Maternal Diet During Pregnancy and Blood Cadmium Concentrations in an Observational Cohort of British Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. The ALSPAC Study
2.2. Exposures
2.2.1. Food Frequency Questionnaires
2.2.2. Food Groups
2.2.3. Dietary Patterns
2.3. Outcomes
2.3.1. Collection, Storage, and Analysis of Blood Samples
2.3.2. Potential Confounders
2.4. Statistical Analysis
2.5. Sensitivity Analyses
3. Results
3.1. Diet and Blood Cd Concentrations in Pregnant Women in the Main Analysis (Overall Sample)
3.2. Sensitivity Analysis 1: Diet and Blood Cd Concentrations in Pregnant Women with Exclusion of Those Who Smoked in the First Trimester
3.3. Sensitivity Analysis 2: Diet and Blood Cd Concentrations in Pregnant Women with Exclusion of Those Who Smoked in the First Trimester and Pre-Pregnancy
3.4. Sensitivity Analysis 3: Diet and Blood Cd Concentrations Among Pregnant Women with Detectable B-Cd
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Declarations
Availability of Data and Material
References
- Gao, L.; Chang, J.; Chen, R.; Li, H.; Lu, H.; Tao, L.; Xiong, J. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: Prospects in cultivating Fe-rich but Cd-free rice. Rice 2016, 9, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, M.J.; Parker, D.R.; Clarke, J.M. Metals and micronutrients—Food safety issues. Field Crops Res. 1999, 60, 143–163. [Google Scholar] [CrossRef]
- Järup, L.; Åkesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.M.; Golding, J.; Emond, A.M. Lead, cadmium and mercury levels in pregnancy: The need for international consensus on levels of concern. J. Dev. Orig. Health Dis. 2014, 5, 16–30. [Google Scholar] [CrossRef]
- Faroon, O.; Ashizawa, A.; Wright, S.; Tucker, P.; Jenkins, K.; Ingerman, L.; Rudisill, C.; Inc, S. Toxicologial Profile for Cadmium; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2012. [Google Scholar]
- Leazer, T.M.; Liu, Y.; Klaassen, C.D. Cadmium absorption and its relationship to Divalent Metal Transporter-1 in the pregnant rat. Toxicol. Appl. Pharmacol. 2002, 185, 18–24. [Google Scholar] [CrossRef]
- Kippler, M.; Goessler, W.; Nermell, B.; Ekström, E.C.; Lönnerdal, B.; El Arifeen, S.; Vahter, M. Factors influencing intestinal cadmium uptake in pregnant Bangladeshi women—A prospective cohort study. Environ. Res. 2009, 109, 914–921. [Google Scholar] [CrossRef]
- Sakamoto, M.; Chan, H.M.; Domingo, J.L.; Kubota, M.; Murata, K. Changes in body burden of mercury, lead, arsenic, cadmium and selenium in infants during early lactation in comparison with placental transfer. Ecotoxicol. Environ. Saf. 2012, 84, 179–184. [Google Scholar] [CrossRef]
- Gundacker, C.; Hengstschläger, M. The role of the placenta in fetal exposure to heavy metals. Wien. Med. Wochenschr. 2012, 162, 201–206. [Google Scholar] [CrossRef]
- Chen, Z.; Myers, R.; Wei, T.; Bind, E.; Kassim, P.; Wang, G.; Ji, Y.; Hong, X.; Caruso, D.; Bartell, T.; et al. Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; McCullough, L.E.; Tzeng, J.Y.; Darrah, T.; Vengosh, A.; Maguire, R.L.; Maity, A.; Samuel-Hodge, C.; Murphy, S.K.; Mendez, M.A.; et al. Maternal blood cadmium, lead and arsenic evels, nutrient combinations, and offspring birthweight. BMC Public Health 2017, 17, 354. [Google Scholar] [CrossRef] [Green Version]
- Llanos, M.N.; Ronco, A.M. Fetal growth restriction is related to placental levels of cadmium, lead and arsenic but not with antioxidant activities. Reprod. Toxicol. 2009, 27, 88–92. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. A Recipe for Safer Food. Available online: http://www.who.int/foodsafety/chem/TDS_recipe_2005_en.pdf (accessed on 15 January 2020).
