Elevation of the Blood Glucose Level is Involved in an Increase in Expression of Sweet Taste Receptors in Taste Buds of Rat Circumvallate Papillae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. Fasting and Fed Conditions
2.4. Development of DM in Rats
2.5. Brief Access Test
2.6. Exfoliation of Epithelial Tissue Including Rat Circumvallate Papillae (CP)
2.7. Reverse Transcription (RT) and Real-Time Quantitative PCR Analyses
2.8. Western Blotting
2.9. Immunohistochemical Analysis
2.10. Statistical Analysis
3. Results
3.1. Sweet Taste Receptor Expression Under Fasting and Fed Conditions
3.2. Sweet Taste Receptor Expression Under STZ-Induced DM Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nelson, G.; Hoon, M.A.; Chandrashekar, J.; Zhang, Y.; Ryba, N.J.; Zuker, C.S. Mammalian sweet taste receptors. Cell 2001, 106, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Temussi, P. The sweet taste receptor: A single receptor with multiple sites and modes of interaction. Adv. Food Nutr. Res. 2007, 53, 199–239. [Google Scholar] [CrossRef]
- Behrens, M.; Meyerhof, W. A role for taste receptors in (neuro)endocrinology? J. Neuroendocrinol. 2019, 31, e12691. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Nagasawa, M.; Mogami, H.; Lohse, M.; Ninomiya, Y.; Kojima, I. Multimodal function of the sweet taste receptor expressed in pancreatic beta-cells: Generation of diverse patterns of intracellular signals by sweet agonists. Endocr. J. 2013, 60, 1191–1206. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, Y.; Nagasawa, M.; Yamada, S.; Hara, A.; Mogami, H.; Nikolaev, V.O.; Lohse, M.J.; Shigemura, N.; Ninomiya, Y.; Kojima, I. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE 2009, 4, e5106. [Google Scholar] [CrossRef] [Green Version]
- Kyriazis, G.A.; Smith, K.R.; Tyrberg, B.; Hussain, T.; Pratley, R.E. Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology 2014, 155, 2112–2121. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.; Nakagawa, Y.; Ma, J.; Li, L.; Hamano, K.; Akimoto, T.; Ninomiya, Y.; Kojima, I. Expression of the glucose-sensing receptor T1R3 in pancreatic islet: Changes in the expression levels in various nutritional and metabolic states. Endocr. J. 2014, 61, 797–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Yan, J.; Suo, Y.; Li, J.; Wang, Q.; Lv, B. Nutritional status alters saccharin intake and sweet receptor mRNA expression in rat taste buds. Brain Res. 2010, 1325, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.R.; Yan, J.; Rolls, E.T. Brain mechanisms of satiety and taste in macaques. Neurobiology 1995, 3, 281–292. [Google Scholar] [PubMed]
- Hellekant, G.H.; Hladik, C.M.; Dennys, V.; Simmen, B.; Roberts, T.W.; Glaser, D. On the relationship between sweet taste and seasonal body weight changes in a primate (Microcebus murinus). Chem. Senses 1993, 18, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.K.; Martin, B.; Golden, E.; Dotson, C.D.; Maudsley, S.; Kim, W.; Jang, H.J.; Mattson, M.P.; Drucker, D.J.; Egan, J.M.; et al. Modulation of taste sensitivity by GLP-1 signaling. J. Neurochem. 2008, 106, 455–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.H.; Liu, X.M.; Feng, X.H.; Han, L.O.; Liu, G.D. Expression of alpha-gustducin in the circumvallate papillae of taste buds of diabetic rats. Acta Histochem. 