Association between Non-Alcoholic Fatty Liver Disease and Dietary Habits, Stress, and Health-Related Quality of Life in Korean Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Anthropometric Measurements
2.3. Sociodemographic and Lifestyle Variables
2.4. Statistical Analysis
3. Results
4. Discussion
Funding
Conflicts of Interest
References
- Hassan, K.; Bhalla, V.; El Regal, M.E.; A-Kader, H.H. Nonalcoholic fatty liver disease: A comprehensive review of a growing epidemic. World J. Gastroenterol. WJG 2014, 20, 12082. [Google Scholar] [CrossRef]
- Sozio, M.S.; Liangpunsakul, S.; Crabb, D. The role of lipid metabolism in the pathogenesis of alcoholic and nonalcoholic hepatic steatosis. In Seminars in Liver Disease; Thieme Medical Publishers: New York, NY, USA, 2010. [Google Scholar]
- Jun, D.W. The role of diet in non-alcoholic fatty liver disease. Korean J. Gastroenterol. 2013, 61, 243–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singal, A.K.; Hasanin, M.; Kaif, M.; Wiesner, R.; Kuo, Y.F. Nonalcoholic steatohepatitis is the most rapidly growing indication for simultaneous liver kidney transplantation in the United States. Transplantation 2016, 100, 607–612. [Google Scholar] [CrossRef]
- Yasutake, K.; Kohjima, M.; Kotoh, K.; Nakashima, M.; Nakamuta, M.; Enjoji, M. Dietary habits and behaviors associated with nonalcoholic fatty liver disease. World J. Gastroenterol. WJG 2014, 20, 1756. [Google Scholar] [CrossRef] [PubMed]
- Toshimitsu, K.; Matsuura, B.; Ohkubo, I.; Niiya, T.; Furukawa, S.; Hiasa, Y.; Kawamura, M.; Ebihara, K.; Onji, M. Dietary habits and nutrient intake in non-alcoholic steatohepatitis. Nutrition 2007, 23, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Abdelmalek, M.F.; Suzuki, A.; Guy, C.; Unalp-Arida, A.; Colvin, R.; Johnson, R.J.; Diehl, A.M. Nonalcoholic Steatohepatitis Clinical Research Network Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 2010, 51, 1961–1971. [Google Scholar] [CrossRef] [Green Version]
- Fuse, Y.; Hirao, A.; Kuroda, H.; Otsuka, M.; Tahara, Y.; Shibata, S. Differential roles of breakfast only (one meal per day) and a bigger breakfast with a small dinner (two meals per day) in mice fed a high-fat diet with regard to induced obesity and lipid metabolism. J. Circadian Rhythm. 2012, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Stunkard, A.J.; Grace, W.J.; Wolff, H.G. The night-eating syndrome: A pattern of food intake among certain obese patients. Am. J. Med. 1955, 19, 78–86. [Google Scholar] [CrossRef]
- Summerbell, C.D.; Moody, R.C.; Shanks, J.; Stock, M.J.; Geissler, C. Relationship between feeding pattern and body mass index in 220 free-living people in four age groups. Eur. J. Clin. Nutr. 1996, 50, 513–519. [Google Scholar]
- Timlin, M.T.; Pereira, M.A. Breakfast frequency and quality in the etiology of adult obesity and chronic diseases. Nutr. Rev. 2007, 65, 268–281. [Google Scholar] [CrossRef]
- Wyatt, H.R.; Grunwald, G.K.; Mosca, C.L.; Klem, M.L.; Wing, R.R.; Hill, J.O. Long-term weight loss and breakfast in subjects in the National Weight Control Registry. Obes. Res. 2002, 10, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Liu, Z.W.; Li, Y.; Gong, C.; Zhang, H.; Song, L.J.; Huang, C.Y.; Li, M. The prevalence of nonalcoholic fatty liver disease and its association with lifestyle/dietary habits among university faculty and staff in Chengdu. Biomed. Environ. Sci. 2012, 25, 383–391. [Google Scholar]