- Callan, A.; Hinwood, A.; Devine, A. Metals in commonly eaten groceries in Western Australia: A market basket survey and dietary assessment. Food Addit. Contam. 2014, 31, 1968–1981. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Y.Y.; Chan, B.T.P.; Lam, C.H.; Chung, S.W.C.; Ho, Y.Y.; Xiao, Y. Dietary exposures to eight metallic contaminants of the Hong Kong adult population from a total diet study. Food Addit. Contam. 2014, 31, 1539–1549. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Lu, Y.; Liang, Y.; Chen, B.; Wu, M.; Li, S.; He, G.; Jin, T. Exposure assessment of dietary cadmium: Findings from Shanghainese over 40 years, China. BMC Public Health 2013, 13, 590. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.A.; Lindtner, O.; Blume, K.; Heinemeyer, G.; Schneider, K. Cadmium exposure from food: The German LExUKon project. Food Addit. Contam. 2014, 31, 1038–1051. [Google Scholar] [CrossRef]
- Bannon, D.I.; Abounader, R.; Lees, P.S.; Bressler, J.P. Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. Am. J. Physiol. Cell Physiol. 2003, 284, C44–C50. [Google Scholar] [CrossRef] [Green Version]
- Spungen, J.H. Children’s exposures to lead and cadmium: FDA Total Diet Study 2014–16. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 1–11. [Google Scholar] [CrossRef]
- Al-Rmalli, S.W.; Jenkins, R.O.; Haris, P.I. Dietary intake of cadmium from Bangladeshi foods. J. Food Sci. 2012, 77, T26–T33. [Google Scholar] [CrossRef]
- Amzal, B.; Julin, B.; Vahter, M.; Wolk, A.; Johanson, G.; Akesson, A. Population toxicokinetic modeling of cadmium for health risk assessment. Environ. Health Perspect. 2009, 117, 1293–1301. [Google Scholar] [CrossRef]
- Adams, S.V.; Quraishi, S.M.; Shafer, M.M.; Passarelli, M.N.; Freney, E.P.; Chlebowski, R.T.; Luo, J.; Meliker, J.R.; Mu, L.; Neuhouser, M.L.; et al. Dietary cadmium exposure and risk of breast, endometrial, and ovarian cancer in the Women’s Health Initiative. Environ. Health Perspect. 2014, 122, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Moynihan, M.; Peterson, K.E.; Cantoral, A.; Song, P.X.K.; Jones, A.; Solano-Gonzalez, M.; Meeker, J.D.; Basu, N.; Tellez-Rojo, M.M. Dietary predictors of urinary cadmium among pregnant women and children. Sci. Total Environ. 2017, 575, 1255–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Nobles, C.; Purdue-Smithe, A.; Wactawski-Wende, J.; Pollack, A.; Freeman, J.; Alkhalaf, Z.; Andriessen, V.; Radoc, J.; Mumford, S. Food intake and blood levels of mercury, lead, and cadmium among healthy reproductive aged women (P18-024-19). Curr. Dev. Nutr. 2019, 3. [Google Scholar] [CrossRef]
- Gunshin, H.; Mackenzie, B.; Berger, U.V.; Gunshin, Y.; Romero, M.F.; Boron, W.F.; Nussberger, S.; Gollan, J.L.; Hediger, M.A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997, 388, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, H.M.; Branstæter, A.L.; Borch-Iohnsen, B.; Ellingsen, D.G.; Alexander, J.; Thomassen, Y.; Stigum, H.; Ydersbond, T.A. Low iron stores are related to higher blood lead concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT2 study. Environ. Res. 2010, 110, 497–504. [Google Scholar] [CrossRef]
- Kippler, M.; Ekström, E.C.; Lönnerdal, B.; Goessler, W.; Akesson, A.; El Arifeen, S.; Persson, L.A.; Vahter, M. Influence of iron and zinc status on cadmium accumulation in Bangladeshi women. Toxicol. Appl. Pharmacol. 2007, 222, 221–226. [Google Scholar] [CrossRef]
