Ubiquinol-10 Intake Is Effective in Relieving Mild Fatigue in Healthy Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Study
2.2. Questionnaires
2.3. Autonomic Nerve Function
2.4. Analyses of Oxidative Stress and Antioxidant Activity
2.5. Analysis of Serum Ubiquinol
2.6. Cognitive Functions
2.6.1. Modified Advanced Trail Making Test
2.6.2. Modified Stroop Color-Word Test
2.6.3. Digit Symbol Substitution Test
2.7. Actigraphy (Sleep Parameters)
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuratsune, H. Overview of chronic fatigue syndrome focusing on prevalence and diagnostic criteria. Nihon Rinsho 2007, 65, 983–990. [Google Scholar]
- Kuratsune, H.; Kondoh, K.; Ikuta, K.; Yamanishi, K.; Watanabe, Y.; Kitani, T. Chronic fatigue syndrome (CFS). Nihon Naika Gakkai Zasshi 2001, 90, 2431–2437. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Straus, S.E.; Hickie, I.; Sharpe, M.C.; Dobbins, J.G.; Komaroff, A.; International Chronic Fatigue Syndrome Study Group. The chronic fatigue syndrome: A comprehensive approach to its definition and study. Ann. Intern. Med. 1994, 121, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Kuratsune, H.; Kajimoto, O. Biochemical indices of fatigue for anti-fatigue strategies and products. In The Handbook of Operator Fatigue; Ashgate Publishing Limited: Farnham, UK, 2012; pp. 209–224. [Google Scholar]
- Fukuda, S.; Nojima, J.; Kajimoto, O.; Yamaguti, K.; Nakatomi, Y.; Kuratsune, H.; Watanabe, Y. Ubiquinol-10 supplementation improves autonomic nervous function and cognitive function in chronic fatigue syndrome. Biofactors 2016, 42, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Yoritaka, A.; Kawajiri, S.; Yamamoto, Y.; Nakahara, T.; Ando, M.; Hashimoto, K.; Nagase, M.; Saito, Y.; Hattori, N. Randomized, double-blind, placebo-controlled pilot trial of reduced coenzyme Q10 for Parkinson’s disease. Parkinsonism Relat. Disord. 2015, 21, 911–916. [Google Scholar] [CrossRef]
- Kalen, A.; Appelkvist, E.L.; Dallner, G. Age-related changes in the lipid compositions of Rat and Human tissues. Lipids 1989, 24, 579–584. [Google Scholar] [CrossRef]
- Mabuchi, H.; Higashikata, T.; Kawashiri, M.; Katsuda, S.; Mizuno, M.; Nohara, A.; Inazu, A.; Koizumi, J.; Kobayashi, J. Reduction of serum ubiquinol-10 and ubiquinone-10 levels by atrobastatin in hypercholesterolemic patients. J. Atheroscler. Thromb. 2005, 12, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Kubo, H.; Fujii, K.; Kawabe, T.; Matsumoto, S.; Kishida, H.; Hosoe, K. Food content of ubiquinol-10 and ubiquinone-10 in the Japanese diet. J. Food Comp. Anal. 2008, 21, 199–210. [Google Scholar] [CrossRef]
- Kishi, T. Concentration of CoQ10 in serum and urine after intake. Iyaku Ja-naru 1982, 18, 979–984. [Google Scholar]
