Association between Geriatric Nutrition Risk Index and Skeletal Muscle Mass Index with Bone Mineral Density in Post-Menopausal Women Who Have Undergone Total Thyroidectomy
Abstract
1. Introduction
2. Subjects and Methods
2.1. Study Population
2.2. Biochemical Measurements
2.3. BMD and Body Composition Measurements
2.4. Determinants of Skeletal Muscle Mass Index (ASM/ht2)
2.5. Calculation of the GNRI
2.6. Statistical Analysis
3. Results
3.1. Determinants of BMD in the Study Patients
3.2. Determinants of T-Score in the Study Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Institute of Health. Consensus Development Panel on Osteoporosis Prevention, Diagnosis and Therapy. Osteoporosis: Prevention, diagnosis, and therapy. JAMA 2001, 285, 785–795. [Google Scholar]
- Lin, Y.C.; Pan, W.H. Bone mineral density in adults in Taiwan: Results of the nutrition and health survey in Taiwan 2005–2008 (nahsit 2005–2008). Asia Pac. J. Clin. Nutr. 2011, 20, 283–291. [Google Scholar] [PubMed]
- Ji, M.X.; Yu, Q. Primary osteoporosis in postmenopausal women. Chronic Dis. Transl. Med. 2015, 1, 9–13. [Google Scholar] [PubMed]
- Singer, A.; Exuzides, A.; Spangler, L.; O’Malley, C.; Colby, C.; Johnston, K.; Agodoa, I.; Baker, J.; Kagan, R. Burden of illness for osteoporotic fractures compared with other serious diseases among postmenopausal women in the united states. Mayo Clin. Proc. 2015, 90, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; Berger, P.; Kruse, K.; Borner, W. Effect of calcitonin deficiency on bone density and bone turnover in totally thyroidectomized patients. J. Endocrinol. Invest. 1991, 14, 935–942. [Google Scholar] [CrossRef]
- Wang, L.Y.; Smith, A.W.; Palmer, F.L.; Tuttle, R.M.; Mahrous, A.; Nixon, I.J.; Patel, S.G.; Ganly, I.; Fagin, J.A.; Boucai, L. Thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ata low- and intermediate-risk patients with differentiated thyroid carcinoma. Thyroid 2015, 25, 300–307. [Google Scholar] [CrossRef]
- Moon, J.H.; Jung, K.Y.; Kim, K.M.; Choi, S.H.; Lim, S.; Park, Y.J.; Park, D.J.; Jang, H.C. The effect of thyroid stimulating hormone suppressive therapy on bone geometry in the hip area of patients with differentiated thyroid carcinoma. Bone 2016, 83, 104–110. [Google Scholar] [CrossRef]
- Papaleontiou, M.; Hawley, S.T.; Haymart, M.R. Effect of thyrotropin suppression therapy on bone in thyroid cancer patients. Oncologist 2016, 21, 165–171. [Google Scholar] [CrossRef]
- Sugitani, I.; Fujimoto, Y. Effect of postoperative thyrotropin suppressive therapy on bone mineral density in patients with papillary thyroid carcinoma: A prospective controlled study. Surgery 2011, 150, 1250–1257. [Google Scholar] [CrossRef]
- Di Monaco, M.; Vallero, F.; Di Monaco, R.; Tappero, R. Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch. Gerontol. Geriatr. 2011, 52, 71–74. [Google Scholar] [CrossRef]
- Jeong, J.U.; Lee, H.K.; Kim, Y.J.; Kim, J.S.; Kang, S.S.; Kim, S.B. Nutritional markers, not markers of bone turnover, are related predictors of bone mineral density in chronic peritoneal dialysis patients. Clin. Nephrol. 2010, 74, 336–342. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, J.H.; Bergman, N.; Carrera-Bastos, P.; Fontes-Villalba, M.; DiNicolantonio, J.J.; Cordain, L. Nutritional strategies for skeletal and cardiovascular health: Hard bones, soft arteries, rather than vice versa. Open Heart 2016, 3, e000325. [Google Scholar] [CrossRef]