- Gallagher, C.M.; Chen, J.J.; Kovach, J.S. The relationship between body iron stores and blood and urine cadmium concentrations in US never-smoking, non-pregnant women aged 20–49 years. Environ. Res. 2011, 111, 702–707. [Google Scholar] [CrossRef]
- Meltzer, H.M.; Alexander, J.; Brantsæter, A.L.; Borch-Iohnsen, B.; Ellingsen, D.G.; Thomassen, Y.; Holmen, J.; Ydersbond, T.A. The impact of iron status and smoking on blood divalent metal concentrations in Norwegian women in the HUNT2 Study. J. Trace Elem. Med. Biol. 2016, 38, 165–173. [Google Scholar] [CrossRef]
- Satarug, S. Dietary Cadmium intake and its effects on kidneys. Toxics 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, M.; Calatayud, M.; Jadán Piedra, C.; Chiocchietti, G.M.; Vélez, D.; Devesa, V. Toxic trace elements at gastrointestinal concentration. Food Chem. Toxicol. 2015, 86, 163–175. [Google Scholar] [CrossRef]
- Vance, T.M.; Chun, O.K. Zinc intake is associated with lower cadmium burden in US adults. J. Nutr. 2015, 145, 2741–2748. [Google Scholar] [CrossRef] [Green Version]
- Reeves, P.G.; Chaney, R.L. Bioavailability as an issue in risk assessment and management of food cadmium: A review. Sci. Total Environ. 2008, 398, 13–19. [Google Scholar] [CrossRef]
- Fraser, A.; Macdonald-Wallis, C.; Tilling, K.; Boyd, A.; Golding, J.; Davey Smith, G.; Henderson, J.; Macleod, J.; Molloy, L.; Ness, A.; et al. Cohort profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int. J. Epidemiol. 2013, 42, 97–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyd, A.; Golding, J.; Macleod, J.; Lawlor, D.A.; Fraser, A.; Henderson, J.; Molloy, L.; Ness, A.; Ring, S.; Davey Smith, G. Cohort profile: The ’Children of the 90s’—The index offspring of the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 2013, 42, 111–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- University of Bristol. Avon Longitudinal Study of Parents and Children. Available online: www.bris.ac.uk/alspac/ (accessed on 17 March 2020).
- University of Bristol. Avon Longitudinal Study of Parents and Children: Explore data and samples. Available online: www.bristol.ac.uk/alspac/researchers/our-data/ (accessed on 17 March 2020).
- Rogers, I.; Emmett, P. Diet during pregnancy in a population of pregnant women in South West England. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. Eur. J. Clin. Nutr. 1998, 52, 246–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, J.; Foster, K.; Tyler, H.; Wiseman, M. The Dietary and Nutritional Survey of British Adults; HMSO: London, UK, 1990. [Google Scholar]
- Williams, C.; Birch, E.E.; Emmett, P.M.; Northstone, K.; Avon Longitudinal Study of Pregnancy and Childhood Study Team. Stereoacuity at age 3.5 y in children born full-term is associated with prenatal and postnatal dietary factors: A report from a population-based cohort study. Am. J. Clin. Nutr. 2001, 73, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Northstone, K.; Emmett, P.; Rogers, I. Dietary patterns in pregnancy and associations with socio-demographic and lifestyle factors. Eur. J. Clin. Nutr. 2008, 62, 471–479. [Google Scholar] [CrossRef]
- Taylor, C.M.; Golding, J.; Hibbeln, J.; Emond, A.M. Enviromental factors in relation to blood lead levels in pregnant women in the UK: The ALSPAC study. PLoS ONE 2013, 8, e72371. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Third National Report on Human Exposure to Environmental Chemicals; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2005. [Google Scholar]