- Chung, G.E. Dietary patterns are associated with the prevalence of nonalcoholic fatty liver disease in Korean adults. Nutrition 2019, 62, 32–38. [Google Scholar] [CrossRef]
- Chang, J.H.; Lee, H.S.; Kang, E.H. A study on dietary habits, nutrient intakes and dietary quality in adults of a health screening and promotion center according to non-alcoholic fatty liver disease. J. Nutr. Health 2014, 47, 330–341. [Google Scholar] [CrossRef] [Green Version]
- Chung, G.E.; Youn, J.; Kim, Y.S.; Lee, J.E.; Yang, S.Y.; Lim, J.H.; Song, J.H.; Doo, E.Y.; Kim, J.S. Non-Alcoholic Fatty Liver Disease and Its Association with Depression in Korean General Population. J. Korean Med. Sci. 2019, 34. [Google Scholar] [CrossRef]
- Surdea-Blaga, T.; Dumitraşcu, D. Depression and anxiety in nonalcoholic steatohepatitis: Is there any association? Rom. J. Intern. Med. Rev. Roum. Med. Interne 2011, 49, 273–280. [Google Scholar]
- Russ, T.C.; Kivimäki, M.; Morling, J.R.; Starr, J.M.; Stamatakis, E.; Batty, G.D. Association between psychological distress and liver disease mortality: A meta-analysis of individual study participants. Gastroenterology 2015, 148, 958–966. [Google Scholar] [CrossRef] [Green Version]
- Nagaraja, A.S.; Sadaoui, N.C.; Dorniak, P.L.; Lutgendorf, S.K.; Sood, A.K. SnapShot: Stress and disease. Cell Metab. 2016, 23, 388.e1. [Google Scholar] [CrossRef]
- Lundberg, U. Stress hormones in health and illness: The roles of work and gender. Psychoneuroendocrinology 2005, 30, 1017–1021. [Google Scholar] [CrossRef]
- Schneiderman, N.; Ironson, G.; Siegel, S.D. Stress and health: Psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol. 2005, 1, 607–628. [Google Scholar] [CrossRef] [Green Version]
- Björntorp, P. Visceral fat accumulation: The missing link between psychosocial factors and cardiovascular disease? J. Inter. Med. 1991, 230, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Yudkin, J.S.; Kumari, M.; Humphries, S.E.; Mohamed-Ali, V. Inflammation, obesity, stress and coronary heart disease: Is interleukin-6 the link? Atherosclerosis 2000, 148, 209–214. [Google Scholar] [CrossRef]
- Dan, A.A.; Kallman, J.B.; Wheeler, A.; Younoszai, Z.; Collantes, R.; Bodini, S.; Gerber, L.; Younossi, Z.M. Health-related quality of life in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2007, 26, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Assimakopoulos, K.; Karaivazoglou, K.; Tsermpini, E.E.; Diamantopoulou, G.; Triantos, C. Quality of life in patients with nonalcoholic fatty liver disease: A systematic review. J. Psychosom. Res. 2018, 112, 73–80. [Google Scholar] [CrossRef]
- David, K.; Kowdley, K.V.; Unalp, A.; Kanwal, F.; Brunt, E.M.; Schwimmer, J.B. Quality of life in adults with nonalcoholic fatty liver disease: Baseline data from the nonalcoholic steatohepatitis clinical research network. Hepatology 2009, 49, 1904–1912. [Google Scholar] [CrossRef] [Green Version]
- Kennedy-Martin, T.; Bae, J.P.; Paczkowski, R.; Freeman, E. Health-related quality of life burden of nonalcoholic steatohepatitis: A robust pragmatic literature review. J. Patient Rep. Outcomes 2018, 2, 28. [Google Scholar] [CrossRef]