- Yamagishi, K.; Ikeda, A.; Moriyama, Y.; Chei, C.L.; Noda, H.; Umesawa, M.; Cui, R.; Nagao, M.; Kitamura, A.; Yamamoto, Y.; et al. Serum coenzyme Q10 and risk of disabling dementia: The circulatory risk in communities study (CIRCS). Atherosclerosis 2014, 237, 400–403. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Kamei, Y.; Suzuki, M.; Eda, N.; Hanaoka, Y.; Kono, I.; Akama, T. The effects of coenzyme Q10 on oral immunity and health-related quality of life in middle-aged and elderly individuals. Jpn. J. Complement. Alternat. Med. 2015, 12, 37–43. [Google Scholar] [CrossRef]
- Kinoshita, T.; Fujii, K. Long-term intake of ubiquinol may improve cognitive performance in community residents. J. Japanese Association Rural Med. 2019, 68, 8–17. [Google Scholar] [CrossRef]
- Ikeda, S.; Toyoda, K. The influence that CoQ10 gives psychological element. Seisen-ronnsou 2009, 17, 127–136. [Google Scholar]
- Chalder, T.; Berelowitz, G.; Pawlikowska, T.; Watts, L.; Wessely, S.; Wright, D.; Wallace, E.P. Development of a fatigue scale. J. Psychosom. Res. 1993, 37, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, S.; Takashima, S.; Iwase, M.; Yamaguti, K.; Kuratsune, H.; Watanabe, Y. Development and validation of a new fatigue scale for fatigued subjects with and without chronic fatigue syndrome. In Fatigue Science for Human Health; Watanabe, Y., Evengård, B., Natelson, B.H., Jason, L.A., Kuratsune, H., Eds.; Springer: Tokyo, Japan, 2008; pp. 89–102. [Google Scholar]
- Kessler, R.C.; Andrews, G.; Colpe, L.J.; Hiripi, E.; Mroczek, D.K.; Normand, S.-L.T.; Walters, E.E.; Zaslavsky, A.M. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol. Med. 2002, 32, 959–976. [Google Scholar] [CrossRef]
- Radloff, L.S. The CES-D Scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Doi, Y.; Minowa, M.; Uchiyama, M.; Okawa, M.; Kim, K.; Shibui, K.; Kamei, Y. Psychometric assessment of subjective sleep quality using the Japanese version of the Pittsburgh Sleep Quality Index (PSQI-J) in psychiatric disordered and control subjects. Psychiatry Res. 2000, 97, 165–172. [Google Scholar] [CrossRef]
- Furukawa, T.; Kawakami, N.; Saitoh, M.; Ono, Y.; Nakane, Y.; Nakamura, Y.; Tachimori, H.; Iwata, N.; Uda, H.; Nakane, H.; et al. The performance of the Japanese version of the K6 and K10 in the World Mental Health Survey Japan. Int. J. Methods Psychiatr. Res. 2008, 17, 152–158. [Google Scholar] [CrossRef]
- Shima, S.; Shikano, T.; Kitamura, T.; Asai, M. New self-rating scales for depression. Clin. Psychiatry 1985, 27, 717–723. [Google Scholar]
- Takegami, M.; Suzukamo, Y.; Wakita, T.; Noguchi, H.; Chin, K.; Kadotani, H.; Inoue, Y.; Oka, Y.; Nakamura, T.; Green, J.; et al. Development of a Japanese version of the Epworth Sleepiness Scale (JESS) based on item response theory. Sleep Med. 2009, 10, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Fukuda, S.; Mizuno, K.; Imai-Matsumura, K.; Jodoi, T.; Kawatani, J.; Takano, M.; Miike, T.; Tomoda, A.; Watanabe, Y. Reliability and validity of the Japanese version of the Chalder Fatigue Scale among youth in Japan. Psychol. Rep. 2008, 103, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Kanaya, N.; Hirata, N.; Kurosawa, S.; Nakayama, M.; Namiki, A. Differential effects of propofol and