- Hornung, R.; Reed, L.D. Estimation of average concentration in the prescence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Townsend, P.; Phillimore, P.; Beattie, A. Health and Deprivation: Inequality and the North; Croom Helm: London, UK, 1988. [Google Scholar]
- Brion, M.J.; Ness, A.R.; Rogers, I.; Emmett, P.; Cribb, V.; Davey Smith, G.; Lawlor, D.A. Maternal macronutrient and energy intakes in pregnancy and offspring intake at 10 y: Exploring parental comparisons and prenatal effects. Am. J. Clin. Nutr. 2010, 91, 748–756. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.V.; Newcomb, P.A. Cadmium blood and urine concentrations as measures of exposure: NHANES 1999–2010. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Roels, H.; Hubermont, G.; Buchet, J.P.; Lauwerys, R. Placental transfer of lead, mercury, cadmium, and carbon monoxide in women. III. Factors influencing the accumulation of heavy metals in the placenta and the relationship between metal concentration in the placenta and in maternal and cord blood. Environ. Res. 1978, 16, 236–247. [Google Scholar] [CrossRef]
- Lauwerys, R.R.; Bernard, A.M.; Roels, H.A.; Buchet, J.P. Cadmium: Exposure markers as predictors of nephrotoxic effects. Clin. Chem. 1994, 40, 1391–1394. [Google Scholar] [CrossRef] [PubMed]
- Sanders, A.P.; Flood, K.; Chiang, S.; Herring, A.H.; Wolf, L.; Fry, R.C. Towards prenatal biomonitoring in North Carolina: Assessing arsenic, cadmium, mercury, and lead levels in pregnant women. PLoS ONE 2012, 7, e31354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhardsson, L.; Lundh, T. Metal concentrations in blood and hair in pregnant females in southern Sweden. J. Environ. Health 2010, 72, 37–41. [Google Scholar]
- Ebert-McNeill, A.; Clark, S.; Miller, J.; Birdsall, P.; Chandar, M.; Wu, L.; Cerny, E.; Hall, P.; Johnson, M.; Isales, C.; et al. Cadmium intake and systemic exposure in postmenopausal women and age-matched men who smoke cigarettes. Toxicol. Sci. Off. J. Soc. Toxicol. 2012. [Google Scholar] [CrossRef] [Green Version]
- Menai, M.; Heude, B.; Slama, R.; Forhan, A.; Sahuquillo, J.; Charles, M.A.; Yazbeck, C. Association between maternal blood cadmium during pregnancy and birth weight and the risk of fetal growth restriction: The EDEN mother–child cohort study. Reprod. Toxicol. 2012, 34, 622–627. [Google Scholar] [CrossRef]
- Schulz, C.; Angerer, J.; Ewers, U.; Kolossa-Gehring, M. The German Human Biomonitoring Commission. Int. J. Hyg. Environ. Health 2007, 210, 373–382. [Google Scholar] [CrossRef]
- Ferrari, P.; Arcella, D.; Heraud, F.; Cappe, S.; Fabiansson, S. Impact of refining the assessment of dietary exposure to cadmium in the European adult population. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 687–697. [Google Scholar] [CrossRef]
- Food Standards Agency. Total Diet Study of Metals and Other Elements in Foods; Food and Environment Research Agency: York, UK, 2015. [Google Scholar]
- Kim, K.; Melough, M.M.; Vance, T.M.; Noh, H.; Koo, S.I.; Chun, O.K. Dietary cadmium intake and sources in the US. Nutrients 2018, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Filippini, T.; Cilloni, S.; Malavolti, M.; Violi, F.; Malagoli, C.; Tesauro, M.; Bottecchi, I.; Ferrari, A.; Vescovi, L.; Vinceti, M. Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy community. J. Trace Elem. Med. Biol. 2018, 50, 508–517. [Google Scholar] [CrossRef]
