Association between Geriatric Nutrition Risk Index and Skeletal Muscle Mass Index with Bone Mineral Density in Post-Menopausal Women Who Have Undergone Total Thyroidectomy
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Study Population
2.2. Biochemical Measurements
2.3. BMD and Body Composition Measurements
2.4. Determinants of Skeletal Muscle Mass Index (ASM/ht2)
2.5. Calculation of the GNRI
2.6. Statistical Analysis
3. Results
3.1. Determinants of BMD in the Study Patients
3.2. Determinants of T-Score in the Study Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Institute of Health. Consensus Development Panel on Osteoporosis Prevention, Diagnosis and Therapy. Osteoporosis: Prevention, diagnosis, and therapy. JAMA 2001, 285, 785–795. [Google Scholar]
- Lin, Y.C.; Pan, W.H. Bone mineral density in adults in Taiwan: Results of the nutrition and health survey in Taiwan 2005–2008 (nahsit 2005–2008). Asia Pac. J. Clin. Nutr. 2011, 20, 283–291. [Google Scholar] [PubMed]
- Ji, M.X.; Yu, Q. Primary osteoporosis in postmenopausal women. Chronic Dis. Transl. Med. 2015, 1, 9–13. [Google Scholar] [PubMed] [Green Version]
- Singer, A.; Exuzides, A.; Spangler, L.; O’Malley, C.; Colby, C.; Johnston, K.; Agodoa, I.; Baker, J.; Kagan, R. Burden of illness for osteoporotic fractures compared with other serious diseases among postmenopausal women in the united states. Mayo Clin. Proc. 2015, 90, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; Berger, P.; Kruse, K.; Borner, W. Effect of calcitonin deficiency on bone density and bone turnover in totally thyroidectomized patients. J. Endocrinol. Invest. 1991, 14, 935–942. [Google Scholar] [CrossRef]
- Wang, L.Y.; Smith, A.W.; Palmer, F.L.; Tuttle, R.M.; Mahrous, A.; Nixon, I.J.; Patel, S.G.; Ganly, I.; Fagin, J.A.; Boucai, L. Thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ata low- and intermediate-risk patients with differentiated thyroid carcinoma. Thyroid 2015, 25, 300–307. [Google Scholar] [CrossRef]
- Moon, J.H.; Jung, K.Y.; Kim, K.M.; Choi, S.H.; Lim, S.; Park, Y.J.; Park, D.J.; Jang, H.C. The effect of thyroid stimulating hormone suppressive therapy on bone geometry in the hip area of patients with differentiated thyroid carcinoma. Bone 2016, 83, 104–110. [Google Scholar] [CrossRef]
- Papaleontiou, M.; Hawley, S.T.; Haymart, M.R. Effect of thyrotropin suppression therapy on bone in thyroid cancer patients. Oncologist 2016, 21, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Sugitani, I.; Fujimoto, Y. Effect of postoperative thyrotropin suppressive therapy on bone mineral density in patients with papillary thyroid carcinoma: A prospective controlled study. Surgery 2011, 150, 1250–1257. [Google Scholar] [CrossRef]
- Di Monaco, M.; Vallero, F.; Di Monaco, R.; Tappero, R. Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch. Gerontol. Geriatr. 2011, 52, 71–74. [Google Scholar] [CrossRef]
- Jeong, J.U.; Lee, H.K.; Kim, Y.J.; Kim, J.S.; Kang, S.S.; Kim, S.B. Nutritional markers, not markers of bone turnover, are related predictors of bone mineral density in chronic peritoneal dialysis patients. Clin. Nephrol. 2010, 74, 336–342. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, J.H.; Bergman, N.; Carrera-Bastos, P.; Fontes-Villalba, M.; DiNicolantonio, J.J.; Cordain, L. Nutritional strategies for skeletal and cardiovascular health: Hard bones, soft arteries, rather than vice versa. Open Heart 2016, 3, e000325. [Google Scholar] [CrossRef] [Green Version]
