Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Literature Search and Selection Criteria
2.2. Data Extraction and Quality Assessment
2.3. Data Analyses
3. Results
3.1. Study Characteristics
3.2. Bacterial Phyla More Abundant in ASD Children
3.2.1. Bacteroidetes
3.2.2. Firmicutes
3.2.3. Proteobacteria
3.2.4. Tenericutes
3.3. Bacterial Phyla with No Difference between ASD and Controls
3.4. Bacterial Genera More Abundant in ASD Children
3.4.1. Bacteroides
3.4.2. Parabacteroides
3.4.3. Faecalibacterium
3.4.4. Clostridium
3.4.5. Phascolarctobacterium
3.5. Bacterial Genera Less Abundant in ASD Children
3.5.1. Coprococcus
3.5.2. Bifidobacterium
3.6. Bacterial Genera with No Difference between ASD and Controls
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- CDC. What is Autism Spectrum Disorder? Available online: https://www.cdc.gov/ncbddd/autism/facts.html (accessed on 14 March 2020).
- Bölte, S.B.; Girdler, S.; Marschik, P.B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell. Mol. Life Sci. 2019, 76, 1275–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alibek, K.; Farmer, S.; Tskhay, A.; Moldakozhayev, A.; Alibek, K.; Isakov, T. The Role of Infection, Inflammation and Genetic Alterations in ASD Etiopathogenesis: A Review. J. Neurol. Psychiatr Disord. 2019, 2, 105. [Google Scholar]
- Elsabbagh, M.; Divan, G.; Koh, Y.J.; Kim, Y.S.; Kauchali, S.; Marcín, C.; Montiel-Nava, C.; Patel, V.; Paula, C.S.; Wang, C.; et al. Global Prevalence of Autism and Other Pervasive Developmental Disorders. Autism Res. 2012, 5, 160–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Rosenberg, C.R.; White, T.; et al. Prevalence of autism spectrum disorder among children aged 8 Years-Autism and developmental disabilities monitoring network, 11 Sites, United States, 2014. MMWR Surveill. Summ. 2018, 67, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Morales-Hidalgo, P.; Roigé-Castellví, J.; Hernández-Martínez, C.; Voltas, N.; Canals, J. Prevalence and Characteristics of Autism Spectrum Disorder Among Spanish School-Age Children. J. Autism Dev. Disord. 2018, 48, 3176–3190. [Google Scholar] [CrossRef]
- Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013.
- Marshall, J.; Hill, R.J.; Ziviani, J.; Dodrill, P. Features of feeding difficulty in children with Autism Spectrum Disorder. Int. J. Speech. Lang. Pathol. 2014, 16, 151–158. [Google Scholar] [CrossRef]
- Vuong, H.E.; Hsiao, E.Y. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biol. Psychiatry 2017, 81, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Devnani, P.A.; Hegde, A.U. Autism and sleep disorders. J. Pediatr. Neurosci. 2015, 10, 304–307. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.B.; Johansen, L.J.; Powell, L.D.; Quig, D.; Rubin, R.A. Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.W.; Adams, J.B.; Gregory, A.C.; Borody, T.; Chittick, L.; Fasano, A.; Khoruts, A.; Geis, E.; Maldonado, J.; McDonough-Means, S.; et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome 2017, 5, 10. [Google Scholar] [CrossRef]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finegold, S.M.; Molitoris, D.; Song, Y.; Liu, C.; Vaisanen, M.; Bolte, E.; McTeague, M.; Sandler, R.; Wexler, H.; Marlowe, E.M.; et al. Gastrointestinal Microflora Studies in Late-Onset Autism. Clin. Infect. Dis. 2002, 35, S6–S16. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Liang, J.; Dai, M.; Wang, J.; Luo, J.; Zhang, Z.; Jing, J. Altered Gut Microbiota in Chinese Children With Autism Spectrum Disorders. Front. Cell. Infect. Microbiol. 2019, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Coretti, L.; Paparo, L.; Riccio, M.P.; Amato, F.; Cuomo, M.; Natale, A.; Borrelli, L.; Corrado, G.; Comegna, M.; Buommino, E.; et al. Gut microbiota features in young children with autism spectrum disorders. Front. Microbiol. 2018, 9, 3146. [Google Scholar] [CrossRef] [Green Version]