- Stratton, R.J.; Hackston, A.; Longmore, D.; Dixon, R.; Price, S.; Stroud, M.; King, C.; Elia, M. Malnutrition in hospital outpatients and inpatients: Prevalence, concurrent validity and ease of use of the ‛malnutrition universal screening tool’ (‛must’) for adults. Br. J. Nutr. 2004, 92, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z.; Ad Hoc, E.W.G. Nutritional risk screening (nrs 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef]
- Ferguson, M.; Capra, S.; Bauer, J.; Banks, M. Development of a valid and reliable malnutrition screening tool for adult acute hospital patients. Nutrition 1999, 15, 458–464. [Google Scholar] [CrossRef]
- Rubenstein, L.Z.; Harker, J.O.; Salva, A.; Guigoz, Y.; Vellas, B. Screening for undernutrition in geriatric practice: Developing the short-form mini-nutritional assessment (mna-sf). J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M366–M372. [Google Scholar] [CrossRef]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric nutritional risk index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef]
- Honda, Y.; Nagai, T.; Iwakami, N.; Sugano, Y.; Honda, S.; Okada, A.; Asaumi, Y.; Aiba, T.; Noguchi, T.; Kusano, K.; et al. Usefulness of geriatric nutritional risk index for assessing nutritional status and its prognostic impact in patients aged ≥65 years with acute heart failure. Am. J. Cardiol. 2016, 118, 550–555. [Google Scholar] [CrossRef]
- Panichi, V.; Cupisti, A.; Rosati, A.; Di Giorgio, A.; Scatena, A.; Menconi, O.; Bozzoli, L.; Bottai, A. Geriatric nutritional risk index is a strong predictor of mortality in hemodialysis patients: Data from the riscavid cohort. J. Nephrol. 2014, 27, 193–201. [Google Scholar] [CrossRef]
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.Y.; Chen, L.Y.; Hsu, P.S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian working group for sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European working group on sarcopenia in older people. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The fnih sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Byeon, C.H.; Kang, K.Y.; Kang, S.H.; Bae, E.J. Sarcopenia is associated with Framingham risk score in the Korean population: Korean national health and nutrition examination survey (knhanes) 2010–2011. J. Geriatr. Cardiol. 2015, 12, 366–372. [Google Scholar] [PubMed]
- Han, D.S.; Chang, K.V.; Li, C.M.; Lin, Y.H.; Kao, T.W.; Tsai, K.S.; Wang, T.G.; Yang, W.S. Skeletal muscle mass adjusted by height correlated better with muscular functions than that adjusted by body weight in defining sarcopenia. Sci. Rep. 2016, 6, 19457. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.A.; Schousboe, J.T.; Broy, S.B.; Engelke, K.; Leslie, W.D. Executive summary of the 2015 iscd position development conference on advanced measures from dxa and qct: Fracture prediction beyond bmd. J. Clin. Densitom. 2015, 18, 274–286. [Google Scholar] [CrossRef]
- Hwang, J.S.; Chan, D.C.; Chen, J.F.; Cheng, T.T.; Wu, C.H.; Soong, Y.K.; Tsai, K.S.; Yang, R.S. Clinical practice guidelines for the prevention and treatment of osteoporosis in Taiwan: Summary. J. Bone Miner. Metab. 2014, 32, 10–16. [Google Scholar] [CrossRef]
- Yamada, K.; Furuya, R.; Takita, T.; Maruyama, Y.; Yamaguchi, Y.; Ohkawa, S.; Kumagai, H. Simplified nutritional screening tools for patients on maintenance hemodialysis. Am. J. Clin. Nutr. 2008, 87, 106–113. [Google Scholar] [CrossRef]
- Corsonello, A.; Scarlata, S.; Pedone, C.; Bustacchini, S.; Fusco, S.; Zito, A.; Incalzi, R.A. Treating copd in older and oldest old patients. Curr. Pharm. Des. 2015, 21, 1672–1689. [Google Scholar] [CrossRef]