- Yu, G.; Zheng, W.; Wang, W.; Dai, F.; Zhang, Z.; Yuan, Y.; Wang, Q. Health risk assessment of Chinese consumers to cadmium via dietary intake. J. Trace Elem. Med. Biol. 2017, 44, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, I.H.; Thomsen, C.; Haug, L.S.; Knutsen, H.K.; Brantsaeter, A.L.; Papadopoulou, E.; Erlund, I.; Lundh, T.; Alexander, J.; Meltzer, H.M. Patterns and dietary determinants of essential and toxic elements in blood measured in mid-pregnancy: The Norwegian Environmental Biobank. Sci. Total Environ. 2019, 671, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Krajcovicova-Kudladkova, M.; Ursinyova, M.; Masanova, V.; Bederova, A.; Valachovicova, M. Cadmium blood concentrations in relation to nutrition. Cent. Eur. J. Public Health 2006, 14, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Shawki, A.; Mackenzie, B. Interaction of calcium with the human divalent metal-ion transporter-1. Biochem. Biophys. Res. Commun. 2010, 393, 471–475. [Google Scholar] [CrossRef] [Green Version]
- Dix-Cooper, L.; Kosatsky, T. Blood mercury, lead and cadmium levels and determinants of exposure among newcomer South and East Asian women of reproductive age living in Vancouver, Canada. Sci. Total Environ. 2018, 619–620, 1409–1419. [Google Scholar] [CrossRef]
- Arbuckle, T.E.; Liang, C.L.; Morisset, A.S.; Fisher, M.; Weiler, H.; Cirtiu, C.M.; Legrand, M.; Davis, K.; Ettinger, A.S.; Fraser, W.D.; et al. Maternal and fetal exposure to cadmium, lead, manganese and mercury: The MIREC study. Chemosphere 2016, 163, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Newby, P.K.; Tucker, K.L. Empirically derived eating patterns using factor or cluster analysis: A review. Nutr. Rev. 2004, 62, 177–203. [Google Scholar] [CrossRef]
- Bocca, B.; Ruggieri, F.; Pino, A.; Rovira, J.; Calamandrei, G.; Martinez, M.A.; Domingo, J.L.; Alimonti, A.; Schuhmacher, M. Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood. Environ. Res. 2019, 177, 108599. [Google Scholar] [CrossRef]
- McGowan, C.A.; McAuliffe, F.M. Maternal dietary patterns and associated nutrient intakes during each trimester of pregnancy. Public Health Nutr. 2013, 16, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Savard, C.; Lemieux, S.; Weisnagel, S.J.; Fontaine-Bisson, B.; Gagnon, C.; Robitaille, J.; Morisset, A.S. Trimester-specific dietary intakes in a sample of French–Canadian pregnant women in comparison with national nutritional guidelines. Nutrients 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Kopp-Hoolihan, L.E.; van Loan, M.D.; Wong, W.W.; King, J.C. Longitudinal assessment of energy balance in well-nourished, pregnant women. Am. J. Clin. Nutr. 1999, 69, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Itoh, H.; Tasaka, M.; Naito, H.; Fukuoka, Y.; Muramatsu Kato, K.; Kohmura, Y.K.; Sugihara, K.; Kanayama, N.; Hamamatsu Birth Cohort Study Team. Changes of maternal dietary intake, bodyweight and fetal growth throughout pregnancy in pregnant Japanese women. J. Obstet. Gynaecol. Res. 2013, 39, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Northstone, K.; Emmett, P.M. A comparison of methods to assess changes in dietary patterns from pregnancy to 4 years post-partum obtained using principal components analysis. Br. J. Nutr. 2008, 99, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.Y.; Lee, J.H.; Park, S.S.; Seo, A.R.; Ahn, H.Y.; Bae, W.K.; Lee, Y.J.; Yim, E. Less healthy dietary pattern is associated with smoking in Korean men according to nationally representative data. J. Korean Med. Sci. 2013, 28, 869–875. [Google Scholar] [CrossRef] [PubMed]