- Pulikkan, J.; Maji, A.; Dhakan, D.B.; Saxena, R.; Mohan, B.; Anto, M.M.; Agarwal, N.; Grace, T.; Sharma, V.K. Gut Microbial Dysbiosis in Indian Children with Autism Spectrum Disorders. Microb. Ecol. 2018, 76, 1102–1114. [Google Scholar] [CrossRef]
- Kong, X.; Liu, J.; Cetinbas, M.; Sadreyev, R.; Koh, M.; Huang, H.; Adeseye, A.; He, P.; Zhu, J.; Russell, H.; et al. New and preliminary evidence on altered oral and gut microbiota in individuals with autism spectrum disorder (ASD): Implications for ASD diagnosis and subtyping based on microbial biomarkers. Nutrients 2019, 11, 2128. [Google Scholar] [CrossRef] [Green Version]
- Gondalia, S.V.; Palombo, E.A.; Knowles, S.R.; Cox, S.B.; Meyer, D.; Austin, D.W. Molecular Characterisation of Gastrointestinal Microbiota of Children With Autism (With and Without Gastrointestinal Dysfunction) and Their Neurotypical Siblings. Autism Res. 2012, 5, 419–427. [Google Scholar] [CrossRef]
- Son, J.S.; Zheng, L.J.; Rowehl, L.M.; Tian, X.; Zhang, Y.; Zhu, W.; Litcher-Kelly, L.; Gadow, K.D.; Gathungu, G.; Robertson, C.E.; et al. Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the simons simplex collection. PLoS ONE 2015, 10, E0137725. [Google Scholar] [CrossRef]
- Xu, M.; Xu, X.; Li, J.; Li, F. Association between gut microbiota and autism spectrum disorder: A systematic review and meta-analysis. Front. Psychiatry 2019, 10, 473. [Google Scholar] [CrossRef]
- Luna, R.A.; Savidge, T.C.; Williams, K.C. The Brain-Gut-Microbiome Axis: What Role Does it Play in Autism Spectrum Disorder? Curr. Dev. Disord. Rep. 2016, 3, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattorusso, A.; Di Genova, L.; Dell’isola, G.B.; Mencaroni, E.; Esposito, S. Autism spectrum disorders and the gut microbiota. Nutrients 2019, 11, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimaldi, R.; Gibson, G.R.; Vulevic, J.; Giallourou, N.; Castro-Mejía, J.L.; Hansen, L.H.; Leigh Gibson, E.; Nielsen, D.S.; Costabile, A. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome 2018, 6, 133. [Google Scholar] [CrossRef] [PubMed]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The STROBE initiative The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guildelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 62, E1–E34. [Google Scholar]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Sun, H.; You, Z.; Jia, L.; Wang, F. Autism spectrum disorder is associated with gut microbiota disorder in children. BMC Pediatr. 2019, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Finegold, S.M.; Dowd, S.E.; Gontcharova, V.; Liu, C.; Henley, K.E.; Wolcott, R.D.; Youn, E.; Summanen, P.H.; Granpeesheh, D.; Dixon, D.; et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010, 16, 444–453. [Google Scholar] [CrossRef]