- Tsuchiya, A.; Ikeda, S.; Ikegami, N.; Nishimura, S.; Sakai, I.; Fukuda, T.; Hamashima, C.; Hisashige, A.; Tamura, M. Estimating an EQ-5D population value set: The case of Japan. Health Econ. 2002, 11, 341–353. [Google Scholar] [CrossRef]
- Balestroni, G.; Bertolotti, G. EuroQol-5D (EQ-5D): An instrument for measuring quality of life. Monaldi Arch. Chest Dis. 2012, 78, 155–159. [Google Scholar] [CrossRef]
- Dolan, P.; Gudex, C.; Kind, P.; Williams, A. A Social Tariff for EuroQol: Results from a UK General Population Survey; University of York, Center for Health Economics: Heslington, UK, 1995. [Google Scholar]
- Luo, N.; Johnson, J.A.; Shaw, J.W.; Feeny, D.; Coons, S.J. Self-reported health status of the general adult US population as assessed by the EQ-5D and Health Utilities Index. Med. Care 2005, 43, 1078–1086. [Google Scholar] [CrossRef]
- Han, M.A.; Ryu, S.Y.; Park, J.; Kang, M.; Park, J.K.; Kim, K.S. Health-related Quality of Life Assessment by the EuroQol-5D in Some Rural Adults. J. Prev. Med. Public Health 2008, 41, 173–180. [Google Scholar] [CrossRef]
- Jo, M.-W.; Yun, S.C.; Lee, S.I. Estimating quality weights for EQ-5D health states with the time trade-off method in South Korea. Value Health 2008, 11, 1186–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, E.J.; Shin, H.S.; Park, H.J.; Jo, M.W.; Kim, N.Y. A valuation of health status using EQ-5D. Korean J. Health Econ. Policy 2006, 12, 19–43. [Google Scholar]
- Papagianni, M.; Sofogianni, A.; Tziomalos, K. Non-invasive methods for the diagnosis of nonalcoholic fatty liver disease. World J. Hepatol. 2015, 7, 638. [Google Scholar] [CrossRef] [PubMed]
- Bateman, R.M.; Sharpe, M.D.; Jagger, J.E.; Ellis, C.G.; Solé-Violán, J.; López-Rodríguez, M.; Herrera-Ramos, E.; Ruíz-Hernández, J.; Borderías, L.; Horcajada, J.; et al. Development, external validation, and comparative assessment of a new diagnostic score for hepatic steatosis. Am. J. Gastroenterol. 2014, 109, 1404. [Google Scholar]
- Shen, Y.N.; Yu, M.X.; Gao, Q.; Li, Y.Y.; Huang, J.J.; Sun, C.M.; Qiao, N.; Zhang, H.X.; Wang, H.; Lu, Q.; et al. External validation of non-invasive prediction models for identifying ultrasonography-diagnosed fatty liver disease in a Chinese population. Medicine 2017, 96, e7610. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, G.; Kang, K.; Wu, G.; Wang, P. Diagnostic accuracy and clinical utility of a new noninvasive index for hepatic steatosis in patients with hepatitis B virus infection. Sci. Rep. 2016, 6, 32875. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Kim, D.; Kim, H.J.; Lee, C.H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.H.; Cho, S.H.; Sung, M.W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef]