- Stratton, R.J.; Hackston, A.; Longmore, D.; Dixon, R.; Price, S.; Stroud, M.; King, C.; Elia, M. Malnutrition in hospital outpatients and inpatients: Prevalence, concurrent validity and ease of use of the ‛malnutrition universal screening tool’ (‛must’) for adults. Br. J. Nutr. 2004, 92, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z.; Ad Hoc, E.W.G. Nutritional risk screening (nrs 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef]
- Ferguson, M.; Capra, S.; Bauer, J.; Banks, M. Development of a valid and reliable malnutrition screening tool for adult acute hospital patients. Nutrition 1999, 15, 458–464. [Google Scholar] [CrossRef]
- Rubenstein, L.Z.; Harker, J.O.; Salva, A.; Guigoz, Y.; Vellas, B. Screening for undernutrition in geriatric practice: Developing the short-form mini-nutritional assessment (mna-sf). J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M366–M372. [Google Scholar] [CrossRef] [Green Version]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric nutritional risk index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Honda, Y.; Nagai, T.; Iwakami, N.; Sugano, Y.; Honda, S.; Okada, A.; Asaumi, Y.; Aiba, T.; Noguchi, T.; Kusano, K.; et al. Usefulness of geriatric nutritional risk index for assessing nutritional status and its prognostic impact in patients aged ≥65 years with acute heart failure. Am. J. Cardiol. 2016, 118, 550–555. [Google Scholar] [CrossRef]
- Panichi, V.; Cupisti, A.; Rosati, A.; Di Giorgio, A.; Scatena, A.; Menconi, O.; Bozzoli, L.; Bottai, A. Geriatric nutritional risk index is a strong predictor of mortality in hemodialysis patients: Data from the riscavid cohort. J. Nephrol. 2014, 27, 193–201. [Google Scholar] [CrossRef]
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.Y.; Chen, L.Y.; Hsu, P.S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian working group for sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European working group on sarcopenia in older people. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The fnih sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Byeon, C.H.; Kang, K.Y.; Kang, S.H.; Bae, E.J. Sarcopenia is associated with Framingham risk score in the Korean population: Korean national health and nutrition examination survey (knhanes) 2010–2011. J. Geriatr. Cardiol. 2015, 12, 366–372. [Google Scholar] [PubMed]
- Han, D.S.; Chang, K.V.; Li, C.M.; Lin, Y.H.; Kao, T.W.; Tsai, K.S.; Wang, T.G.; Yang, W.S. Skeletal muscle mass adjusted by height correlated better with muscular functions than that adjusted by body weight in defining sarcopenia. Sci. Rep. 2016, 6, 19457. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.A.; Schousboe, J.T.; Broy, S.B.; Engelke, K.; Leslie, W.D. Executive summary of the 2015 iscd position development conference on advanced measures from dxa and qct: Fracture prediction beyond bmd. J. Clin. Densitom. 2015, 18, 274–286. [Google Scholar] [CrossRef]
- Hwang, J.S.; Chan, D.C.; Chen, J.F.; Cheng, T.T.; Wu, C.H.; Soong, Y.K.; Tsai, K.S.; Yang, R.S. Clinical practice guidelines for the prevention and treatment of osteoporosis in Taiwan: Summary. J. Bone Miner. Metab. 2014, 32, 10–16. [Google Scholar] [CrossRef]
- Yamada, K.; Furuya, R.; Takita, T.; Maruyama, Y.; Yamaguchi, Y.; Ohkawa, S.; Kumagai, H. Simplified nutritional screening tools for patients on maintenance hemodialysis. Am. J. Clin. Nutr. 2008, 87, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Corsonello, A.; Scarlata, S.; Pedone, C.; Bustacchini, S.; Fusco, S.; Zito, A.; Incalzi, R.A. Treating copd in older and oldest old patients. Curr. Pharm. Des. 2015, 21, 1672–1689. [Google Scholar] [CrossRef]
