Treat. 2011, 125, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Ghoncheh, M.; Pournamdar, Z.; Salehiniya, H. Incidence and Mortality and Epidemiology of Breast Cancer in the World. Asian Pac. J. Cancer Prev. 2016, 17, 43–46. [Google Scholar] [CrossRef]
- Thomson, C.A.; Ho, E.; Strom, M.B. Chemopreventive properties of 3,3′-diindolylmethane in breast cancer: Evidence from experimental and human studies. Nutr. Rev. 2016, 74, 432–443. [Google Scholar] [CrossRef]
- Saati, G.E.; Archer, M.C. Inhibition of fatty acid synthase and Sp1 expression by 3,3′-diindolylmethane in human breast cancer cells. Nutr. Cancer 2011, 63, 790–794. [Google Scholar] [CrossRef]
- Spencer, C.N.; Gopalakrishnan, V.; McQuade, J.; Andrews, M.C.; Helmink, B.; Khan, M.W.; Sirmans, E.; Haydu, L.; Cogdill, A.; Burton, E.; et al. The Gut Microbiome (GM) and Immunotherapy Response Are Influenced by Host Lifestyle Factors. Tumor. Biol. 2019. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef]
- Iida, N.; Dzutsev, A.; Stewart, C.A.; Smith, L.; Bouladoux, N.; Weingarten, R.A.; Molina, D.A.; Salcedo, R.; Back, T.; Cramer, S.; et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013, 342, 967–970. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef]
- Dixon, L.B.; Balder, H.F.; Virtanen, M.J.; Rashidkhani, B.; Männistö, S.; Krogh, V.; van Den Brandt, P.A.; Hartman, A.M.; Pietinen, P.; Tan, F.; et al. Dietary patterns associated with colon and rectal cancer: Results from the Dietary Patterns and Cancer (DIETSCAN) Project. Am. J. Clin. Nutr. 2004, 80, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Carter, J.; Harari, S.; Pei, Z. The interrelationships of the gut microbiome and inflammation in colorectal carcinogenesis. Clin. Lab. Med. 2014, 34, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Roediger, W.E. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 1982, 83, 424–429. [Google Scholar] [CrossRef]
- Schatoff, E.M.; Leach, B.I.; Dow, L.E. Wnt Signaling and Colorectal Cancer. Curr. Colorectal Cancer Rep. 2017, 13, 101–110. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA A Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, M.; Fujita, K.; Nonomura, N. Influence of Diet and Nutrition on Prostate Cancer. Int. J. Mol. Sci. 2020, 21, 1447. [Google Scholar] [CrossRef] [PubMed]
- Othón Serna Saldívar Sergio, R. Corn: Chemistry and Technology; Woodhead Publishing: Duxford, UK, 2019. [Google Scholar]
- Aronson, W.J.; Glaspy, J.A.; Reddy, S.T.; Reese, D.; Heber, D.; Bagga, D. Modulation of ω-3/ω-6 polyunsaturated ratios with dietary fish oils in men with prostate cancer. Urology 2001, 58, 283–288. [Google Scholar] [CrossRef]
- Tjandrawinata, R.R.; Dahiya, R.; Hughes-Fulford, M. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells. Br. J. Cancer 1997, 75, 1111–1118. [Google Scholar] [CrossRef]
- Ippolito, L.; Morandi, A.; Taddei, M.L.; Parri, M.; Comito, G.; Iscaro, A.; Raspollini, M.R.; Magherini, F.; Rapizzi, E.; Masquelier, J.; et al. Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene 2019, 38, 5339–5355. [Google Scholar] [CrossRef]
- Gunnell, D.; Oliver, S.E.; Peters, T.J.; Donovan, J.L.; Persad, R.; Maynard, M.; Gillatt, D.; Pearce, A.; Hamdy, F.C.; Neal, D.E.; et al. Are diet-prostate cancer associations mediated by the IGF axis? A cross-sectional analysis of diet, IGF-1 and IGFBP-3 in healthy middle-aged men. Br. J. Cancer. 2003, 88, 1682–1686. [Google Scholar] [CrossRef]
- Ali, O.; Cohen, P.; Lee, K.W. Epidemiology and biology of insulin-like growth factor binding protein-3 (IGFBP-3) as an anti-cancer molecule. Horm. Metab. Res. 2003, 35, 726–733. [Google Scholar] [PubMed]
- Ghazani, S.M.; Marangoni, A.G. Healthy Fats and Oils; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- U.S. Department of Agriculture, Agricultural Research Service. Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 21; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2008.