- Lee, J.; Ha, J.; Jo, K.; Lim, D.J.; Lee, J.M.; Chang, S.A.; Kang, M.I.; Cha, B.Y.; Kim, M.H. Male-specific association between subclinical hypothyroidism and the risk of non-alcoholic fatty liver disease estimated by hepatic steatosis index: Korea National Health and Nutrition Examination Survey 2013 to 2015. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea national health and nutrition examination survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.D.; Huang, J.F.; Chen, Q.S.; Lin, G.F.; Zeng, H.X.; Lin, X.F.; Lin, X.J.; Lin, L.; Lin, Q.C. Validation of fatty liver index and hepatic steatosis index for screening of non-alcoholic fatty liver disease in adults with obstructive sleep apnea hypopnea syndrome. Chin. Med. J. 2019, 132, 2670–2676. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, H.E.; Arendt, B.M.; Noureldin, S.A.; Therapondos, G.; Guindi, M.; Allard, J.P. A cross-sectional study assessing dietary intake and physical activity in Canadian patients with nonalcoholic fatty liver disease vs healthy controls. J. Acad. Nutr. Diet. 2014, 114, 1181–1194. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Pearson, T.A.; Wan, Y.; Hargrove, R.L.; Moriarty, K.; Fishell, V.; Etherton, T.D. High.–monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 1999, 70, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Zelber-Sagi, S.; Nitzan-Kaluski, D.; Goldsmith, R.; Webb, M.; Blendis, L.; Halpern, Z.; Oren, R. Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): A population based study. J. Hepatol. 2007, 47, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Ganji, S.H.; Kashyap, M.L.; Kamanna, V.S. Niacin inhibits fat accumulation, oxidative stress, and inflammatory cytokine IL-8 in cultured hepatocytes: Impact on non-alcoholic fatty liver disease. Metabolism 2015, 64, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Ullah, R.; Rauf, N.; Nabi, G.; Ullah, H.; Shen, Y.; Zhou, Y.D.; Fu, J. Role of nutrition in the pathogenesis and prevention of non-alcoholic fatty liver disease: Recent updates. Int. J. Biol. Sci. 2019, 15, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.Y.; Tzeng, Y.H.; Chai, C.Y.; Hsieh, A.T.; Chen, J.R.; Chang, L.S.; Yang, S.S. Soy protein retards the progression of non-alcoholic steatohepatitis via improvement of insulin resistance and steatosis. Nutrition 2011, 27, 943–948. [Google Scholar] [CrossRef]
- Trovato, F.M.; Martines, G.F.; Brischetto, D.; Catalano, D.; Musumeci, G.; Trovato, G.M. Fatty liver disease and lifestyle in youngsters: Diet, food intake frequency, exercise, sleep shortage and fashion. Liver Int. 2016, 36, 427–433. [Google Scholar] [CrossRef]
- Koot, B.G.; van der Baan-Slootweg, O.H.; Tamminga-Smeulders, C.L.; Rijcken, T.H.; Korevaar, J.C.; van Aalderen, W.M.; Jansen, P.L.; Benninga, M.A. Lifestyle intervention for non-alcoholic fatty liver disease: Prospective cohort study of its efficacy and factors related to improvement. Arch. Dis. Child. 2011, 96, 669–674. [Google Scholar] [CrossRef] [Green Version]
- Nseir, W.; Hellou, E.; Assy, N. Role of diet and lifestyle changes in nonalcoholic fatty liver disease. World J. Gastroenterol. WJG 2014, 20, 9338. [Google Scholar]
- Cho, S.; Dietrich, M.; Brown, C.J.; Clark, C.A.; Block, G. The effect of breakfast type on total daily energy intake and body mass index: Results from the Third National Health and Nutrition Examination Survey (NHANES III). J. Am. Coll. Nutr. 2003, 22, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Song, W.O.; Chun, O.K.; Obayashi, S.; Cho, S.; Chung, C.E. Is consumption of breakfast associated with body mass index in US adults? J. Am. Diet. Assoc. 2005, 105, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Moreno, L.A.; Rodriguez, G. Dietary risk factors for development of childhood obesity. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 336–341. [Google Scholar] [CrossRef]