sevoflurane on heart rate variability. Anesthesiology 2003, 98, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Takusagawa, M.; Komori, S.; Umetani, K.; Ishihara, T.; Sawanobori, T.; Kohno, I.; Sano, S.; Yin, D.; Ijiri, H.; Tamura, K. Alterations of autonomic nervous activity in recurrence of variant angina. Heart 1999, 82, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akselrod, S.; Gordon, D.; Ubel, F.A.; Shannon, D.C.; Berger, A.C.; Cohen, R.J. Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science 1981, 213, 220–222. [Google Scholar] [CrossRef]
- Pomeranz, B.; Macaulay, R.J.; Caudill, M.A.; Kutz, I.; Adam, D.; Gordon, D.; Kilborn, K.M.; Barger, A.C.; Shannon, D.C.; Cohen, R.J.; et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am. J. Physiol. 1985, 248, H151–H153. [Google Scholar] [CrossRef]
- Malliani, A.; Pagani, M.; Lombardi, F.; Cerutti, S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991, 84, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Appel, M.L.; Berger, R.D.; Saul, J.P.; Smith, J.M.; Cohen, R.J. Beat to beat variability in cardiovascular variables: Noise or music? J. Am. Coll. Cardiol. 1989, 14, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, K.; Tanaka, M.; Yamaguti, K.; Kajimoto, O.; Kuratsune, H.; Watanabe, Y. Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity. Behav. Brain Funct. 2011, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Tajima, K.; Tanaka, M.; Mizuno, K.; Okada, N.; Rokushima, K.; Watanabe, Y. Effects of bathing in micro-bubbles on recovery from moderate mental fatigue. Ergonomia IJE & HF 2008, 30, 134–145. [Google Scholar]
- Mizuno, K.; Tanaka, M.; Tajima, K.; Okada, N.; Rokushima, K.; Watanabe, Y. Effects of mild-stream bathing on recovery from mental fatigue. Med. Sci. Monit. 2010, 16, CR8–CR14. [Google Scholar]
- Mizuno, K.; Sasaki, A.T.; Ebisu, K.; Tajima, K.; Kajimoto, O.; Nojima, J.; Kuratsune, H.; Hori, H.; Watanabe, Y. Hydrogen-rich water for improvements of mood, anxiety, and autonomic nerve function in daily life. Med. Gas Res. 2018, 7, 247–255. [Google Scholar] [PubMed] [Green Version]
- Trotti, R.; Carratelli, M.; Barbieri, M. Performance and clinical application of a new, fast method for the detection of hydroperoxides in serum. Panminerva Med. 2002, 44, 37–40. [Google Scholar]
- Nojima, J.; Motoki, Y.; Tsuneoka, H.; Kuratsune, H.; Matsui, T.; Yamamoto, M.; Yanagihara, M.; Hinoda, Y.; Ichihara, K. ‘Oxidation stress index’ as a possible clinical marker for the evaluation of non-Hodgkin lymphoma. Br. J. Haematol. 2011, 155, 528–530. [Google Scholar] [CrossRef]
- Kajimoto, O. Development of a method of evaluation of fatigue and its economic impacts. In Fatigue Science for Human Health; Watanabe, Y., Evengård, B., Natelson, B.H., Jason, L.A., Eds.; Springer: Tokyo, Japan, 2008; pp. 33–46. [Google Scholar]