Participant Characteristic | n (%) | Odds Ratio (95% CI) | p Value | |
---|---|---|---|---|
Excluded | Included | |||
115054 (84.2) | 2169 (15.9) | |||
Maternal age at pregnancy (years) | ||||
≤19 | 600 (5.2) | 53 (2.4) | 1.00 | |
20 to <25 | 2341 (20.4) | 313 (14.4) | 1.51 (1.11, 2.05) | |
25 to <30 | 4437 (38.6) | 850 (39.2) | 2.17 (1.62, 2.90) | |
30 to <35 | 3014 (26.2) | 709 (32.8) | 2.67 (1.80, 3.58) | |
≥35 | 1113 (9.7) | 242 (11.2) | 2.46 (1.80, 3.37) | <0.001 |
Maternal education | ||||
None/CSE | 3104 (31.1) | 541 (24.9) | 1.00 | |
Vocational/O-level | 5672 (56.9) | 1262 (58.2) | 1.27 (1.14, 1.42) | |
A-level and above | 1191 (12.0) | 366 (16.9) | 1.76 (1.52, 2.05) | <0.001 |
Maternal social class | ||||
I/II | 2936 (36.9) | 734 (39.2) | 1.00 | |
III non-manual/III manual | 4041 (50.8) | 936 (50.0) | 0.93 (0.83, 1.03) | |
IV/V | 982 (12.3) | 203 (10.8) | 0.83 (0.70, 0.98) | 0.074 |
Paternal social class | ||||
Total n | ||||
I/II | 3850 (44.3) | 964 (48.3) | 1.00 | |
III non-manual/III manual | 3733 (42.9) | 795 (39.8) | 0.85 (0.77, 0.94) | |
IV/V | 1115 (12.8) | 239 (12.0) | 0.86 (0.73, 1.00) | 0.055 |
Townsend score | ||||
1 | 2347 (32.5) | 658 (30.3) | 1.00 | |
2 | 1398 (19.4) | 341 (15.7) | 0.87 (0.75, 1.01) | |
3 | 1907 (26.44) | 578 (26.7) | 1.08 (0.95, 1.23) | |
4 | 1560 (21.63) | 592 (27.3) | 1.35 (1.19, 1.54) | <0.001 |
Smoking status in 1st trimester | ||||
No | 7973 (74.4) | 1687 (77.8) | 1.00 | |
Yes | 2737 (25.6) | 482 (22.2) | 0.83 (0.75, 0.93) | 0.001 |
Maternal dietary scores | ||||
Health conscious | −0.022 ± 1.004 | 0.100 ± 0.975 | <0.001 | |
Traditional | −0.002 ± 1.006 | 0.009 ± 0.217 | 0.531 | |
Processed | 0.013 ± 1.012 | −0.056 ± 0.942 | 0.006 | |
Confectionery | 0.006 ± 1.009 | −0.022 ± 0.960 | 0.200 | |
Vegetarian | −0.003 ± 0.994 | 0.010 ± 1.028 | 0.643 |
Variable | Included Sample Observations n (%) | n (%) | Odds Ratio (95% CI) | p Value | |
---|---|---|---|---|---|
B-Cd < Median | B-Cd ≥ Median | ||||
Maternal age (years) | |||||
≤19 | 53 (2.4) | 15 (1.2) | 38 (3.6) | 1.00 | |
20 to <25 | 313 (14.4) | 126 (10.4) | 187 (19.5) | 0.59 (0.3, 1.1) | |
25 to <30 | 850 (39.2) | 480 (39.7) | 370 (38.5) | 0.30 (0.2, 0.6) | |
30 to <35 | 711 (32.8) | 444 (36.7) | 267 (27.8) | 0.24 (0.1, 0.4) | |
≥35 | 242 (11.7) | 144 (11.9) | 98 (10.2) | 0.27 (0.1, 0.5) | <0.001 |
Maternal education | |||||
None/CSE | 541 (24.9) | 231 (19.1) | 310 (32.3) | 1.00 | |
Vocational/O-level | 1262 (58.2) | 714 (59.1) | 548 (57.1) | 0.57 (0.5, 0.7) | |
A-level and above | 366 (16.9) | 264 (21.8) | 102 (10.6) | 0.29 (0.2, 0.4) | <0.001 |
Townsend score | |||||
1 | 658 (30.3) | 420 (34.7) | 238 (24.8) | 1.00 | |
2 | 341 (15.7) | 208 (17.2) | 133 (13.9) | 1.13 (0.9, 1.5) | |
3 | 578 (26.7) | 315 (26.1) | 263 (27.4) | 1.47 (1.2, 1.9) | |
4 | 592 (27.3) | 266 (22.0) | 326 (34.0) | 2.16 (1.7, 2.7) | <0.001 |
Smoking status in 1st trimester | |||||
No | 1687 (77.8) | 1188 (98.3) | 499 (52.0) | 1.00 | |
Yes | 482 (22.2) | 21 (1.74) | 461 (48.0) | 52.3 (33.3, 82.0) | <0.001 |
Smoked regularly pre-pregnancy | |||||
No | 1522 (70.2) | 1051 (96.5) | 471 (43.6) | 1.00 | <0.001 |
Yes | 647 (29.8) | 38 (0.3) | 609 (56.4) | 28.6 (20.7, 39.4) | |
Alcohol consumption | |||||
No | 959 (44.2) | 548 (45.3) | 411 (42.8) | 1.00 | |
Yes | 1210 (55.8) | 661 (54.7) | 549 (57.2) | 1.11 (0.9, 1.3) | 0.241 |
BMI | |||||