- Bonjour, J.P.; Schurch, M.A.; Rizzoli, R. Nutritional aspects of hip fractures. Bone 1996, 18, 139S–144S. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Chung, M.; Du, M.; Fu, Z.; Insogna, K.L.; Karlsen, M.C.; LeBoff, M.S.; Shapses, S.A.; Sackey, J.; Wallace, T.C.; et al. Dietary protein and bone health: A systematic review and meta-analysis from the national osteoporosis foundation. Am. J. Clin. Nutr. 2017, 105, 1528–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coin, A.; Perissinotto, E.; Enzi, G.; Zamboni, M.; Inelmen, E.M.; Frigo, A.C.; Manzato, E.; Busetto, L.; Buja, A.; Sergi, G. Predictors of low bone mineral density in the elderly: The role of dietary intake, nutritional status and sarcopenia. Eur. J. Clin. Nutr. 2008, 62, 802–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.V.; Center, J.R.; Eisman, J.A. Osteoporosis in elderly men and women: Effects of dietary calcium, physical activity and body mass index. J. Bone Miner. Res. 2000, 15, 322–331. [Google Scholar] [CrossRef]
- Tokumoto, H.; Tominaga, H.; Arishima, Y.; Jokoji, G.; Akimoto, M.; Ohtsubo, H.; Taketomi, E.; Sunahara, N.; Nagano, S.; Ishidou, Y.; et al. Association between bone mineral density of femoral neck and geriatric nutritional risk index in rheumatoid arthritis patients treated with biological disease-modifying anti-rheumatic drugs. Nutrients 2018, 10, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, D.; Xu, J. Association between geriatric nutritional risk index, bone mineral density and osteoporosis in type 2 diabetes. J. Diabetes Investig. 2019. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.C.; Chung, W.S.; Wu, P.Y.; Huang, J.C.; Chiu, Y.W.; Chang, J.M.; Chen, H.C. Associations among geriatric nutrition risk index, bone mineral density, body composition and handgrip strength in patients receiving hemodialysis. Nutrition 2019, 65, 6–12. [Google Scholar] [CrossRef]
- Thissen, J.P.; Triest, S.; Maes, M.; Underwood, L.E.; Ketelslegers, J.M. The decreased plasma concentration of insulin-like growth factor-i in protein-restricted rats is not due to decreased numbers of growth hormone receptors on isolated hepatocytes. J. Endocrinol. 1990, 124, 159–165. [Google Scholar] [CrossRef]
- Langlois, J.A.; Rosen, C.J.; Visser, M.; Hannan, M.T.; Harris, T.; Wilson, P.W.; Kiel, D.P. Association between insulin-like growth factor i and bone mineral density in older women and men: The Framingham heart study. J. Clin. Endocrinol. Metab. 1998, 83, 4257–4262. [Google Scholar] [CrossRef]
- Kawai, M.; Rosen, C.J. The insulin-like growth factor system in bone: Basic and clinical implications. Endocrinol. Metab. Clin. North. Am. 2012, 41, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Lindahl, A.; Isgaard, J.; Nilsson, A.; Isaksson, O.G. Growth hormone potentiates colony formation of epiphyseal chondrocytes in suspension culture. Endocrinology 1986, 118, 1843–1848. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; Mazziotti, G.; Canalis, E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev. 2008, 29, 535–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakar, S.; Rosen, C.J.; Beamer, W.G.; Ackert-Bicknell, C.L.; Wu, Y.; Liu, J.L.; Ooi, G.T.; Setser, J.; Frystyk, J.; Boisclair, Y.R.; et al. Circulating levels of igf-1 directly regulate bone growth and density. J. Clin. Investig. 2002, 110, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Seck, T.; Scheidt-Nave, C.; Leidig-Bruckner, G.; Ziegler, R.; Pfeilschifter, J. Low serum concentrations of insulin-like growth factor i are associated with femoral bone loss in a population-based sample of postmenopausal women. Clin. Endocrinol. 2001, 55, 101–106. [Google Scholar] [CrossRef]