- Vanduchova, A.; Anzenbacher, P.; Anzenbacherova, E. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J. Med. Food. 2019, 22, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, M.K.; Lukas, R.V.; Chmura, S.; Yamini, B.; Lesniak, M.; Pytel, P. Molecular heterogeneity in glioblastoma: Therapeutic opportunities and challenges. Semin. Oncol. 2011, 38, 243–253. [Google Scholar] [CrossRef] [PubMed]
- John, A.P. Dysfunctional mitochondria, not oxygen insufficiency, cause cancer cells to produce inordinate amounts of lactic acid: The impact of this on the treatment of cancer. Med. Hypotheses 2001, 57, 429–431. [Google Scholar] [CrossRef]
- Roslin, M.; Henriksson, R.; Bergström, P.; Ungerstedt, U.; Bergenheim, A.T. Baseline levels of glucose metabolites, glutamate and glycerol in malignant glioma assessed by stereotactic microdialysis. J. Neurooncol. 2003, 61, 151–160. [Google Scholar] [CrossRef]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef]
- Longo, L.D.; Gheorghe, C.P.; Goyal, R. Dietary and Hypoxic Protocols That Alter Placental Gene Expression in Response to Maternal Stress. In The Guide to Investigation of Mouse Pregnancy; Academic Press: London, UK, 2014; pp. 761–762. [Google Scholar]
- Rinaldi, M.; Caffo, M.; Minutoli, L.; Marini, H.; Abbritti, R.V.; Squadrito, F.; Trichilo, V.; Valenti, A.; Barresi, V.; Altavilla, D.; et al. ROS and Brain Gliomas: An Overview of Potential and Innovative Therapeutic Strategies. Int. J. Mol, Sci. 2016, 17, 984. [Google Scholar] [CrossRef]
- World Health Organization. World Cancer Report 2014; World Health Organization: Geneva, Switzerland, 2014; Chapter 5.2; ISBN 978-92-832-0429-9. [Google Scholar]
- McNaughton, S.A.; Marks, G.C. Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br. J. Nutr. 2003, 90, 687–697. [Google Scholar] [CrossRef]
- Ahmad, A.; Kong, D.; Wang, Z.; Sarkar, S.H.; Banerjee, S.; Sarkar, F.H. Down-regulation of uPA and uPAR by 3,3′-diindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells. J. Cell Biochem. 2016, 117, 1959. [Google Scholar] [CrossRef]
- Bose, S.; Chandran, S.; Mirocha, J.M.; Bose, N. The Akt pathway in human breast cancer: A tissue-array-based analysis. Mod. Pathol. 2006, 19, 238–245. [Google Scholar] [CrossRef]
- Pierce, J.P.; Natarajan, L.; Caan, B.J.; Parker, B.A.; Greenberg, E.R.; Flatt, S.W.; Rock, C.L.; Kealey, S.; Al-Delaimy, W.K.; Bardwell, W.A.; et al. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: The Women’s Healthy Eating and Living (WHEL) randomized trial. JAMA 2007, 298, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, R.T.; Blackburn, G.L.; Thomson, C.A.; Nixon, D.W.; Shapiro, A.; Hoy, M.K.; Goodman, M.T.; Giuliano, A.E.; Karanja, N.; McAndrew, P.; et al. Dietary fat reduction and breast cancer outcome: Interim efficacy results from the Women’s Intervention Nutrition Study. J. Natl. Cancer Inst. 2006, 98, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Nechuta, S.; Caan, B.J.; Chen, W.Y.; Kwan, M.L.; Lu, W.; Cai, H.; Poole, E.M.; Flatt, S.W.; Zheng, W.; Pierce, J.P.; et al. Postdiagnosis cruciferous vegetable consumption and breast cancer outcomes: A report from the After Breast Cancer Pooling Project. Cancer Epidemiol. Prev. Biomark. 2013, 22, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002, 3, 991–998. [Google Scholar] [CrossRef]
- Patel, S.P.; Othus, M.; Chae, Y.K.; Giles, F.J.; Hansel, D.E.; Singh, P.P.; Fontaine, A.; Shah, M.H.; Kasi, A.; Al Baghdadi, T.; et al. A Phase II Basket Trial of Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors (DART SWOG 1609) in Patients with Nonpancreatic Neuroendocrine Tumors. Clin. Cancer Res. 2020, 26, 2290–2296. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Chikuma, S.; Iwai, Y.; Fagarasan, S.; Honjo, T. A rheostat for immune responses: The unique properties of PD-1 and their advantages for clinical application. Nat. Immunol. 2013, 14, 1212–1218. [Google Scholar] [CrossRef]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef]
- Bordonaro, M.; Lazarova, D.L.; Sartorelli, A.C. Butyrate and Wnt signaling: A possible solution to the puzzle of dietary fiber and colon cancer risk? Cell Cycle 2008, 7, 1178–1183. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, T.; Tu, X.; Huang, Y.; Zhang, H.; Tan, D.; Jiang, W.; Cai, S.; Zhao, P.; Song, R.; et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J. Immunother. Cancer 2019, 7, 193. [Google Scholar] [CrossRef]