Normal/underweight | 1711 (78.9) | 967 (80.0) | 244 (77.5) | 1.00 | |
Overweight | 343 (15.8) | 185 (15.3) | 158 (16.5) | 1.11 (0.9, 1.4) | |
Obese | 115 (5.3) | 57 (4.7) | 58 (6.04) | 1.32 (0.9, 1.9) | 0.268 |
Vegetarian diet | |||||
Never | 1812 (85.3) | 1024 (86.6) | 788 (83.7) | 1.00 | |
In the past | 180 (8.5) | 87 (7.4) | 93 (9.9) | 1.39 (1.0, 1.9) | |
Present | 131 (6.2) | 71 (6.0) | 60 (6.4) | 1.10 (0.8, 1.6) | 0.104 |
Pattern | Quartile | Median B-Cd (µg/L) | n (%) | Unadjusted Model 1 | Adjusted Model 2 | |
---|---|---|---|---|---|---|
B-Cd < Median | B-Cd ≥ Median | |||||
Group median: 0.26 | ||||||
Health conscious | 1 | 0.40 | 173 (14.3) | 285 (29.7) | 1.00 | 1.00 |
2 | 0.29 | 262 (21.7) | 260 (27.1) | 0.60 (0.47–0.78) | 0.86 (0.62–1.18) | |
3 | 0.25 | 362 (29.9) | 232 (24.2) | 0.39 (0.30–0.50) | 0.69 (0.50–0.96) | |
4 | 0.22 | 412 (34.1) | 183 (19.1) | 0.27 (0.21–0.35) | 0.56 (0.39–0.81) | |
p trend <0.001 | p trend = 0.001 | |||||
Traditional | 1 | 0.28 | 279 (23.1) | 254 (26.5) | 1.00 | 1.00 |
2 | 0.25 | 302 (24.9) | 209 (21.8) | 0.76 (0.600.97) | 0.81 (0.60–1.09) | |
3 | 0.27 | 314 (26.0) | 252 (26.3) | 0.88 (0.70–1.12) | 0.88 (0.66–1.18) | |
4 | 0.26 | 314 (26.0) | 245 (25.5) | 0.86 (0.68–1.09) | 0.94 (0.70–1.27) | |
p trend = 0.408 | p trend = 0.903 | |||||
Processed | 1 | 0.23 | 362 (29.9) | 205 (21.4) | 1.00 | 1.00 |
2 | 0.25 | 338 (28.0) | 231 (24.1) | 1.21 (0.95–1.53) | 1.07 (0.81–1.43) | |
3 | 0.29 | 266 (22.0) | 250 (26.0) | 1.66 (1.30–2.12) | 1.46 (1.08–1.97) | |
4 | 0.31 | 243 (20.1) | 274 (28.5) | 1.99 (1.56–2.54) | 1.19 (0.84–1.68) | |
p trend <0.001 | p trend = 0.078 | |||||
Confectionery | 1 | 0.28 | 289 (24.3) | 122 (24.5) | 1.00 | 1.00 |
2 | 0.26 | 308 (25.9) | 132 (26.5) | 0.92 (0.731.16) | 1.05 (0.79–1.41) | |
3 | 0.25 | 313 (26.4) | 130 (26.1) | 0.81 (0.64–1.03) | 1.07 (0.79–1.45) | |
4 | 0.27 | 278 (23.4) | 115 (23.1) | 0.93 (0.73–1.19) | 1.05 (0.74–1.48) | |
p trend = 0.375 | p trend = 0.844 | |||||
Vegetarian | 1 | 0.24 | 365 (30.2) | 214 (22.3) | 1.00 | 1.00 |
2 | 0.27 | 303 (25.1) | 240 (25.0) | 1.35 (1.06–1.72) | 1.13 (0.85–1.52) | |
3 | 0.29 | 258 (21.3) | 255 (26.6) | 1.69 (1.32–2.15) | 1.13 (0.83–1.53) | |
4 | 0.28 | 283 (23.4) | 251 (26.2) | 1.51 (1.19–1.92) | 1.25 (0.93–1.68) | |
p trend <0.001 | p trend = 0.132 |
n (%) | OR (95% CI) | |||
---|---|---|---|---|
B-Cd < Median | B-Cd ≥ Median | Unadjusted Model 1 | Adjusted Model 2 | |
Total n | 1209 | 960 | ||
All meats combined | ||||
≤ Once in 2 weeks | 148 (12.24) | 151 (15.73) | 1.00 | 1.00 |
≤3 times per week | 752 (62.20) | 613 (63.85) | 0.80 (0.62–1.03) | 0.77 (0.57–1.04) |
≥4 times per week for at least one group | 309 (25.56) | 196 (20.42) | 0.62 (0.47–0.83) | 0.66 (0.46–0.95) |
p trend = 0.001 | p trend = 0.021 | |||
All fish | ||||
≤ Once in 2 weeks | 545 (45.08) | 537 (55.94) | 1.00 | 1.00 |
≥1 to 3 times per week | 614 (50.79) | 391 (40.73) | 0.65 (0.54–0.77) | 0.76 (0.61–0.95) |
≥4 to 7 times per week | 50 (4.14) | 32 (3.33) | 0.65 (0.41–1.03) | 0.82 (0.47–1.42) |
p trend <0.001 | p trend = 0.026 | |||
Milk (glasses per day) a | ||||
None/rarely | 513 (43.62) | 406 (43.80) | 1.00 | 1.00 |
1 to 2 glasses per day | 473 (48.72) | 433 (46.71) | 0.95 (0.80–1.14) | 0.83 (0.66–1.03) |
≥3 glasses per day | 90 (7.65) | 88 (9.49) | 1.24 (0.90–1.70) | 0.86 (0.58–1.29) |
p trend = 0.548 | p trend = 0.162 | |||
All pulses combined | ||||
≤ Once in 2 weeks | 1.37 (11.3) | 135 (14.1) | 1.00 | 1.00 |