- Baratta, F.; Pastori, D.; Polimeni, L.; Bucci, T.; Ceci, F.; Calabrese, C.; Ernesti, I.; Pannitteri, G.; Violi, F.; Angelico, F.; et al. Adherence to mediterranean diet and non-alcoholic fatty liver disease: Effect on insulin resistance. Am. J. Gastroenterol. 2017, 112, 1832–1839. [Google Scholar] [CrossRef] [PubMed]
- De Souza Marinho, T.; Ornellas, F.; Barbosa-da-Silva, S.; Mandarim-de-Lacerda, C.A.; Aguila, M.B. Beneficial effects of intermittent fasting on steatosis and inflammation of the liver in mice fed a high-fat or a high-fructose diet. Nutrition 2019, 65, 103–112. [Google Scholar] [CrossRef]
- Hotamisligil, G.S.; Shargill, N.S.; Spiegelman, B.M. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science 1993, 259, 87–91. [Google Scholar] [CrossRef]
- Czech, B.; Neumann, I.D.; Müller, M.; Reber, S.O.; Hellerbrand, C. Effect of chronic psychosocial stress on nonalcoholic steatohepatitis in mice. Int. J. Clin Exp. Pathol. 2013, 6, 1585. [Google Scholar] [PubMed]
- Zhang, S.; Ma, C.; Wang, X.; Wang, Q.; Song, W.; Li, C.; Zhai, C.; Qi, Y.; Fan, S.; Cheng, F. Impact of chronic psychological stress on nonalcoholic fatty liver disease. Int. J. Clin. Exp. Med. 2019, 12, 7991–7998. [Google Scholar]
- Stewart, K.E.; Levenson, J.L. Psychological and psychiatric aspects of treatment of obesity and nonalcoholic fatty liver disease. Clin. Liver Dis. 2012, 16, 615–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapper, E.B.; Sengupta, N.; Hunink, M.G.; Afdhal, N.H.; Lai, M. Cost-effective evaluation of nonalcoholic fatty liver disease with NAFLD fibrosis score and vibration controlled transient elastography. Am. J. Gastroenterol. 2015, 110, 1298–1304. [Google Scholar] [CrossRef]
- Cortesi, P.; Scalone, L.; Ciampichini, R.; Cozzolino, P.; Cesana, G.; Mantovani, L.; Okolicsanyi, S.; Ciaccio, A.; Rota, M.; Gentiluomo, M.; et al. Health related quality of life in the major liver conditions. Hepatology 2013, 58 (Suppl. 1), 1210A. [Google Scholar]
- Fontaine, K.; Barofsky, I. Obesity and health-related quality of life. Obes. Rev. 2001, 2, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Swallen, K.C.; Reither, E.N.; Haas, S.A.; Meier, A.M. Overweight, obesity, and health-related quality of life among adolescents: The National Longitudinal Study of Adolescent Health. Pediatrics 2005, 115, 340–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, M.K.; Joshi, A.V.; Madhavan, S.S.; Amonkar, M.M. Obesity and health-related quality of life: A cross-sectional analysis of the US population. Int. J. Obes. 2003, 27, 1227–1232. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Lubetkin, E.I. The impact of obesity on health-related quality-of-life in the general adult US population. J. Public Health 2005, 27, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Ford, E.S.; Li, C. Metabolic syndrome and health-related quality of life among US adults. Ann. Epidemiol. 2008, 18, 165–171. [Google Scholar] [CrossRef]