- Barrett-Connor, E.; Goodman-Gruen, D. Gender differences in insulin-like growth factor and bone mineral density association in old age: The rancho bernardo study. J. Bone Miner. Res. 1998, 13, 1343–1349. [Google Scholar] [CrossRef]
- van Varsseveld, N.C.; Sohl, E.; Drent, M.L.; Lips, P. Gender-specific associations of serum insulin-like growth factor-1 with bone health and fractures in older persons. J. Clin. Endocrinol. Metab. 2015, 100, 4272–4281. [Google Scholar] [CrossRef] [Green Version]
- Philippou, A.; Halapas, A.; Maridaki, M.; Koutsilieris, M. Type i insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy. J. Musculoskelet Neuronal Interact 2007, 7, 208–218. [Google Scholar]
- Rucker, D.; Ezzat, S.; Diamandi, A.; Khosravi, J.; Hanley, D.A. Igf-i and testosterone levels as predictors of bone mineral density in healthy, community-dwelling men. Clin. Endocrinol. 2004, 60, 491–499. [Google Scholar] [CrossRef]
- Girgis, C.M.; Mokbel, N.; Digirolamo, D.J. Therapies for musculoskeletal disease: Can we treat two birds with one stone? Curr. Osteoporos. Rep. 2014, 12, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Locquet, M.; Beaudart, C.; Reginster, J.Y.; Bruyere, O. Association between the decline in muscle health and the decline in bone health in older individuals from the sarcophage cohort. Calcif. Tissue Int. 2019, 104, 273–284. [Google Scholar] [CrossRef]
- Hida, T.; Shimokata, H.; Sakai, Y.; Ito, S.; Matsui, Y.; Takemura, M.; Kasai, T.; Ishiguro, N.; Harada, A. Sarcopenia and sarcopenic leg as potential risk factors for acute osteoporotic vertebral fracture among older women. Eur. Spine J. 2016, 25, 3424–3431. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Cheng, Q.; Zhu, X.; Zhu, H.; Li, H.; Zhang, X.; Zheng, S.; Du, Y.; Tang, W.; Xue, S.; et al. Prevalence of sarcopenia and its relationship with sites of fragility fractures in elderly chinese men and women. PLoS ONE 2015, 10, e0138102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furushima, T.; Miyachi, M.; Iemitsu, M.; Murakami, H.; Kawano, H.; Gando, Y.; Kawakami, R.; Sanada, K. Comparison between clinical significance of height-adjusted and weight-adjusted appendicular skeletal muscle mass. J. Physiol. Anthropol. 2017, 36, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Won, C.W.; Kim, B.S.; Choi, H.R.; Moon, M.Y. The association between the low muscle mass and osteoporosis in elderly Korean people. J. Korean Med. Sci. 2014, 29, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Laurent, M.R.; Dubois, V.; Claessens, F.; Verschueren, S.M.; Vanderschueren, D.; Gielen, E.; Jardi, F. Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol. Cell. Endocrinol. 2016, 432, 14–36. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferri, C.; Wittrant, Y.; Davicco, M.J.; Walrand, S.; Coxam, V. Muscle and bone, two interconnected tissues. Ageing Res. Rev. 2015, 21, 55–70. [Google Scholar] [CrossRef]
- Fleet, J.C. The role of vitamin d in the endocrinology controlling calcium homeostasis. Mol. Cell. Endocrinol. 2017, 453, 36–45. [Google Scholar] [CrossRef]
- Kuchuk, N.O.; Pluijm, S.M.; van Schoor, N.M.; Looman, C.W.; Smit, J.H.; Lips, P. Relationships of serum 25-hydroxyvitamin d to bone mineral density and serum parathyroid hormone and markers of bone turnover in older persons. J. Clin. Endocrinol. Metab. 2009, 94, 1244–1250. [Google Scholar] [CrossRef] [Green Version]
- Kuchuk, N.O.; van Schoor, N.M.; Pluijm, S.M.; Chines, A.; Lips, P. Vitamin d status, parathyroid function, bone turnover, and bmd in postmenopausal women with osteoporosis: Global perspective. J. Bone Miner. Res. 2009, 24, 693–701. [Google Scholar] [CrossRef]