- Bonjour, J.P.; Schurch, M.A.; Rizzoli, R. Nutritional aspects of hip fractures. Bone 1996, 18, 139S–144S. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Chung, M.; Du, M.; Fu, Z.; Insogna, K.L.; Karlsen, M.C.; LeBoff, M.S.; Shapses, S.A.; Sackey, J.; Wallace, T.C.; et al. Dietary protein and bone health: A systematic review and meta-analysis from the national osteoporosis foundation. Am. J. Clin. Nutr. 2017, 105, 1528–1543. [Google Scholar] [CrossRef] [PubMed]
- Coin, A.; Perissinotto, E.; Enzi, G.; Zamboni, M.; Inelmen, E.M.; Frigo, A.C.; Manzato, E.; Busetto, L.; Buja, A.; Sergi, G. Predictors of low bone mineral density in the elderly: The role of dietary intake, nutritional status and sarcopenia. Eur. J. Clin. Nutr. 2008, 62, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Center, J.R.; Eisman, J.A. Osteoporosis in elderly men and women: Effects of dietary calcium, physical activity and body mass index. J. Bone Miner. Res. 2000, 15, 322–331. [Google Scholar] [CrossRef]
- Tokumoto, H.; Tominaga, H.; Arishima, Y.; Jokoji, G.; Akimoto, M.; Ohtsubo, H.; Taketomi, E.; Sunahara, N.; Nagano, S.; Ishidou, Y.; et al. Association between bone mineral density of femoral neck and geriatric nutritional risk index in rheumatoid arthritis patients treated with biological disease-modifying anti-rheumatic drugs. Nutrients 2018, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, D.; Xu, J. Association between geriatric nutritional risk index, bone mineral density and osteoporosis in type 2 diabetes. J. Diabetes Investig. 2019. [Google Scholar] [CrossRef]
- Chen, S.C.; Chung, W.S.; Wu, P.Y.; Huang, J.C.; Chiu, Y.W.; Chang, J.M.; Chen, H.C. Associations among geriatric nutrition risk index, bone mineral density, body composition and handgrip strength in patients receiving hemodialysis. Nutrition 2019, 65, 6–12. [Google Scholar] [CrossRef]
- Thissen, J.P.; Triest, S.; Maes, M.; Underwood, L.E.; Ketelslegers, J.M. The decreased plasma concentration of insulin-like growth factor-i in protein-restricted rats is not due to decreased numbers of growth hormone receptors on isolated hepatocytes. J. Endocrinol. 1990, 124, 159–165. [Google Scholar] [CrossRef]
- Langlois, J.A.; Rosen, C.J.; Visser, M.; Hannan, M.T.; Harris, T.; Wilson, P.W.; Kiel, D.P. Association between insulin-like growth factor i and bone mineral density in older women and men: The Framingham heart study. J. Clin. Endocrinol. Metab. 1998, 83, 4257–4262. [Google Scholar] [CrossRef]
- Kawai, M.; Rosen, C.J. The insulin-like growth factor system in bone: Basic and clinical implications. Endocrinol. Metab. Clin. North. Am. 2012, 41, 323–333. [Google Scholar] [CrossRef]
- Lindahl, A.; Isgaard, J.; Nilsson, A.; Isaksson, O.G. Growth hormone potentiates colony formation of epiphyseal chondrocytes in suspension culture. Endocrinology 1986, 118, 1843–1848. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; Mazziotti, G.; Canalis, E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev. 2008, 29, 535–559. [Google Scholar] [CrossRef] [PubMed]
- Yakar, S.; Rosen, C.J.; Beamer, W.G.; Ackert-Bicknell, C.L.; Wu, Y.; Liu, J.L.; Ooi, G.T.; Setser, J.; Frystyk, J.; Boisclair, Y.R.; et al. Circulating levels of igf-1 directly regulate bone growth and density. J. Clin. Investig. 2002, 110, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Seck, T.; Scheidt-Nave, C.; Leidig-Bruckner, G.; Ziegler, R.; Pfeilschifter, J. Low serum concentrations of insulin-like growth factor i are associated with femoral bone loss in a population-based sample of postmenopausal women. Clin. Endocrinol. 2001, 55, 101–106. [Google Scholar] [CrossRef]