- Maurer, G.D.; Brucker, D.P.; Bähr, O.; Harter, P.N.; Hattingen, E.; Walenta, S.; Mueller-Klieser, W.; Steinbach, J.P.; Rieger, J. Differential utilization of ketone bodies by neurons and glioma cell lines: A rationale for ketogenic diet as experimental glioma therapy. BMC Cancer 2011, 11, 315. [Google Scholar] [CrossRef]
Study | Design | Primary endpoint | Results | Dietary Recommendations | |
---|---|---|---|---|---|
Colon cancer | O’Keefe et al. [4] | Clinical; 40 patients | Effect of high-fiber diet on microbiota | High-fiber diet promoted diversification of gut flora, decreased Ki67 expression, and decreased macrophage and lymphocyte presence in colonic tissue | 1. Plant-based diet with fiber intake approaching 50g/d |
Segain et al. [5] | Clinical; 17 patients | Effect of butyrate enemas on colonic inflammation | SCFAs decreased TNF production and pro-inflammatory cytokine mRNA expression | ||
Borges-Canha et al. [6] | Clinical; systematic review of 31 studies | Link between microbiota and colon cancer | Microbiota dysbiosis was suggestive of colorectal carcinogenesis | ||
Van Blarigan et al. [7] | Clinical; prospective cohort; 992 patients | Effect of fruit and vegetable diet, healthy body weight, and increased physical activity on survival in stage 3 colon cancer | Plant-based diet, physical activity, and healthy body weight was associated with longer survival | ||
Soret et al. [8] | Preclinical; rat model | Effect of SCFAs on enteric nervous system | SCFAs increased cholinergic-mediated muscle contractile response | ||
Yue et al. [9] | Preclinical; mouse model | Effect of Lactobacillus plantarum on colon cancer progression and locoregional inflammation | L. plantarum inhibited tumor development and locoregional inflammation | ||
Escamilla et al. [10] | Preclinical; in vitro | Effect of Lactobacillus spp. on colon cancer invasion | Lactobacillus supernatants inhibited metastatic ability | ||
Prostate cancer | Cipolla et al. [11] | Clinical; double-blind randomized controlled trial; 78 patients | Effect of sulforaphane intake on PSA doubling time | Intake of sulforaphane was associated with 86% longer doubling time | 1. Plant-based diet with high cruciferous vegetable intake, particularly vegetables containing sulforaphanes 2. Low-carbohydrate, ketogenic diet with high omega-3 intake |
Alumkal et al. [12] | Clinical; phase 2; 20 patients | Effect of sulforaphane intake on PSA doubling time | Intake of sulforaphane was associated with approximately 50% longer doubling time | ||
Aronson et al. [13] | Preclinical; mouse model | Effect of fat intake on prostate cancer tumor progression | Fat-restricted diet slowed tumor progression | ||
Ngo et al. [14] | Preclinical; mouse model | Effect of fat intake on prostate cancer tumor progression | Fat-restricted diet slowed tumor progression | ||
Wang et al. [15] | Preclinical; mouse model | Effect of fat intake on prostate cancer tumor progression | Fat-restricted diet slowed tumor progression | ||
Caso et al. [16] | Preclinical; mouse model | Effect of carbohydrate restriction on prostate cancer tumor progression and insulin axis | Carhobhydrate restriction slowed tumor progression and decreased insulin levels; ratio of IGF to IGFBP lowered however not statistically significant | ||
Freedland et al. [17] | Preclinical; mouse model | Effect of NCKD on prostate cancer tumor progression and insulin axis | NCKD decreased tumor progression compared to western diet, lowered insulin and IGF levels, and increased expression of IGFBP | ||
Masko et al. [18] | Preclinical; mouse model | Effect of carbohydrate restriction on prostate tumor progression and insulin axis | Carhobhydrate restriction slowed tumor progression and decreased insulin levels; ratio of IGF to IGFBP lowered however not statistically significant | ||
Bagga et al. [19] | Preclinical; in vitro | Effect of omega-6 on production of inflammatory cytokines | Excess omega-6 promoted increased IL-6 production and mitogenic activity of fibroblasts; omega-3 attenuated this response | ||
Malignant gliomas | Nebeling et al. [20] | Clinical; case report; 2 patients | -- | A ketosis diet resulted in 21% decrease in PET-avidity; 1 patient maintained on ketosis diet for 12 months and did not experience disease progression | 1. Ketogenic diet |