- Melin, A.L.; Wilske, J.; Ringertz, H.; Saaf, M. Vitamin d status, parathyroid function and femoral bone density in an elderly Swedish population living at home. Aging Clin. Exp. Res. 1999, 11, 200–207. [Google Scholar] [CrossRef]
- Chailurkit, L.O.; Kruavit, A.; Rajatanavin, R. Vitamin d status and bone health in healthy Thai elderly women. Nutrition 2011, 27, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Man, P.W.; van der Meer, I.M.; Lips, P.; Middelkoop, B.J. Vitamin d status and bone mineral density in the Chinese population: A review. Arch. Osteoporos. 2016, 11, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kota, S.; Jammula, S.; Kota, S.; Meher, L.; Modi, K. Correlation of vitamin d, bone mineral density and parathyroid hormone levels in adults with low bone density. Indian J. Orthop. 2013, 47, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R. Vitamin d effect on bone mineral density and fractures. Endocrinol. Metab. Clin. North. Am. 2017, 46, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.; Begerow, B.; Minne, H.W. Vitamin d and muscle function. Osteoporos. Int. 2002, 13, 187–194. [Google Scholar] [CrossRef]
- Visser, M.; Deeg, D.J.; Lips, P. Low vitamin d and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): The longitudinal aging study Amsterdam. J. Clin. Endocrinol. Metab. 2003, 88, 5766–5772. [Google Scholar] [CrossRef]
- Greenblatt, M.B.; Tsai, J.N.; Wein, M.N. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin. Chem. 2017, 63, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, J.; Wang, Q. Associations between bone-alkaline phosphatase and bone mineral density in adults with and without diabetes. Medicine 2018, 97, e0432. [Google Scholar] [CrossRef]
- Bergman, A.; Qureshi, A.R.; Haarhaus, M.; Lindholm, B.; Barany, P.; Heimburger, O.; Stenvinkel, P.; Anderstam, B. Total and bone-specific alkaline phosphatase are associated with bone mineral density over time in end-stage renal disease patients starting dialysis. J. Nephrol. 2017, 30, 255–262. [Google Scholar] [CrossRef]
- Nakamura, Y.; Suzuki, T.; Kato, H. Serum bone alkaline phosphatase is a useful marker to evaluate lumbar bone mineral density in Japanese postmenopausal osteoporotic women during denosumab treatment. Ther. Clin. Risk Manag. 2017, 13, 1343–1348. [Google Scholar] [CrossRef] [Green Version]
- Biver, E.; Chopin, F.; Coiffier, G.; Brentano, T.F.; Bouvard, B.; Garnero, P.; Cortet, B. Bone turnover markers for osteoporotic status assessment? A systematic review of their diagnosis value at baseline in osteoporosis. Jt. Bone Spine 2012, 79, 20–25. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Patients (n = 50) |
---|---|
Age (year) | 61.92 ± 7.77 |
Papillary type of thyroid cancer (%) | 62.0 |
Menopausal years (year) | 12.00 (8.25–17.50) |
GNRI (score) | 112.68 ± 7.38 |
Height (cm) | 156.48 ± 5.52 |
Weight (kg) | 60.18 ± 9.12 |
BMI (kg/m2) | 24.55 ± 3.35 |
Time after thyroidectomy (years) | 5.00 (1.00–14.00) |
Total Levothyroxine dose (mcg) | 14400 (4200–43200) |
DXA Parameters | |
Lumbar spine BMD (g/cm2) | 0.99 ± 0.26 |
T score | −1.40 ± 1.75 |
Femoral neck BMD (g/cm2) | 0.81 ± 0.17 |
T score | −1.62 ± 1.23 |
Total hip BMD (g/cm2) | 0.89 ± 0.17 |
T score | −0.94 ± 1.40 |
Body composition | |
ASM/height2 (kg/m2) | 6.12 ± 0.64 |
Lean mass (trunk, %) | 48.06 ± 1.72 |
Lean mass (upper and lower extremity, %) | 42.83 ± 1.98 |
Fat (trunk, %) | 54.50 ± 4.72 |
Fat (upper and lower extremity, %) | 41.27 ± 4.53 |
Laboratory parameters | |