- Barrett-Connor, E.; Goodman-Gruen, D. Gender differences in insulin-like growth factor and bone mineral density association in old age: The rancho bernardo study. J. Bone Miner. Res. 1998, 13, 1343–1349. [Google Scholar] [CrossRef]
- van Varsseveld, N.C.; Sohl, E.; Drent, M.L.; Lips, P. Gender-specific associations of serum insulin-like growth factor-1 with bone health and fractures in older persons. J. Clin. Endocrinol. Metab. 2015, 100, 4272–4281. [Google Scholar] [CrossRef]
- Philippou, A.; Halapas, A.; Maridaki, M.; Koutsilieris, M. Type i insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy. J. Musculoskelet Neuronal Interact 2007, 7, 208–218. [Google Scholar]
- Rucker, D.; Ezzat, S.; Diamandi, A.; Khosravi, J.; Hanley, D.A. Igf-i and testosterone levels as predictors of bone mineral density in healthy, community-dwelling men. Clin. Endocrinol. 2004, 60, 491–499. [Google Scholar] [CrossRef]
- Girgis, C.M.; Mokbel, N.; Digirolamo, D.J. Therapies for musculoskeletal disease: Can we treat two birds with one stone? Curr. Osteoporos. Rep. 2014, 12, 142–153. [Google Scholar] [CrossRef]
- Locquet, M.; Beaudart, C.; Reginster, J.Y.; Bruyere, O. Association between the decline in muscle health and the decline in bone health in older individuals from the sarcophage cohort. Calcif. Tissue Int. 2019, 104, 273–284. [Google Scholar] [CrossRef]
- Hida, T.; Shimokata, H.; Sakai, Y.; Ito, S.; Matsui, Y.; Takemura, M.; Kasai, T.; Ishiguro, N.; Harada, A. Sarcopenia and sarcopenic leg as potential risk factors for acute osteoporotic vertebral fracture among older women. Eur. Spine J. 2016, 25, 3424–3431. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Cheng, Q.; Zhu, X.; Zhu, H.; Li, H.; Zhang, X.; Zheng, S.; Du, Y.; Tang, W.; Xue, S.; et al. Prevalence of sarcopenia and its relationship with sites of fragility fractures in elderly chinese men and women. PLoS ONE 2015, 10, e0138102. [Google Scholar] [CrossRef] [PubMed]
- Furushima, T.; Miyachi, M.; Iemitsu, M.; Murakami, H.; Kawano, H.; Gando, Y.; Kawakami, R.; Sanada, K. Comparison between clinical significance of height-adjusted and weight-adjusted appendicular skeletal muscle mass. J. Physiol. Anthropol. 2017, 36, 15. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Won, C.W.; Kim, B.S.; Choi, H.R.; Moon, M.Y. The association between the low muscle mass and osteoporosis in elderly Korean people. J. Korean Med. Sci. 2014, 29, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Laurent, M.R.; Dubois, V.; Claessens, F.; Verschueren, S.M.; Vanderschueren, D.; Gielen, E.; Jardi, F. Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol. Cell. Endocrinol. 2016, 432, 14–36. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferri, C.; Wittrant, Y.; Davicco, M.J.; Walrand, S.; Coxam, V. Muscle and bone, two interconnected tissues. Ageing Res. Rev. 2015, 21, 55–70. [Google Scholar] [CrossRef]
- Fleet, J.C. The role of vitamin d in the endocrinology controlling calcium homeostasis. Mol. Cell. Endocrinol. 2017, 453, 36–45. [Google Scholar] [CrossRef]
- Kuchuk, N.O.; Pluijm, S.M.; van Schoor, N.M.; Looman, C.W.; Smit, J.H.; Lips, P. Relationships of serum 25-hydroxyvitamin d to bone mineral density and serum parathyroid hormone and markers of bone turnover in older persons. J. Clin. Endocrinol. Metab. 2009, 94, 1244–1250. [Google Scholar] [CrossRef]
- Kuchuk, N.O.; van Schoor, N.M.; Pluijm, S.M.; Chines, A.; Lips, P. Vitamin d status, parathyroid function, bone turnover, and bmd in postmenopausal women with osteoporosis: Global perspective. J. Bone Miner. Res. 2009, 24, 693–701. [Google Scholar] [CrossRef]