- Kim, M.H.; Cho, Y.S.; Uhm, W.S.; Kim, S.; Bae, S.C. Cross-cultural adaptation and validation of the Korean version of the EQ-5D in patients with rheumatic diseases. Qual. Life Res. 2005, 14, 1401–1406. [Google Scholar] [CrossRef]
- Herdman, M.; Gudex, C.; Lloyd, A.; Janssen, M.F.; Kind, P.; Parkin, D.; Bonsel, G.; Badia, X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [Google Scholar] [CrossRef] [Green Version]
- Nam, H.; Kim, K.; Kwon, S.; Koh, K.; Poul, K.; Ko, K.W.; Kind, P. EQ-5D Korean Valuation Study Using Time Trade Off Method; ScienceOpen, Inc.: Burlington, MA, USA, 2011. [Google Scholar]
Total (17,726) | HSI ≤ 36 | HSI > 36 | p-Value a | ||
---|---|---|---|---|---|
Sex | Male | 7986 (50.6) | 6004 (47.5) | 1982 (61.3) | <0.0001 |
Female | 9740 (49.4) | 7958 (52.5) | 1782 (38.7) | ||
Age | years | 43.93 ± 0.25 | 43.59 ± 0.27 | 45.1 ± 0.34 | <0.0001 |
Educational level | ≤Elementary | 4129 (17.3) | 3360 (18.1) | 769 (14.5) | <0.0001 |
Middle | 2064 (11.2) | 1623 (11.3) | 441 (10.8) | ||
High | 5010 (31) | 3868 (30.7) | 1142 (32.3) | ||
≥College | 5753 (35.9) | 4515 (35.5) | 1238 (37.4) | ||
Smoking | 2905 (19.5) | 2110 (18.1) | 795 (24.4) | <0.0001 | |
Exercise | 6956 (42) | 5495 (42.1) | 1461 (41.7) | <0.0001 | |
Alcohol | 8790 (54.1) | 6860 (53.5) | 1930 (56) | <0.0001 | |
Stress | 4637 (28.2) | 3496 (26.9) | 1141(32.7) | <0.0001 | |
Breakfast frequency | 5–7/week | 10,153 (60.2) | 8129 (61.1) | 2024 (57) | 0.002 |
3–4/week | 1702 (12.3) | 1332 (12.2) | 370 (12.6) | ||
1–2/week | 1603 (12.2) | 1234 (11.7) | 369 (14.2) | ||
Rare | 1908 (15.2) | 1475 (15) | 433 (16.2) | ||
Lunch frequency | 5–7/week | 13,933 (90.4) | 11,074 (90.8) | 2859 (89) | 0.047 |
3–4/week | 917 (6.3) | 708 (6.2) | 209 (7) | ||
1–2/week | 261 (1.7) | 198 (1.6) | 63 (2.1) | ||
Rare | 255 (1.5) | 190 (1.4) | 65 (2) | ||
Dinner frequency | 5–7/week | 13,980 (90.1) | 11,079 (90.1) | 2901 (90.1) | 0.783 |
3–4/week | 1106 (8.1) | 859 (8) | 247 (8.3) | ||
1–2/week | 218 (1.5) | 180 (1.6) | 38 (1.3) | ||
Rare | 62 (0.4) | 52 (0.4) | 10 (0.3) | ||
Companion for breakfast | 7120 (42.3) | 5692 (42.8) | 1428 (40.4) | 0.002 | |
Companion for lunch | 10,343 (69.1) | 8234 (69.3) | 2109 (68) | 0.042 | |
Companion for dinner | 11,676 (77) | 9240 (76.8) | 2436 (77.7) | 0.485 | |
WC | 81.09 ± 0.13 | 77.84 ± 0.12 | 92.98 ± 0.17 | <0.0001 | |
BMI | 23.66 ± 0.04 | 22.37 ± 0.03 | 28.3 ± 0.06 | <0.0001 | |
Fasting glucose | 99.28 ± 0.23 | 96.71 ± 0.2 | 108.38 ± 0.6 | <0.0001 | |
HbA1c | 5.61 ± 0.01 | 5.52 ± 0.01 | 5.92 ± 0.02 | <0.0001 | |
TC | 190.3 ± 0.38 | 187.96 ± 0.38 | 198.54 ± 0.82 | <0.0001 | |
HDL-C | 51.11 ± 0.14 | 52.63 ± 0.15 | 45.8 ± 0.2 | <0.0001 | |
TG | 134.18 ± 1.23 | 120.86 ± 1.32 | 180.56 ± 2.56 | <0.0001 | |
LDL-C | 119.07 ± 0.82 | 114.85 ± 1 | 124.47 ± 1.27 | <0.0001 | |
Stress | 0.28 ± 0.004 | 0.27 ± 0.005 | 0.33 ± 0.01 | <0.0001 | |
EQ-5D | 0.95 ± 0.001 | 0.96 ± 0.001 | 0.95 ± 0.002 | <0.0001 |
Characteristics | OR | (95% CI) | p-Value a | |
---|---|---|---|---|
Sex | Male | 1.747 | (1.609–1.898) | <0.0001 |
Female | 1 | Reference | ||
Age | 1.047 | (1.025–1.069) | <0.0001 | |
Educational level | ≤Elementary | 0.762 | (0.678–0.856) | 0.003 |
Middle | 0.903 | (0.788–1.034) | 0.190 | |
High | 0.998 | (0.897–1.11) | 0.660 | |