- Kang, D.W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; LaBaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. PLoS ONE 2013, 8, E68322. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.W.; Ilhan, Z.E.; Isern, N.G.; Hoyt, D.W.; Howsmon, D.P.; Shaffer, M.; Lozupone, C.A.; Hahn, J.; Adams, J.B.; Krajmalnik-Brown, R. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 2018, 49, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Christophersen, C.T.; Sorich, M.J.; Gerber, J.P.; Angley, M.T.; Conlon, M.A. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism 2013, 4, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Christophersen, C.T.; Sorich, M.J.; Gerber, J.P.; Angley, M.T.; Conlon, M.A. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl. Environ. Microbiol. 2011, 77, 6718–6721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Angelis, M.; Piccolo, M.; Vannini, L.; Siragusa, S.; De Giacomo, A.; Serrazzanetti, D.I.; Cristofori, F.; Guerzoni, M.E.; Gobbetti, M.; Francavilla, R. Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE 2013, 8, E76993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabrò, A.; et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 2017, 5, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Ma, W.; Zhang, J.; He, Y.; Wang, J. Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Sci. Rep. 2018, 8, 13981. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, E.; Sun, Z.; Fu, D.; Duan, G.; Jiang, M.; Yu, Y.; Mei, L.; Yang, P.; Tang, Y.; et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci. Rep. 2019, 9, 287. [Google Scholar] [CrossRef]
- Inoue, R.; Sakaue, Y.; Sawai, C.; Sawai, T.; Ozeki, M.; Romero-Pérez, G.A.; Tsukahara, T. A preliminary investigation on the relationship between gut microbiota and gene expressions in peripheral mononuclear cells of infants with autism spectrum disorders. Biosci. Biotechnol. Biochem. 2016, 80, 2450–2458. [Google Scholar] [CrossRef] [Green Version]
- Plaza-Díaz, J.; Gómez-Fernández, A.; Chueca, N.; de la Torre-Aguilar, M.J.; Gil, Á.; Perez-Navero, J.L.; Flores-Rojas, K.; Martín-Borreguero, P.; Solis-Urra, P.; Ruiz-Ojeda, F.J.; et al. Autism spectrum disorder (ASD) with and without mental regression is associated with changes in the fecal microbiota. Nutrients 2019, 11, 337. [Google Scholar] [CrossRef] [Green Version]
- Berding, K.; Donovan, S.M. Diet Can Impact Microbiota Composition in Children With Autism Spectrum Disorder. Front. Neurosci. 2018, 12, 515. [Google Scholar] [CrossRef] [Green Version]
- Parracho, H.M.R.T.; Bingham, M.O.; Gibson, G.R.; McCartney, A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 2005, 54, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Argou-Cardozo, I.; Zeidán-Chuliá, F. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels. Med. Sci. 2018, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srikantha, P.; Hasan Mohajeri, M. The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. Int. J. Mol. Sci. 2019, 20, 2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelli, L.S.; Samsam, A.; Naser, S.A. Propionic Acid Induces Gliosis and Neuro-inflammation through Modulation of PTEN/AKT Pathway in Autism Spectrum Disorder. Sci. Rep. 2019, 9, 8824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frye, R.E.; Nankova, B.; Bhattacharyya, S.; Rose, S.; Bennuri, S.C.; MacFabe, D.F. Modulation of immunological pathways in autistic and neurotypical lymphoblastoid cell lines by the enteric microbiome metabolite propionic acid. Front. Immunol. 