- Mizuno, K.; Tanaka, M.; Fukuda, S.; Imai-Matsumura, K.; Watanabe, Y. Relationship between cognitive functions and prevalence of fatigue in elementary and junior high school students. Brain Dev. 2011, 33, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Watanabe, Y. Neurocognitive impairment in childhood chronic fatigue syndrome. Front. Physiol. 2013, 4, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawatani, J.; Mizuno, K.; Shiraishi, S.; Takao, M.; Joudoi, T.; Fukuda, S.; Watanabe, Y.; Tomoda, A. Cognitive dysfunction and mental fatigue in childhood chronic fatigue syndrome--a 6-month follow-up study. Brain Dev. 2011, 33, 832–841. [Google Scholar] [CrossRef]
- Mizuno, K.; Tanaka, M.; Fukuda, S.; Sasabe, T.; Imai-Matsumura, K.; Watanabe, Y. Changes in cognitive functions of students in the transitional period from elementary school to junior high school. Brain Dev. 2011, 33, 412–420. [Google Scholar] [CrossRef]
- Tanaka, M.; Shigihara, Y.; Funakura, M.; Kanai, E.; Watanabe, Y. Fatigue-associated alterations of cognitive function and electroencephalographic power densities. PLoS ONE 2012, 7, e34774. [Google Scholar] [CrossRef] [Green Version]
- Hart, R.P.; Kwentus, J.A.; Wade, J.B.; Hamer, R.M. Digit symbol performance in mild dementia and depression. J. Consult. Clin. Psychol. 1987, 55, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Kertzman, S.; Nahum, Z.B.; Gotzlav, I.; Grinspan, H.; Birger, M. Digid symbol substitution test performance: Sex differences in a Hebrew-readers’ health population. Percept. Mot. Skills 2006, 103, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Lafont, S.; Marin-Lamellet, C.; Paire-Ficout, L.; Thomas-Antérion, C.; Laurent, B.; Fabrigoule, C. The Wechsler digit symbol substitution test as the best indicator of the risk of impaired driving in Alzheimer disease and normal aging. Dement. Geriatr. Cogn. Disord. 2010, 29, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C.P. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003, 26, 342–392. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.L.; Hakim, A.D. Wrist actigraphy. Chest 2011, 139, 1514–1527. [Google Scholar] [CrossRef]
- Kume, S.; Yamato, M.; Tamura, Y.; Jin, G.; Nakano, M.; Miyashige, Y.; Eguchi, A.; Ogata, Y.; Goda, N.; Iwai, K.; et al. Potential biomarkers of fatigue identified by plasma metabolome analysis in rats. PLoS ONE 2015, 10, e0120106. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Garg, V.; Gupta, S.; Kulkarni, S.K. Role of antioxidants in chronic fatigue syndrome in mice. Indian J. Exp. Biol. 2002, 40, 1240–1244. [Google Scholar]
- Fukuda, S.; Nojima, J.; Motoki, Y.; Yamaguti, K.; Nakatomi, Y.; Okawa, N.; Fujiwara, K.; Watanabe, Y.; Kuratsune, H. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity. Biol. Psychol. 2016, 118, 88–93. [Google Scholar] [CrossRef]
- Miller, R.W.; Curry, J.R. Mammalian dihydroorotate--ubiquinone reducatse complex. II. Correlation with cytochrome oxidase, mode of linkage with the cytochrome chain, and general properties. Can. J. Biochem. 1969, 47, 725–734. [Google Scholar] [CrossRef]