≥College | 1 | Reference | ||
Smoking | 1.349 | (1.221–1.49) | <0.0001 | |
Exercise | 0.892 | (0.821–0.97) | <0.0001 | |
Drinking | 1.057 | (0.966–1.156) | <0.0001 | |
Breakfast frequency | 5–7/week | 1 | Reference | |
3–4/week | 1.104 | (0.952–1.28) | 0.545 | |
1–2/week | 1.301 | (1.123–1.508) | 0.245 | |
Rare | 1.165 | (1.016–1.337) | 0.029 | |
Lunch frequency | 5–7/week | 1 | Reference | |
3–4/week | 1.153 | (0.946–1.406) | 0.312 | |
1–2/week | 1.330 | (0.943–1.876) | 0.791 | |
Rare | 1.415 | (1.005–1.992) | 0.046 | |
Dinner frequency | 5–7/week | 1 | Reference | |
3–4/week | 1.034 | (0.878–1.218) | 0.692 | |
1–2/week | 0.833 | (0.548–1.267) | 0.897 | |
Rare | 0.882 | (0.407–1.912) | 0.751 | |
Eating out | ≥2/day | 1.250 | (1.006–1.552) | |
1/day | 1.103 | (0.906–1.343) | ||
5–6/week | 0.899 | (0.739–1.094) | ||
3–4/week | 0.971 | (0.78–1.208) | ||
1–2/week | 1.008 | (0.833–1.22) | ||
1–3/month | 1.064 | (0.868–1.304) | ||
Rare | 1 | Reference | ||
Companion for breakfast | Yes | 1 | Reference | |
No | 1.008 | (0.903–1.126) | 0.001 | |
Companion for lunch | Yes | 1 | Reference | |
No | 1.029 | (0.932–1.136) | 0.018 | |
Companion for dinner | Yes | 1 | Reference | |
No | 0.958 | (0.857–1.07) | 0.335 | |
WC | 1.237 | (1.227–1.247) | <0.0001 | |
BMI | 2.389 | (2.309–2.471) | <0.0001 | |
Fasting glucose | 1.021 | (1.018–1.023) | <0.0001 | |
HbA1c | 1.829 | (1.707–1.96) | <0.0001 | |
TC | 1.008 | (1.006–1.009) | <0.0001 | |
HDL-C | 0.948 | (0.944–0.952) | <0.0001 | |
TG | 1.004 | (1.003–1.005) | <0.0001 | |
LDL-C | 1.008 | (1.005–1.011) | <0.0001 | |
Stress recognition | 1.316 | (1.203–1.44) | <0.0001 | |
EQ-5D | 2.255 | (1.533–3.317) | <0.0001 |
OR | (95% CI) | p-Value a | ||
---|---|---|---|---|
Breakfast frequency | 5–7/week | 1 | Reference | |
3–4/week | 1.052 | 0.890–1.243 | 0.925 | |
1–2/week | 1.246 | 1.053–1.474 | 0.076 | |
Rare | 1.042 | 0.890–1.221 | 0.609 | |
Lunch frequency | 5–7/week | 1 | Reference | |
3–4/week | 1.116 | 0.903–1.378 | 0.399 | |
1–2/week | 1.291 | 0.907–1.836 | 0.891 | |
Rare | 1.333 | 0.940–1.890 | 0.107 | |
Dinner frequency | 5–7/week | 1 | Reference | |
3–4/week | 1.025 | 0.852–1.233 | 0.313 | |
1–2/week | 0.861 | 0.563–1.317 | 0.568 | |
Rare | 0.653 | 0.278–1.533 | 0.327 | |
Stress | 1.314 | 1.175–1.469 | <0.0001 | |
EQ-5D | 3.028 | 1.893–4.844 | <0.0001 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, A.L. Association between Non-Alcoholic Fatty Liver Disease and Dietary Habits, Stress, and Health-Related Quality of Life in Korean Adults. Nutrients 2020, 12, 1555. https://doi.org/10.3390/nu12061555
Han AL. Association between Non-Alcoholic Fatty Liver Disease and Dietary Habits, Stress, and Health-Related Quality of Life in Korean Adults. Nutrients. 2020; 12(6):1555. https://doi.org/10.3390/nu12061555
Chicago/Turabian StyleHan, A Lum. 2020. "Association between Non-Alcoholic Fatty Liver Disease and Dietary Habits, Stress, and Health-Related Quality of Life in Korean Adults" Nutrients 12, no. 6: 1555. https://doi.org/10.3390/nu12061555
APA StyleHan, A. L. (2020). Association between Non-Alcoholic Fatty Liver Disease and Dietary Habits, Stress, and Health-Related Quality of Life in Korean Adults. Nutrients, 12(6), 1555. https://doi.org/10.3390/nu12061555