2017, 8, 1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacFabe, D.F.; Cain, D.P.; Rodriguez-Capote, K.; Franklin, A.E.; Hoffman, J.E.; Boon, F.; Taylor, A.R.; Kavaliers, M.; Ossenkopp, K.P. Neurobiological effects of intraventricular propionic acid in rats: Possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav. Brain Res. 2007, 176, 149–169. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.; Won, J.; Jin, Y.; Hong, Y.; Hur, T.Y.; Kim, J.H.; Lee, S.R.; Hong, Y. Pathophysiological and neurobehavioral characteristics of a propionic acid-mediated autism-like rat model. PLoS ONE 2018, 13, E0192925. [Google Scholar] [CrossRef] [Green Version]
- Goines, P.E.; Ashwood, P. Cytokine dysregulation in autism spectrum disorders (ASD): Possible role of the environment. Neurotoxicol. Teratol. 2013, 36, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Goines, P.E.; Croen, L.A.; Braunschweig, D.; Yoshida, C.K.; Grether, J.; Hansen, R.; Kharrazi, M.; Ashwood, P.; Van De Water, J. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: A case-control study. Mol. Autism 2011, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Shatz, C.J. MHC Class I: An Unexpected Role in Neuronal Plasticity. Neuron 2009, 64, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Tomova, A.; Husarova, V.; Lakatosova, S.; Bakos, J.; Vlkova, B.; Babinska, K.; Ostatnikova, D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 2015, 138, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Shen, J. Modeling the glutamate-glutamine neurotransmitter cycle. Front. Neuroenergetics 2013, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horder, J.; Petrinovic, M.M.; Mendez, M.A.; Bruns, A.; Takumi, T.; Spooren, W.; Barker, G.J.; Künnecke, B.; Murphy, D.G. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl. Psychiatry 2018, 8, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieronska, J.M.; Stachowicz, K.; Nowak, G.; Pilc, A. The Loss of Glutamate-GABA Harmony in Anxiety Disorders. In Anxiety Disorders; Kalinin, V., Ed.; InTech: London, UK, 2011. [Google Scholar]
- Perna, S.; Alalwan, T.A.; Alaali, Z.; Alnashaba, T.; Gasparri, C.; Infantino, V.; Riva, A.; Petrangolini, G.; Allegrini, P.; Rondanelli, M. The role of glutamine in the complex interaction between gut microbiota and health: A narrative review. Int. J. Mol. Sci. 2019, 20, 5232. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.M.; King, J.J.; West, P.R.; Ludwig, M.A.; Donley, E.L.R.; Burrier, R.E.; Amaral, D.G. Amino Acid Dysregulation Metabotypes: Potential Biomarkers for Diagnosis and Individualized Treatment for Subtypes of Autism Spectrum Disorder. Biol. Psychiatry 2019, 85, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Liu, W.; Piao, M.; Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 2017, 49, 2083–2090. [Google Scholar] [CrossRef]
- Hughes, H.K.; Rose, D.; Ashwood, P. The Gut Microbiota and Dysbiosis in Autism Spectrum Disorders. Curr. Neurol. Neurosci. Rep. 2018, 18, 81. [Google Scholar] [CrossRef]
- Gabriele, S.; Sacco, R.; Persico, A.M. Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. Eur. Neuropsychopharmacol. 2014, 24, 919–929. [Google Scholar] [CrossRef]
- Frazer, A.; Hensler, J. Serotonin Involvement in Physiological Function and Behavior. In Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed.; Siegel, G.J., Agranoff, B.W., Albers, R.W., Price, D., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 1999. [Google Scholar]
- Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 2013, 18, 666–673. [Google Scholar] [CrossRef] [Green Version]
- Höglund, E.; Øverli, Ø.; Winberg, S. Tryptophan metabolic pathways and brain serotonergic activity: A comparative review. Front. Endocrinol. 2019, 10, 158. [Google Scholar] [CrossRef]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 9, 3294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, A.; Zhou, W.; Qu, L.; He, F.; Wang, H.; Wang, Y.; Cai, C.; Li, X.; Zhou, W.; Wang, M. Altered urinary amino acids in children with autism spectrum disorders. Front. Cell. Neurosci. 2019, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.F.; Wang, W.Q.; Li, X.M.; Rauw, G.; Baker, G.B. Body fluid levels of neuroactive amino acids in autism spectrum disorders: A review of the literature. Amino Acids 2017, 49, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bested, A.C.; Logan, A.C.; Selhub, E.M. Intestinal microbiota, probiotics and mental health: From Metchnikoff to modern advances: Part III-Convergence toward clinical trials. Gut Pathog. 2013, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Marotta, A.; Sarno, E.; Del Casale, A.; Pane, M.; Mogna, L.; Amoruso, A.; Felis, G.E.; Fiorio, M. Effects of probiotics on cognitive reactivity, mood, and sleep quality. Front. Psychiatry 2019, 10, 164. [Google Scholar] [CrossRef]
- Shaaban, S.Y.; El Gendy, Y.G.; Mehanna, N.S.; El-Senousy, W.M.; El-Feki, H.S.A.; Saad, K.; El-Asheer, O.M. The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutr. Neurosci. 2018, 21, 676–681. [Google Scholar] [CrossRef]
- Cheng, L.H.; Liu, Y.W.; Wu, C.C.; Wang, S.; Tsai, Y.C. Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. J. Food Drug Anal. 2019, 27, 632–648. [Google Scholar] [CrossRef] [Green Version]
- Ng, Q.X.; Loke, W.; Venkatanarayanan, N.; Lim, D.Y.; Soh, A.Y.S.; Yeo, W.S. A systematic review of the role of prebiotics and probiotics in autism spectrum disorders. Medicina 2019, 55, 129. [Google Scholar] [CrossRef] [Green Version]
- Reid, G. Disentangling what we know about microbes and mental health. Front. Endocrinol. 2019, 10, 81. [Google Scholar] [CrossRef] [Green Version]
Study | Country | ASD (n) | Age (years) | Control (n) | Age (years) | Bacteria Detected | Microbiology Assessment | Dietary Assessment | Probiotics Usage Assessment |
---|---|---|---|---|---|---|---|---|---|
Finegold et al., 2010 [31] | USA | 11 | 2–13 | 8 | 2–13 | Phylum: Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Cyanobacteria, Fusobacteria, Verrucomicrobia, Tenericutes Genus: Akkermansia, Bacteroides, Bifidobacterium, Clostridium, Faecalibacterium, Parabacteroides, Ruminococcus | Pyrosequencing | - | - |
Wang et al., 2011 [35] | Australia | 23 | 10.25 ± 0.75 | 9 | 9.5 ± 1.25 | Genus:Akkermansia, Bacteroides, Bifidobacterium, Faecalibacterium, Clostridium | PCR | Only in ASD | Only in ASD |
Adams et al., 2011 [11] | USA | 58 | 6.91 ± 3.4 | 39 | 7.7 ± 4.4 | Genus:Bifidobacterium | Culture | - | Yes |
Gondalia et al., 2012 [20] | Australia | 28 | 2–12 | 25 | 2–12 | Phylum: Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Cyanobacteria, Fusobacteria, Verrucomicrobia, Tenericutes Genus: Anaerostipes, Anaerotruncus, Bacteroides, Bifidobacterium, Blautia, Clostridium, Faecalibacterium, Parabacteroides, Ruminococcus, Sutterella, Veillonella, Coprococcus, Dialister, Dorea, Roseburia, Phascolarctobacterium | Culture | - | Yes |