- Takayanagi, R.; Takeshige, K.; Minakami, S. NADH- and NADPH-dependent lipid peroxidation in bovine heart submitochondrial particles. Dependence on the rate of electron flow in the respiratory chain and an antioxidant role of ubiquinol. Biochem. J. 1980, 192, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Kagan, V.; Serbinova, E.; Packer, L. Antioxidant effects of ubiquinones in microsomes and mitochondria are mediated by tocopherol recycling. Biochem. Biophys. Res. Commun. 1990, 169, 851–857. [Google Scholar] [CrossRef]
- Mohr, D.; Bowry, V.W.; Stocker, R. Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochem. Biophys. Acta 1992, 1126, 247–254. [Google Scholar] [CrossRef]
- Stough, C.; Nankivell, M.; Camfield, D.A.; Perry, N.L.; Pipingas, A.; MacPherson, H.; Wesnes, K.; Ou, R.; Hare, D.; De Haan, J.; et al. CoQ10 and cognition a review and study protocol for a 90-day randomized controlled trial investigating the cognitive effects of ubiquinol in the healthy elderly. Front. Aging Neurosci. 2019, 11, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajima, S.; Yamamoto, S.; Tanaka, M.; Kataoka, Y.; Iwase, M.; Yoshikawa, E.; Okada, H.; Onoe, H.; Tsukada, H.; Kuratsune, H.; et al. Medial orbitofrontal cortex is associated with fatigue sensation. Neurol. Res. Int. 2010, 2010, 671421. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Tanaka, M.; Ishii, A.; Tanabe, H.C.; Onoe, H.; Sadato, N.; Watanabe, Y. The neural basis of academic achievement motivation. Neuroimage 2008, 42, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D.; Mathias, C.J.; Josephs, O.; O’Doherty, J.; Zanini, S.; Dewar, B.; Cipolotti, L.; Shallice, T.; Dolan, R. Human cingulate cortex and autonomic control: Converging neuroimaging and clinical evidence. Brain 2003, 126, 2139–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, G.; Anderson, G.; Maes, M. Hypothalamic-Pituitary-Adrenal Hypofunction in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS) as a Consequence of Activated Immune-Inflammatory and Oxidative and Nitrosative Pathways. Mol. Neurobiol. 2017, 54, 6806–6819. [Google Scholar] [CrossRef]
- Watanabe, K.; Nozaki, S.; Goto, M.; Kaneko, K.-I.; Hayashinaka, E.; Irie, S.; Nishiyama, A.; Kasai, K.; Fujii, K.; Wada, Y.; et al. PET imaging of 11C-labeled coenzyme Q10: Comparison of biodistribution between [11C]ubiquinol-10 and [11C]ubiquinone-10. Biochem. Biophys. Res. Commun. 2019, 512, 611–615. [Google Scholar] [CrossRef]
- Yamano, E.; Sugimoto, M.; Hirayama, A.; Kume, S.; Yamato, M.; Jin, G.; Tajima, S.; Goda, N.; Iwai, K.; Fukuda, S.; et al. Index markers of chronic fatigue syndrome with dysfunction of TCA and urea cycles. Sci. Rep. 2016, 6, 34990. [Google Scholar] [CrossRef]
Variables | Placebo | 100 mg/day | 150 mg/day |
---|---|---|---|
Number | 20 | 20 | 22 |
Sex (male:female) | 7:13 | 6:14 | 8:14 |
Age (years; mean ± S.D.) | 41.3 ± 13.4 | 44.0 ± 9.8 | 40.4 ± 11.8 |
Age (range in years) | 20–64 | 23–58 | 20–61 |
Item | Week | Placebo | 100 mg | 150 mg |
---|---|---|---|---|
Serum ubiquinol (µg/mL) | 0 | 0.96 ± 0.19 | 1.00 ± 0.29 | 0.93 ± 0.20 |