2009, 111, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Zverev, Y.P. Effects of caloric deprivation and satiety on sensitivity of the gustatory system. BMC Neurosci. 2004, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emordi, J.E.; Agbaje, E.O.; Oreagba, I.A.; Iribhogbe, O.I. Antidiabetic and hypolipidemic activities of hydroethanolic root extract of Uvaria chamae in streptozotocin induced diabetic albino rats. BMC Complement. Altern. Med. 2016, 16, 468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furman, B.L. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol. 2015, 70, 5–47. [Google Scholar] [CrossRef]
- Rakieten, N.; Rakieten, M.L.; Nadkarni, M.V. Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother. Rep. 1963, 29, 91–98. [Google Scholar]
- Tjalve, H.; Wilander, E.; Johansson, E.B. Distribution of labelled streptozotocin in mice: Uptake and retension in pancreatic islets. J. Endocrinol. 1976, 69, 455–456. [Google Scholar] [CrossRef]
- Ohishi, A.; Nishida, K.; Miyamoto, K.; Imai, M.; Nakanishi, R.; Kobayashi, K.; Hayashi, A.; Nagasawa, K. Bortezomib alters sour taste sensitivity in mice. Toxicol. Rep. 2017, 4, 172–180. [Google Scholar] [CrossRef]
- Ohishi, A.; Nishida, K.; Yamanaka, Y.; Miyata, A.; Ikukawa, A.; Yabu, M.; Miyamoto, K.; Bansho, S.; Nagasawa, K. Oxaliplatin alters expression of T1R2 receptor and sensitivity to sweet taste in rats. Biol. Pharm. Bull. 2016, 39, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Murata, Y.; Nakashima, K.; Yamada, A.; Shigemura, N.; Sasamoto, K.; Ninomiya, Y. Gurmarin suppression of licking responses to sweetener-quinine mixtures in C57BL mice. Chem. Senses 2003, 28, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Nishida, K.; Kitada, T.; Kato, J.; Dohi, Y.; Nagasawa, K. Expression of equilibrative nucleoside transporter 1 in rat circumvallate papillae. Neurosci. Lett. 2013, 533, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, K.; Escartin, C.; Swanson, R.A. Astrocyte cultures exhibit P2X7 receptor channel opening in the absence of exogenous ligands. Glia 2009, 57, 622–633. [Google Scholar] [CrossRef] [PubMed]
- Segawa, S.; Tatsumi, N.; Ohishi, A.; Nishida, K.; Nagasawa, K. Characterization of zinc uptake by mouse primary cultured astrocytes and microglia. Metallomics 2015, 7, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Dohi, Y.; Yamanaka, Y.; Miyata, A.; Tsukamoto, K.; Yabu, M.; Ohishi, A.; Nagasawa, K. Expression of adenosine A2b receptor in rat type II and III taste cells. Histochem. Cell Biol. 2014, 141, 499–506. [Google Scholar] [CrossRef]
- Mace, O.J.; Affleck, J.; Patel, N.; Kellett, G.L. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J. Physiol. 2007, 582, 379–392. [Google Scholar] [CrossRef]
- Shigemura, N.; Ohta, R.; Kusakabe, Y.; Miura, H.; Hino, A.; Koyano, K.; Nakashima, K.; Ninomiya, Y. Leptin modulates behavioral responses to sweet substances by influencing peripheral taste structures. Endocrinology 2004, 145, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Sanematsu, K.; Ohta, R.; Shirosaki, S.; Koyano, K.; Nonaka, K.; Shigemura, N.; Ninomiya, Y. Diurnal variation of human sweet taste recognition thresholds is correlated with plasma leptin levels. Diabetes 2008, 57, 2661–2665. [Google Scholar] [CrossRef] [Green Version]