Angelis et al., 2013 [36] | Italy | 10 | 4–10 | 10 | 4–10 | Genus:Akkermansia, Bacteroides, Bifidobacterium, Clostridium, Faecalibacterium, Parabacteroides, Ruminococcus | Pyrosequencing | - | No |
Kang et al., 2013 [32] | USA | 20 | 6.7 ± 2.7 | 20 | 8.3 ± 4.4 | Phylum: Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Cyanobacteria, Fusobacteria, Verrucomicrobia, Tenericutes. Genus: Akkermansia, Anaerostipes, Anaerotruncus, Bacteroides, Bifidobacterium, Blautia, Clostridium, Faecalibacterium, Parabacteroides, Ruminococcus, Sutterella, Veillonella, Coprococcus, Dialister, Dorea, Phascolarctobacterium, Roseburia | Pyrosequencing | Yes | Yes |
Wang et al., 2013 [34] | Australia | 23 | 10.25 ± 0.75 | 9 | 9.5 ± 1.25 | Genus:Ruminococcus, Sutterella | PCR | - | - |
Son et al., 2015 [21] | USA | 34 | 7–14 | 31 | 7–14 | Phylum: Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Cyanobacteria, Tenericutes Genus: Faecalibacterium, Sutterella | PCR | Yes | No |
Inoue et al., 2016 [40] | Japan | 6 | 3–5 | 6 | 3–5 | Genus:Akkermansia, Anaerostipes, Anaerotruncus, Bacteroides, Bifidobacterium, Blautia, Clostridium, Faecalibacterium, Parabacteroides, Ruminococcus, Sutterella, Veillonella, Coprococcus, Dialister, Dorea, Phascolarctobacterium, Roseburia | Pyrosequencing | - | - |
Strati et al., 2017 [37] | Italy | 40 | 5–17 | 40 | 5–17 | Phylum: Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Cyanobacteria, Fusobacteria, Verrucomicrobia Genus: Akkermansia, Anaerostipes, Anaerotruncus, Bacteroides, Bifidobacterium, Blautia, Clostridium, Faecalibacterium, Parabacteroides, Ruminococcus, Sutterella, Veillonella, Coprococcus, Dialister, Dorea, Phascolarctobacterium, Roseburia | Pyrosequencing | - | No |
Kang et al., 2017(a) [12] | USA | 18 | 7–16 | 20 | 7–16 | Phylum: Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Cyanobacteria, Fusobacteria, Verrucomicrobia, Tenericutes Genus: Anaerostipes, Bacteroides, Bifidobacterium, Blautia, Clostridium, Parabacteroides, Ruminococcus, Sutterella, Coprococcus, Dialister, Dorea, Phascolarctobacterium, Roseburia | PCR | Yes | No |
Kang et al., 2017(b) [33] | USA | 23 | 4–17 | 21 | 4–17 | Genus:Akkermansia, Anaerostipes, Bacteroides, Faecalibacterium, Coprococcus, Roseburia | Pyrosequencing | Yes | - |
Coretti et al., 2018 [17] | Italy | 11 | 2–4 | 14 | 2–4 | Phylum: Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria Genus: Bacteroides, Bifidobacterium, Blautia, Faecalibacterium, Parabacteroides, Ruminococcus, Coprococcus, Roseburia | PCR | Yes | - |
Pulikkan et al., 2018 [18] | India | 30 | 3–16 | 24 | 3–16 | Phylum: Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Tenericutes | PCR | - | - |
Zhang et al., 2018 [38] | China | 35 | 4.9 ± 1.5 | 6 | 4.6 ± 1.1 | Phylum: Bacteroidetes | PCR | No | No |
Ma et al., 2019 [16] | China | 45 | 6–9 | 45 | 6–9 | Phylum: Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Cyanobacteria, Fusobacteria, Verrucomicrobia, Tenericutes Genus: Bacteroides, Bifidobacterium, Blautia, Clostridium, Faecalibacterium, Parabacteroides, Ruminococcus, Coprococcus, Phascolarctobacterium, Roseburia | PCR | Yes | No |
Plaza-Díaz et al., 2019 [41] | Spain | 48 | 2–6 | 57 | 2–6 | Phylum: Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Verrucomicrobia Genus: Akkermansia, Bacteroides, Bifidobacterium, Clostridium, Faecalibacterium, Parabacteroides, Ruminococcus, Veillonella | PCR | Yes | - |