Zuccoli et al. [21] | Clinical; case report; 1 patient | -- | Ketogenic diet with fat to carbohydrate ratio of 4:1 (as percentage of calories) resulted in PET-negative disease | ||
Abdelwahab et al. [22] | Preclinical; mouse model | Effect of ketogenic diet on radiation therapy for malignant glioma | Ketogenic diet enhanced anti-tumor effects of radiation | ||
Stafford et al. [23] | Preclinical; mouse model | Effect of ketogenic diet on malignant glioma progression | Ketogenic diet slowed tumor progression and decreased reactive oxygen species production | ||
Breast cancer | WHEL study | Clinical; randomized controlled trial; 2,448 patients | Role of dietary pattern in prognosis | No statistical difference in breast cancer recurrence, improvement in prognosis, or all-cause mortality with adherence to plant-based diet | 1. Plant-based diet with high cruciferous vegetable intake, particularly vegetables containing sulforaphanes |
Thomson et al. [24] | Clinical; sub-group analysis of WHEL study | -- | Women with hormone receptor-positive breast cancer on tamoxifen who adhere to plant-based diet with high cruciferous vegetable intake may have benefit in breast cancer recurrence | ||
WINS study | Clinical; randomized controlled trial; 2,437 patients | Effect of low-fat diet on early stage breast cancer | Adhering to a low-fat diet post-treatment resulted in lower recurrence rates | ||
After Breast Cancer Pooling Project | Clinical; prospective cohorts; 18,314 patients (84% stage 1-2 breast cancer) | Effect of physical activity, dietary factors, and quality of life in breast cancer prognosis | Vegetable intake was not associated with breast cancer outcomes | ||
Ghoncheh et al. [25] | Clinical; retrospective case-control | Risk factors for breast cancer | Diet rich in processed meats and refined carbohydrates was a risk factor for breast cancer | ||
Thomson et al. [26] | Preclinical; review article; animal model and in vitro | Effect of DIM, a major bioactive compound in cruciferous vegetables, on breast cancer growth | DIM inhibited breast cancer tumor growth by downregulating UPA, which controls VEGF and MMP-9 production; DIM reduced cytokine receptor CXCR4 and CXCL12, which are signaling receptors associated with metastatic growth | ||
Saati et al. [27] | Preclinical; in vitro | Effect of DIM on breast cancer cell growth | DIM inhibited breast cancer line growth likely by inhibiting expression of transcription factor Sp1 | ||
Immunotherapy | Spencer et al. [28] | Clinical; prospective cohort; 113 patients | Relationship between lifestyle factors and response in melanoma patients undergoing immunotherapy | Patients with high-fiber diet noted to have highest odds of response to immunotherapy | 1. High-fiber diet |
Gopalakrishnan et al. [29] | Clinical; prospective cohort; 112 patients | Relationship between gut microbiome and response to immunotherapy in metastatic melanoma patients | Patients with abundance of Clostridiales were noted to have higher response to immunotherapy, while non-responders were predominantly rich in Bacteroidales | ||
Iida et al. [30] | Preclinical; mouse model | Effect of modulating tumor micro-environment on IL-10 immunotherapy response | Antibiotic treatment induced gut microbiome changes, attenuated IL-10 response |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mann, S., DO; Sidhu, M., DO; Gowin, K., DO. Understanding the Mechanisms of Diet and Outcomes in Colon, Prostate, and Breast Cancer; Malignant Gliomas; and Cancer Patients on Immunotherapy. Nutrients 2020, 12, 2226. https://doi.org/10.3390/nu12082226
Mann S DO, Sidhu M DO, Gowin K DO. Understanding the Mechanisms of Diet and Outcomes in Colon, Prostate, and Breast Cancer; Malignant Gliomas; and Cancer Patients on Immunotherapy. Nutrients. 2020; 12(8):2226. https://doi.org/10.3390/nu12082226
Chicago/Turabian StyleMann, Shivtaj, DO, Manreet Sidhu, DO, and Krisstina Gowin, DO. 2020. "Understanding the Mechanisms of Diet and Outcomes in Colon, Prostate, and Breast Cancer; Malignant Gliomas; and Cancer Patients on Immunotherapy" Nutrients 12, no. 8: 2226. https://doi.org/10.3390/nu12082226
APA StyleMann, S., DO, Sidhu, M., DO, & Gowin, K., DO. (2020). Understanding the Mechanisms of Diet and Outcomes in Colon, Prostate, and Breast Cancer; Malignant Gliomas; and Cancer Patients on Immunotherapy. Nutrients, 12(8), 2226. https://doi.org/10.3390/nu12082226