Albumin (g/dL) | 4.44 ± 0.23 |
eGFR (mL/min/1.73 m2) | 86.17 ± 16.17 |
Total calcium (mg/dL) | 8.92 ± 0.37 |
TSH (mU/L) | 0.16 (0.03–1.74) |
Free T4 (ug/dL) | 1.68 (1.44–2.00) |
T3 (ng/mL) | 74.80 (66.60–90.13) |
PTH (pg/mL) | 28.18 (21.95–33.07) |
Vitamin D (nmol/L) | 25.80 (21.20–31.85) |
Bone ALP (ug/L) | 13.90 (10.90–18.00) |
CTx (ng/mL) | 0.27 (0.17–0.35) |
FSH (mIU/mL) | 41.57 (27.48–63.94) |
Estradiol (pg/mL) | 19.93 (16.43–26.68) |
Cortisol (ug/dL) | 10.63 (8.63–12.40) |
IGF–1 (ng/mL) | 113.94 (92.88–154.64) |
Testosterone (ng/dL) | 34.00 (24.80–44.20) |
Thyroglobulin (IU/mL) | 0.16 (0.16–0.16) |
Microsomal Ab (IU/mL) | 13.10 (10.00–22.20) |
Thyroglobulin Ab (IU/mL) | 20.00 (20.00–20.00) |
BMD | Multivariate (Stepwise) | |
---|---|---|
Unstandardized coefficient β (95% CI) | p | |
Lumbar spine BMD | ||
Age (per 1 year) | −0.017 (−0.025, −0.008) | <0.001 |
GNRI (per 1 score) | 0.009 (0.000, 0.018) | 0.040 |
Femoral neck BMD | ||
Age (per 1 year) | −0.013 (−0.018, −0.008) | <0.001 |
ASM/height2 (per 1 kg/m2) | 0.072 (0.014, 0.130) | 0.015 |
Vitamin D (log per 1 nmol/L) | 0.271 (0.029, 0.512) | 0.029 |
Total hip BMD | ||
Age (per 1 year) | −0.011 (−0.017, −0.006) | <0.001 |
Vitamin D (log per 1 nmol/L) | 0.285 (0.031, 0.539) | 0.029 |
Bone ALP (log per 1 ug/L) | −0.304 (−0.534, −0.075) | 0.011 |
IGF-1 (log per 1 ng/mL) | 0.294 (0.004, 0.584) | 0.047 |
T-Score | Multivariate (Stepwise) | |
---|---|---|
Unstandardized coefficient β (95% CI) | p | |
Lumbar spine T-score | ||
Age (per 1 year) | −0.122 (−0.178, −0.065) | <0.001 |
GNRI (per 1 score) | 0.069 (0.010, 0.127) | 0.022 |
Femoral neck T-score | ||
Age (per 1 year) | −0.074 (−0.111, −0.037) | <0.001 |
ASM/height2 (per 1 kg/m2) | 0.557 (0.157, 0.957) | 0.008 |
Total calcium (per 1 mg/dL) | −0.959 (−1.782, −0.137) | 0.023 |
Vitamin D (log per 1 nmol/L) | 1.953 (0.287, 3.618) | 0.023 |
Bone ALP (log per 1 ug/L) | −1.513 (−2.932, −0.094) | 0.037 |
Total hip T-score | ||
Age (per 1 year) | −0.092 (−0.135, −0.049) | <0.001 |
Vitamin D (log per 1 nmol/L) | 2.331 (0.330, 4.331) | 0.023 |
Bone ALP (log per 1 ug/L) | −2.438 (−4.246, −0.630) | 0.009 |
IGF-1 (log per 1 ng/mL) | 2.414 (0.125, 4.702) | 0.039 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, T.-H.; Chen, S.-C.; Yu, H.-C.; Hsu, J.-S.; Shih, M.-C.; Jiang, H.-J.; Hsu, W.-H.; Lee, M.-Y. Association between Geriatric Nutrition Risk Index and Skeletal Muscle Mass Index with Bone Mineral Density in Post-Menopausal Women Who Have Undergone Total Thyroidectomy. Nutrients 2020, 12, 1683. https://doi.org/10.3390/nu12061683
Chiu T-H, Chen S-C, Yu H-C, Hsu J-S, Shih M-C, Jiang H-J, Hsu W-H, Lee M-Y. Association between Geriatric Nutrition Risk Index and Skeletal Muscle Mass Index with Bone Mineral Density in Post-Menopausal Women Who Have Undergone Total Thyroidectomy. Nutrients. 2020; 12(6):1683. https://doi.org/10.3390/nu12061683
Chicago/Turabian StyleChiu, Tai-Hua, Szu-Chia Chen, Hui-Chen Yu, Jui-Sheng Hsu, Ming-Chen Shih, He-Jiun Jiang, Wei-Hao Hsu, and Mei-Yueh Lee. 2020. "Association between Geriatric Nutrition Risk Index and Skeletal Muscle Mass Index with Bone Mineral Density in Post-Menopausal Women Who Have Undergone Total Thyroidectomy" Nutrients 12, no. 6: 1683. https://doi.org/10.3390/nu12061683
APA StyleChiu, T.-H., Chen, S.-C., Yu, H.-C., Hsu, J.-S., Shih, M.-C., Jiang, H.-J., Hsu, W.-H., & Lee, M.-Y. (2020). Association between Geriatric Nutrition Risk Index and Skeletal Muscle Mass Index with Bone Mineral Density in Post-Menopausal Women Who Have Undergone Total Thyroidectomy. Nutrients, 12(6), 1683. https://doi.org/10.3390/nu12061683