Liu et al., 2019 [39] | China | 30 | 2.5–18 | 20 | 2.5–18 | Phylum: Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Cyanobacteria, Fusobacteria, Verrucomicrobia, Tenericutes | PCR | Yes | No |
Studies Included | ASD | Control | Overall Effect | Subgroup Differences | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Overall Relative Abundance | 95% CI | Between-Study I2 | Overall Relative Abundance | 95% CI | Between-Study I2 | I2 | P | |||
Bacteroidetes | 12 | 14.33 | 12.79–15.87 | 100 | 10.97 | 9.57–12.36 | 100 | 25.57 | 90 | 0.002 |
Bacteriodes | 12 | 9.04 | 7.62–10.47 | 99 | 4.69 | 3.67–5.71 | 99 | 15.56 | 95.8 | <0.001 |
Parabacteroides | 10 | 0.32 | 0.21–0.43 | 95 | 0.04 | −0.00–0.08 | 92 | 5.69 | 95.3 | <0.001 |
Firmicutes | 11 | 13.42 | 12.50–14.34 | 100 | 10.77 | 9.89–11.64 | 100 | 25.82 | 94 | <0.001 |
Anaerostipes | 6 | 0.01 | −0.01–0.03 | 83 | 0.02 | 0.00–0.04 | 92 | 2.67 | 0 | 0.620 |
Anaerotruncus | 4 | 0.23 | 0.05–0.41 | 89 | 0.14 | 0.00–0.27 | 89 | 2.66 | 0 | 0.430 |
Blautia | 6 | 1.52 | 0.86–2.19 | 98 | 1.91 | 0.61–3.21 | 99 | 11.92 | 0 | 0.610 |
Faecalibacterium | 12 | 6.84 | 5.34–8.35 | 99 | 5.00 | 4.15–8.35 | 99 | 16.22 | 77 | 0.040 |
Ruminococcus | 11 | 2.90 | 2.22–3.58 | 96 | 2.21 | 1.50–2.92 | 98 | 11.41 | 47.3 | 0.170 |
Veillonella | 5 | 0.07 | 0.03–0.11 | 20 | 0.13 | −0.04–0.31 | 75 | 2.64 | 0 | 0.460 |
Clostridium | 10 | 0.74 | 0.44–1.05 | 97 | 0.16 | 0.06–0.26 | 98 | 5.87 | 92.2 | <0.001 |
Coprococcus | 8 | 0.11 | 0.07–0.15 | 97 | 0.24 | 0.16–0.32 | 98 | 8.43 | 88.1 | 0.004 |
Dialister | 5 | 0.54 | 0.09–0.99 | 84 | 0.65 | 0.09–1.22 | 81 | 2.59 | 0 | 0.760 |
Dorea | 5 | 0.42 | 0.18–0.66 | 97 | 0.21 | 0.09–0.32 | 94 | 3.79 | 60.4 | 0.110 |
Phascolarctobacterium | 6 | 0.13 | 0.03–0.24 | 93 | 0.01 | −0.00–0.02 | 89 | 3.42 | 80.3 | 0.020 |
Roseburia | 7 | 0.11 | 0.04–0.19 | 92 | 0.09 | 0.02–0.15 | 94 | 4.54 | 0 | 0.630 |
Proteobacteria | 11 | 0.09 | 0.05–0.13 | 97 | 0.02 | 0.00–0.03 | 96 | 4.2 | 92.6 | <0.001 |
Sutterella | 7 | 0.11 | 0.06–0.17 | 99 | 0.22 | −0.06–0.50 | 100 | 4.84 | 0 | 0.480 |
Actinobacteria | 11 | 0.53 | 0.38–0.69 | 97 | 0.43 | 0.29–0.58 | 97 | 7.86 | 0 | 0.360 |
Bifidobacterium | 12 | 0.46 | 0.33–0.59 | 99 | 0.89 | 0.72–1.05 | 99 | 13.08 | 93.9 | <0.001 |
Cyanobacteria | 7 | 0.00 | 0.00–0.01 | 70 | 0.01 | 0.00–0.01 | 84 | 2.66 | 0 | 0.440 |
Fusobacteria | 7 | 0.02 | 0.00–0.03 | 97 | 0.04 | 0.01–0.08 | 100 | 3.31 | 0 | 0.430 |
Verrucomicrobia | 8 | 0.04 | 0.01–0.09 | 88 | 0.07 | 0.01–0.14 | 85 | 3.19 | 0 | 0.430 |
Akkermansia | 8 | 0.04 | −0.10–0.18 | 81 | 0.55 | −0.36–1.46 | 49 | 1.25 | 14.4 | 0.280 |
Tenericutes | 7 | 0.06 | 0.04–0.07 | 99 | 0.00 | 0.00–0.00 | 28 | 5.38 | 97.7 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias-Vázquez, L.; Van Ginkel Riba, G.; Arija, V.; Canals, J. Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 792. https://doi.org/10.3390/nu12030792
Iglesias-Vázquez L, Van Ginkel Riba G, Arija V, Canals J. Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Nutrients. 2020; 12(3):792. https://doi.org/10.3390/nu12030792
Chicago/Turabian StyleIglesias-Vázquez, Lucía, Georgette Van Ginkel Riba, Victoria Arija, and Josefa Canals. 2020. "Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis" Nutrients 12, no. 3: 792. https://doi.org/10.3390/nu12030792
APA StyleIglesias-Vázquez, L., Van Ginkel Riba, G., Arija, V., & Canals, J. (2020). Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Nutrients, 12(3), 792. https://doi.org/10.3390/nu12030792