≤3 times per week | 960 (79.4) | 750 (78.1) | 0.79 (0.61–1.02) | 0.74 (0.57–1.00) |
≥4 times per week for at least one group | 112 (9.3) | 75 (7.8) | 0.68 (0.47–0.99) | 0.71 (0.45–1.12) |
p trend = 0.035 | p trend = 0.105 | |||
All nuts combined | ||||
Never/rarely | 137 (11.3) | 135 14.1 | 1.00 | 1.00 |
≤ Once in 2 weeks | 960 (79.4) | 750 78.1 | 0.79 (0.61–1.02) | 0.74 (0.54–1.00) |
≥1 to 3 times per week | 112 (9.3) | 75 7.8 | 0.68 (0.47–0.99) | 0.71 (0.45–1.12) |
p trend = 0.009 | p trend =0.875 | |||
Soya bean products | ||||
Never or rarely | 1096 (90.7) | 870 90.6 | 1.00 | 1.00 |
≤ Once in 2 weeks | 113 (9.4) | 90 9.4 | 1.00 (0.75–1.34) | 1.37 (0.97–1.92) |
p trend = 0.982 | p trend = 0.051 | |||
Root vegetables | ||||
Never or rarely | 35 (2.9) | 56 5.8 | 1.00 | 1.00 |
≤ One to 3 times per week per food | 700 (57.9) | 588 61.3 | 0.53 (0.34–0.81) | 0.70 (0.41–1.22) |
≥4 to 7 times per week | 474 (39.2) | 316 32.9 | 0.42 (0.27–0.65) | 0.77 (0.44–1.34) |
p trend <0.001 | p trend = 0.905 | |||
All leafy green and green vegetables | ||||
≤1 to 3 times per week | 236 (19.5) | 269 28.0 | 1.00 | 1.00 |
≥4 times per week | 973 (80.5) | 691 72.0 | 0.62 (0.51–0.76) | 0.72 (0.56–0.92) |
p trend <0.001 | p trend = 0.005 | |||
Combined breads and cereals | ||||
≤ Once a week | 101 (8.35) | 162 (16.88) | 1.00 | 1.00 |
≤ One to 3 times per week per food | 321 (26.55) | 282 (29.38) | 0.55 (0.41–0.74) | 0.76 (0.53–1.10) |
≥4 to 7 times per week | 787 (65.10) | 516 (53.75) | 0.41 (0.31–0.54) | 0.71 (0.50–1.01) |
p trend <0.001 | p trend = 0.069 | |||
All cakes and biscuits | ||||
≤ Once a week | 183 (15.14) | 205 (21.35) | 1.00 | 1.00 |
≤ One to 3 times per week per food | 600 (49.63) | 471 (49.06) | 0.70 (0.56–0.88) | 0.79 (0.59–1.06) |
≥4 to 7 times per week | 426 (35.24) | 284 (29.58) | 0.59 (0.46–0.76) | 0.79 (0.57–1.11) |
p trend <0.001 | p trend = 0.204 | |||
All pies and pastries | ||||
Never or rarely | 245 (20.26) | 196 (20.42) | 1.00 | 1.00 |
≤ Once in 2 weeks | 687 (56.82) | 511 (53.23) | 0.93 (0.75–1.16) | 1.01 (0.77–1.32) |
≥1 to 3 times per week | 277 (22.91) | 253 (26.35) | 1.14 (0.89–1.47) | 0.87 (0.62–1.21) |
p trend = 0.254 | p trend = 0.343 | |||
All pasta and rice | ||||
Never or rarely | 89 (7.36) | 125 (13.02) | 1.00 | 1.00 |
≤ Once in 2 weeks | 335 (27.71) | 318 (33.13) | 0.68 (0.49–0.92) | 0.84 (0.56–1.24) |
≥1 to 3 times per week | 785 (64.93) | 517 (53.85) | 0.47 (0.35–0.63) | 0.78 (0.53–1.15) |
p trend <0.001 | p trend = 0.169 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, C.M.; Doerner, R.; Northstone, K.; Kordas, K. Maternal Diet During Pregnancy and Blood Cadmium Concentrations in an Observational Cohort of British Women. Nutrients 2020, 12, 904. https://doi.org/10.3390/nu12040904
Taylor CM, Doerner R, Northstone K, Kordas K. Maternal Diet During Pregnancy and Blood Cadmium Concentrations in an Observational Cohort of British Women. Nutrients. 2020; 12(4):904. https://doi.org/10.3390/nu12040904
Chicago/Turabian StyleTaylor, Caroline M., Rita Doerner, Kate Northstone, and Katarzyna Kordas. 2020. "Maternal Diet During Pregnancy and Blood Cadmium Concentrations in an Observational Cohort of British Women" Nutrients 12, no. 4: 904. https://doi.org/10.3390/nu12040904
APA StyleTaylor, C. M., Doerner, R., Northstone, K., & Kordas, K. (2020). Maternal Diet During Pregnancy and Blood Cadmium Concentrations in an Observational Cohort of British Women. Nutrients, 12(4), 904. https://doi.org/10.3390/nu12040904