4 | 0.82 ± 0.19 | 2.96 ± 1.23 *** | 3.53 ± 1.01 *** | |
8 | 1.15 ± 0.44 | 3.29 ± 1.40 *** | 3.93 ± 1.40 *** | |
12 | 0.76 ± 0.17 | 2.61 ± 1.07 *** | 3.27 ± 1.20 *** | |
Pre-task fatigue (score) | 0 | - | - | - |
4 | 4.7 ± 22.2 | −5.1 ± 16.5 | −4.1 ± 16.9 | |
8 | 7.0 ± 29.3 | −4.5 ± 22.5 | −3.4 ± 22.6 | |
12 | 0.9 ± 22.0 | −5.4 ± 20.7 | −1.9 ± 22.1 | |
Post-task fatigue (score) | 0 | - | - | - |
4 | 5.4 ± 28.1 | −14.1 ± 11.9 ** | −9.5 ± 21.8 * | |
8 | 3.7 ± 23.0 | −7.3 ± 19.5 | −12.3 ± 21.4 * | |
12 | −2.1 ± 25.9 | −10.9 ± 17.7 | −3.6 ± 20.8 | |
Post-task sleepiness (score) | 0 | - | - | - |
4 | 11.9 ± 27.0 | −0.8 ± 13.5 * | −7.6 ± 18.7 ** | |
8 | 4.8 ± 25.1 | −3.6 ± 20.4 | −7.2 ± 25.4 | |
12 | 3.8 ± 28.2 | −2.2 ± 19.4 | −3.3 ± 24.7 | |
Post-task mood reduction (score) | 0 | - | - | - |
4 | 5.8 ± 14.0 | −8.5 ± 16.2 * | 0 ± 26.4 | |
8 | 2.2 ± 13.6 | −4.4 ± 23.5 | −1.6 ± 23.9 | |
12 | 2.8 ± 15.6 | −10.8 ± 16.8 * | 4.1 ± 24.4 | |
ESS: sleepiness (score) | 0 | - | - | - |
4 | 0.65 ± 3.98 | −1.10 ± 4.95 | −0.59 ± 3.94 | |
8 | 1.00 ± 4.95 | −1.47 ± 2.74 * | −0.18 ± 3.80 | |
12 | 0.50 ± 3.81 | −0.32 ± 3.25 | −0.86 ± 4.61 | |
Post-task relaxation (score) | 0 | - | - | - |
4 | 4.5 ± 16.9 | 3.0 ± 16.7 | 5.3 ± 18.0 | |
8 | −0.3 ± 14.1 | 4.2 ± 18.2 | 11.7 ± 20.3 * | |
12 | 0.6 ± 17.2 | 4.6 ± 13.2 | 7.0 ± 17.6 | |
Sleepiness during task (score) | 0 | - | - | - |
4 | 6.1 ± 16.1 | 1.6 ± 18.5 | −8.5 ± 18.3 * | |
8 | −5.5 ± 14.7 | −1.7 ± 22.2 | −7.0 ± 20.2 | |
12 | 0.9 ± 15.7 | −0.2 ± 22.1 | −9.3 ± 27.3 | |
Motivational response (sec) | 0 | - | - | - |
4 | −0.03 ± 0.11 | −0.03 ± 0.11 | −0.14 ± 0.21 * | |
8 | −0.08 ± 0.11 | −0.08 ± 0.11 | −0.13 ± 0.17 | |
12 | −0.10 ± 0.11 | −0.04 ± 0.11 | −0.14 ± 0.20 | |
d-ROMs (U.CARR) | 0 | - | - | - |
4 | −17.3 ± 23.8 | −1.0 ± 34.9 | −26.4 ± 35.8 | |
8 | −7.3 ± 30.4 | −6.1 ± 34.9 | −31.0 ± 42.3 * | |
12 | −19.6 ± 33.9 | −8.0 ± 47.9 | −29.4 ± 41.5 | |
DSST (score: absolute value) | 0 | 63.6 ± 9.37 | 60.7 ± 9.07 | 68.4 ± 11.6 |
4 | 65.4 ± 9.86 | 63.9 ± 8.54 | 72.1 ± 13.3 * | |
8 | 67.1 ± 8.56 | 65.0 ± 9.24 | 73.9 ± 13.8 * | |
12 | 69.9 ± 9.22 | 66.0 ± 11.5 | 76.0 ± 13.8 | |
ln(LF/HF) (ratio) | 0 | - | - | - |
4 | 0.26 ± 0.72 | 0.13 ± 0.72 | 0.28 ± 1.04 | |
8 | 0.47 ± 0.82 | 0.03 ± 0.95 | −0.02 ± 0.84 * | |
12 | 0.41 ± 0.81 | 0.36 ± 0.85 | 0.32 ± 1.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizuno, K.; Sasaki, A.T.; Watanabe, K.; Watanabe, Y. Ubiquinol-10 Intake Is Effective in Relieving Mild Fatigue in Healthy Individuals. Nutrients 2020, 12, 1640. https://doi.org/10.3390/nu12061640
Mizuno K, Sasaki AT, Watanabe K, Watanabe Y. Ubiquinol-10 Intake Is Effective in Relieving Mild Fatigue in Healthy Individuals. Nutrients. 2020; 12(6):1640. https://doi.org/10.3390/nu12061640
Chicago/Turabian StyleMizuno, Kei, Akihiro T. Sasaki, Kyosuke Watanabe, and Yasuyoshi Watanabe. 2020. "Ubiquinol-10 Intake Is Effective in Relieving Mild Fatigue in Healthy Individuals" Nutrients 12, no. 6: 1640. https://doi.org/10.3390/nu12061640