- Takai, S.; Watanabe, Y.; Sanematsu, K.; Yoshida, R.; Margolskee, R.F.; Jiang, P.; Atsuta, I.; Koyano, K.; Ninomiya, Y.; Shigemura, N. Effects of insulin signaling on mouse taste cell proliferation. PLoS ONE 2019, 14, e0225190. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.; Griffin, F.; England, S.; Garn, S.M. Taste thresholds and food dislikes. Nature 1961, 191, 1328. [Google Scholar] [CrossRef]
- Dotson, C.D.; Zhang, L.; Xu, H.; Shin, Y.K.; Vigues, S.; Ott, S.H.; Elson, A.E.; Choi, H.J.; Shaw, H.; Egan, J.M.; et al. Bitter taste receptors influence glucose homeostasis. PLoS ONE 2008, 3, e3974. [Google Scholar] [CrossRef] [Green Version]
Genes | Direction | Sequence | Size (bp) | Accession No. |
---|---|---|---|---|
Tas1r2 (T1r2) | Forward | 5′-TTCTCATGCTTCTGCCGACAG-3′ | 105 | NM_001271266 |
Reverse | 5′-GCCAATCTTGAAGACACACACGA-3′ | |||
Tas1r3 (T1r3) | Forward | 5′-AACAACCAATGGCTCACCTCC-3′ | 202 | NM_130818.1 |
Reverse | 5′-AAAGCCATCAAGTACCAGGCAC-3′ | |||
Tas2r121 (T2R7) | Forward | 5′-ACTCTATGCCACTTACTTCATATCC-3′ | 120 | NM_023997.1 |
Reverse | 5′-AATGAGTGGCTTGAAGGGTAG-3′ | |||
Tas2r110 (T2R10) | Forward | 5′-GGTCAATGCCAAAGGACCC-3′ | 301 | NM_001166677.1 |
Reverse | 5′-TTAGGGATCCATGATGTGTATATGC-3′ | |||
Tas2r108 (T2R16) | Forward | 5′-ATTCCATATTCAATCGCTGCC-3′ | 201 | NM_001024686.1 |
Reverse | 5′-TCAGTTACTAACGAAATCCCGC-3′ | |||
Tas2r138 (T2R38) | Forward | 5′-TATGTGGTGTCATTCTGTGCC-3′ | 207 | NM_001024685.1 |
Reverse | 5′-GACTCTTCTCACCTTTTGCCT-3′ | |||
bactin (β-actin) | Forward | 5′-TGACCCTGAAGTACCCCATTG-3′ | 81 | NM_031144.3 |
Reverse | 5′-TGTAGAAAGTGTGGTGCCAAATC-3′ |
Proteins | Primary Antibody | Secondary Antibody |
---|---|---|
T1R3 | rabbit anti-T1R3, dilution: 1:1000 (Cat No.: OST00259, Osenses, Keswick, SA, Australia) Blocking buffer: 3% BSA in PBS-T | anti-rabbit HRP-linked IgG, dilution: 1:10000 (Cat No.: PI-1000, Vector Laboratories, Burlingame, CA,USA) |
ß-actin | rabbit anti-beta actin, dilution: 1:1000 (Cat No.: GTX109639, GeneTex Int. Co., Los Angeles, CA, USA) Blocking buffer: 4% BlockAce® (Cat No.: UK-B40, KAC Co. Ltd., Hyogo, Japan) in PBS-T |
Proteins | Primary Antibody | Secondary Antibody |
---|---|---|
T1R2 | rabbit anti-TAS1R2, dilution: 1:200 (Cat No.: NB110-74920-azide, Novus Biologicals, LLC., Centennial, CO) | Donkey anti-rabbit IgG conjugated with Alexa Fluor 488, dilution: 1:1000 (Cat. No.: 21206, Life Technologies, Carlsbad, CA, USA) |
T1R3 | rabbit anti-T1R3, dilution: 1:1000 (Cat No.: OST00259, Osenses) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwamura, M.; Honda, R.; Nagasawa, K. Elevation of the Blood Glucose Level is Involved in an Increase in Expression of Sweet Taste Receptors in Taste Buds of Rat Circumvallate Papillae. Nutrients 2020, 12, 990. https://doi.org/10.3390/nu12040990
Iwamura M, Honda R, Nagasawa K. Elevation of the Blood Glucose Level is Involved in an Increase in Expression of Sweet Taste Receptors in Taste Buds of Rat Circumvallate Papillae. Nutrients. 2020; 12(4):990. https://doi.org/10.3390/nu12040990
Chicago/Turabian StyleIwamura, Moemi, Risa Honda, and Kazuki Nagasawa. 2020. "Elevation of the Blood Glucose Level is Involved in an Increase in Expression of Sweet Taste Receptors in Taste Buds of Rat Circumvallate Papillae" Nutrients 12, no. 4: 990. https://doi.org/10.3390/nu12040990
APA StyleIwamura, M., Honda, R., & Nagasawa, K. (2020). Elevation of the Blood Glucose Level is Involved in an Increase in Expression of Sweet Taste Receptors in Taste Buds of Rat Circumvallate Papillae. Nutrients, 12(4), 990. https://doi.org/10.3390/nu12040990