- Melin, A.L.; Wilske, J.; Ringertz, H.; Saaf, M. Vitamin d status, parathyroid function and femoral bone density in an elderly Swedish population living at home. Aging Clin. Exp. Res. 1999, 11, 200–207. [Google Scholar] [CrossRef]
- Chailurkit, L.O.; Kruavit, A.; Rajatanavin, R. Vitamin d status and bone health in healthy Thai elderly women. Nutrition 2011, 27, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Man, P.W.; van der Meer, I.M.; Lips, P.; Middelkoop, B.J. Vitamin d status and bone mineral density in the Chinese population: A review. Arch. Osteoporos. 2016, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Kota, S.; Jammula, S.; Kota, S.; Meher, L.; Modi, K. Correlation of vitamin d, bone mineral density and parathyroid hormone levels in adults with low bone density. Indian J. Orthop. 2013, 47, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R. Vitamin d effect on bone mineral density and fractures. Endocrinol. Metab. Clin. North. Am. 2017, 46, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.; Begerow, B.; Minne, H.W. Vitamin d and muscle function. Osteoporos. Int. 2002, 13, 187–194. [Google Scholar] [CrossRef]
- Visser, M.; Deeg, D.J.; Lips, P. Low vitamin d and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): The longitudinal aging study Amsterdam. J. Clin. Endocrinol. Metab. 2003, 88, 5766–5772. [Google Scholar] [CrossRef]
- Greenblatt, M.B.; Tsai, J.N.; Wein, M.N. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin. Chem. 2017, 63, 464–474. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Wang, Q. Associations between bone-alkaline phosphatase and bone mineral density in adults with and without diabetes. Medicine 2018, 97, e0432. [Google Scholar] [CrossRef]
- Bergman, A.; Qureshi, A.R.; Haarhaus, M.; Lindholm, B.; Barany, P.; Heimburger, O.; Stenvinkel, P.; Anderstam, B. Total and bone-specific alkaline phosphatase are associated with bone mineral density over time in end-stage renal disease patients starting dialysis. J. Nephrol. 2017, 30, 255–262. [Google Scholar] [CrossRef]
- Nakamura, Y.; Suzuki, T.; Kato, H. Serum bone alkaline phosphatase is a useful marker to evaluate lumbar bone mineral density in Japanese postmenopausal osteoporotic women during denosumab treatment. Ther. Clin. Risk Manag. 2017, 13, 1343–1348. [Google Scholar] [CrossRef][Green Version]
- Biver, E.; Chopin, F.; Coiffier, G.; Brentano, T.F.; Bouvard, B.; Garnero, P.; Cortet, B. Bone turnover markers for osteoporotic status assessment? A systematic review of their diagnosis value at baseline in osteoporosis. Jt. Bone Spine 2012, 79, 20–25. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Patients (n = 50) |
---|---|
Age (year) | 61.92 ± 7.77 |
Papillary type of thyroid cancer (%) | 62.0 |
Menopausal years (year) | 12.00 (8.25–17.50) |
GNRI (score) | 112.68 ± 7.38 |
Height (cm) | 156.48 ± 5.52 |
Weight (kg) | 60.18 ± 9.12 |
BMI (kg/m2) | 24.55 ± 3.35 |
Time after thyroidectomy (years) | 5.00 (1.00–14.00) |
Total Levothyroxine dose (mcg) | 14400 (4200–43200) |
DXA Parameters | |
Lumbar spine BMD (g/cm2) | 0.99 ± 0.26 |
T score | −1.40 ± 1.75 |
Femoral neck BMD (g/cm2) | 0.81 ± 0.17 |
T score | −1.62 ± 1.23 |
Total hip BMD (g/cm2) | 0.89 ± 0.17 |
T score | −0.94 ± 1.40 |
Body composition | |
ASM/height2 (kg/m2) | 6.12 ± 0.64 |
Lean mass (trunk, %) | 48.06 ± 1.72 |
Lean mass (upper and lower extremity, %) | 42.83 ± 1.98 |
Fat (trunk, %) | 54.50 ± 4.72 |
Fat (upper and lower extremity, %) | 41.27 ± 4.53 |
Laboratory parameters | |
Albumin (g/dL) | 4.44 ± 0.23 |
eGFR (mL/min/1.73 m2) | 86.17 ± 16.17 |
Total calcium (mg/dL) | 8.92 ± 0.37 |
TSH (mU/L) | 0.16 (0.03–1.74) |
Free T4 (ug/dL) | 1.68 (1.44–2.00) |
T3 (ng/mL) | 74.80 (66.60–90.13) |
PTH (pg/mL) | 28.18 (21.95–33.07) |
Vitamin D (nmol/L) | 25.80 (21.20–31.85) |
Bone ALP (ug/L) | 13.90 (10.90–18.00) |
CTx (ng/mL) | 0.27 (0.17–0.35) |
FSH (mIU/mL) | 41.57 (27.48–63.94) |
Estradiol (pg/mL) | 19.93 (16.43–26.68) |
Cortisol (ug/dL) | 10.63 (8.63–12.40) |
IGF–1 (ng/mL) | 113.94 (92.88–154.64) |
Testosterone (ng/dL) | 34.00 (24.80–44.20) |
Thyroglobulin (IU/mL) | 0.16 (0.16–0.16) |
Microsomal Ab (IU/mL) | 13.10 (10.00–22.20) |
Thyroglobulin Ab (IU/mL) | 20.00 (20.00–20.00) |
BMD | Multivariate (Stepwise) | |
---|---|---|
Unstandardized coefficient β (95% CI) | p | |
Lumbar spine BMD | ||
Age (per 1 year) | −0.017 (−0.025, −0.008) | <0.001 |
GNRI (per 1 score) | 0.009 (0.000, 0.018) | 0.040 |
Femoral neck BMD | ||
Age (per 1 year) | −0.013 (−0.018, −0.008) | <0.001 |
ASM/height2 (per 1 kg/m2) | 0.072 (0.014, 0.130) | 0.015 |
Vitamin D (log per 1 nmol/L) | 0.271 (0.029, 0.512) | 0.029 |
Total hip BMD | ||
Age (per 1 year) | −0.011 (−0.017, −0.006) | <0.001 |
Vitamin D (log per 1 nmol/L) | 0.285 (0.031, 0.539) | 0.029 |
Bone ALP (log per 1 ug/L) | −0.304 (−0.534, −0.075) | 0.011 |
IGF-1 (log per 1 ng/mL) | 0.294 (0.004, 0.584) | 0.047 |
T-Score | Multivariate (Stepwise) | |
---|---|---|
Unstandardized coefficient β (95% CI) | p | |
Lumbar spine T-score | ||
Age (per 1 year) | −0.122 (−0.178, −0.065) | <0.001 |
GNRI (per 1 score) | 0.069 (0.010, 0.127) | 0.022 |
Femoral neck T-score | ||
Age (per 1 year) | −0.074 (−0.111, −0.037) | <0.001 |
ASM/height2 (per 1 kg/m2) | 0.557 (0.157, 0.957) | 0.008 |
Total calcium (per 1 mg/dL) | −0.959 (−1.782, −0.137) | 0.023 |
Vitamin D (log per 1 nmol/L) | 1.953 (0.287, 3.618) | 0.023 |
Bone ALP (log per 1 ug/L) | −1.513 (−2.932, −0.094) | 0.037 |
Total hip T-score | ||
Age (per 1 year) | −0.092 (−0.135, −0.049) | <0.001 |
Vitamin D (log per 1 nmol/L) | 2.331 (0.330, 4.331) | 0.023 |
Bone ALP (log per 1 ug/L) | −2.438 (−4.246, −0.630) | 0.009 |
IGF-1 (log per 1 ng/mL) | 2.414 (0.125, 4.702) | 0.039 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, T.-H.; Chen, S.-C.; Yu, H.-C.; Hsu, J.-S.; Shih, M.-C.; Jiang, H.-J.; Hsu, W.-H.; Lee, M.-Y. Association between Geriatric Nutrition Risk Index and Skeletal Muscle Mass Index with Bone Mineral Density in Post-Menopausal Women Who Have Undergone Total Thyroidectomy. Nutrients 2020, 12, 1683. https://doi.org/10.3390/nu12061683
Chiu T-H, Chen S-C, Yu H-C, Hsu J-S, Shih M-C, Jiang H-J, Hsu W-H, Lee M-Y. Association between Geriatric Nutrition Risk Index and Skeletal Muscle Mass Index with Bone Mineral Density in Post-Menopausal Women Who Have Undergone Total Thyroidectomy. Nutrients. 2020; 12(6):1683. https://doi.org/10.3390/nu12061683
Chicago/Turabian StyleChiu, Tai-Hua, Szu-Chia Chen, Hui-Chen Yu, Jui-Sheng Hsu, Ming-Chen Shih, He-Jiun Jiang, Wei-Hao Hsu, and Mei-Yueh Lee. 2020. "Association between Geriatric Nutrition Risk Index and Skeletal Muscle Mass Index with Bone Mineral Density in Post-Menopausal Women Who Have Undergone Total Thyroidectomy" Nutrients 12, no. 6: 1683. https://doi.org/10.3390/nu12061683
APA StyleChiu, T.-H., Chen, S.-C., Yu, H.-C., Hsu, J.-S., Shih, M.-C., Jiang, H.-J., Hsu, W.-H., & Lee, M.-Y. (2020). Association between Geriatric Nutrition Risk Index and Skeletal Muscle Mass Index with Bone Mineral Density in Post-Menopausal Women Who Have Undergone Total Thyroidectomy. Nutrients, 12(6), 1683. https://doi.org/10.3390/nu12061683