Stricter Adherence to Dietary Approaches to Stop Hypertension (DASH) and Its Association with Lower Blood Pressure, Visceral Fat, and Waist Circumference in University Students
Abstract
:1. Introduction
2. Method
2.1. Study Design and Subjects
2.2. Data Collection
2.3. Blood Pressure
2.4. Dietary Intake
2.5. Anthropometric Measurements and Physical Activity
2.6. Other Variables
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Status Report on Noncommunicable Diseases 2014; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Institute of Medicine. Committee on Public Health Priorities to Reduce and Control Hypertension. A Population-Based Policy and Systems Change Approach to Prevent and Control Hypertension; The National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Ortiz-Galeano, I.; Franquelo-Morales, P.; Notario-Pacheco, B.; Nieto Rodríguez, J.A.; Martínez-Vizcaíno, V. Prehipertensión arterial en adultos jóvenes. Rev. Clin. Esp. 2012, 212, 287–291. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y. Tracking of blood pressure from childhood to adulthood: A systematic review and meta-regression analysis. Circulation 2008, 117, 3171–3180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. JAMA 2003, 289, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- Niinikoski, H.; Jula, A.; Viikari, J.; Ronnemaa, T.; Heino, P.; Lagstrom, H.; Jokinen, E.; Simell, O. Blood pressure is lower in children and adolescents with a low-saturated-fat diet since infancy: The special turku coronary risk factor intervention project. Hypertension 2009, 53, 918–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupp, D.; Shi, L.; Egert, S.; Wudy, S.A.; Remer, T. Prospective relevance of fruit and vegetable consumption and salt intake during adolescence for blood pressure in young adulthood. Eur. J. Nutr. 2015, 54, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, L.; Esmaillzadeh, A. Macro and micro-nutrients intake, food groups consumption and dietary habits among female students in Isfahan university of medical sciences. Iran. Red. Crescent Med. J. 2012, 14, 204–209. [Google Scholar]
- Turhan, E.; Inandi, T.; Col, M.; Bugdayci, R.; Eker, O.; Ilhan, M. Smoking cessation and attitudes, belief, observation, and education of medical students, in Turkey. J. Nepal. Med. Assoc. 2016, 54, 55–62. [Google Scholar] [CrossRef]
- VanKim, N.A.; Larson, N.; Laska, M.N. Emerging adulthood: A critical age for preventing excess weight gain? Adolesc. Med. State Art Rev. 2012, 23, 571–588. [Google Scholar]
- Mikkila, V.; Rasanen, L.; Raitakari, O.T.; Pietinen, P.; Viikari, J. Consistent dietary patterns identified from childhood to adulthood: The cardiovascular risk in Young Finns Study. Br. J. Nutr. 2005, 93, 923–931. [Google Scholar] [CrossRef]
- Moore, L.L.; Bradlee, M.L.; Singer, M.R.; Qureshi, M.M.; Buendia, J.R.; Daniels, S.R. Dietary approaches to stop hypertension (DASH) eating pattern and risk of elevated blood pressure in adolescent girls. Br. J. Nutr. 2012, 108, 1678–1685. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, D.R.; Steffen, L.M. Nutrients, foods, and dietary patterns as exposures in research: A framework for food synergy. Am. J. Clin. Nutr. 2003, 78, 508S–513S. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinu, M.; Pagliai, G.; Angelino, D.; Rosi, A.; Dall’Asta, M.; Bresciani, L.; Ferraris, C.; Guglielmetti, M.; Godos, J.; Del Bo’, C.; et al. Effects of popular diets on anthropometric and cardiometabolic parameters: An umbrella review of meta-analyses of randomized controlled trials. Adv. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.M.; Harrington, J.M.; Perry, I.J. Relationship between dietary quality, determined by DASH score, and cardiometabolic health biomarkers: A cross-sectional analysis in adults. Clin. Nutr. 2019, 38, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, R.; Rahimlou, M.; Baghdadian, S.; Manafi, M. Investigating the effect of DASH diet on blood pressure of patients with type 2 diabetes and prehypertension: Randomized clinical trial. Diabetes Metab. Syndr. 2019, 13, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 2005, 111, 697–716. [Google Scholar] [CrossRef] [Green Version]
- Esfahani, F.H.; Asghari, G.; Mirmiran, P.; Azizi, F. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. J. Epidemiol. 2010, 20, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Poslusna, K.; Ruprich, J.; de Vries, J.H.M.; Jakubikova, M.; Van’t Veer, P. Misreporting of energy and micronutrient intake estimated by food records and 24 h recalls, control and adjustment methods in practice. Br. J. Nutr. 2009, 101, S73–S85. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Health and Human Services NIoH, National Heart Lung and Blood Institute. Your Guide to Lowering Your Blood Pressure With DASH. Available online: http://www.nhlbi.nih.gov/health/public/heart/hbp/dash/ (accessed on 2 January 2020).
- Saneei, P.; Fallahi, E.; Barak, F.; Ghasemifard, N.; Keshteli, A.H.; Yazdannik, A.R.; Esmaillzadeh, A. Adherence to the DASH diet and prevalence of the metabolic syndrome among Iranian women. Eur. J. Nutr. 2015, 54, 421–428. [Google Scholar] [CrossRef]
- Marfell-Jones, M.; Olds, T.; Stewart, A. International Standards for Anthropometric Assessment; ISAK: Potchefstroom, South Africa, 2006. [Google Scholar]
- TANITA. Fit Starts Within. Understanding Your Measurements. Available online: https://tanita.eu/help-guides/understanding-your-measurements/ (accessed on 4 March 2020).
- National Health Service. Measuring Diet and Physical Activity in Weight Management Interventions; National Obesity Observatory: London, UK, 2011. [Google Scholar]
- Elzo, J. La religiosidad de los jóvenes españoles. In Jóvenes Españoles; Elzo, J., Orizo, F.A., Blasco, P.G., González Anleo, J.M., Laespada, M.T., Leire Salazar, L., Eds.; Fundación SM: Madrid, Spain, 1994; pp. 141–183. [Google Scholar]
- Chiavaroli, L.; Viguiliouk, E.; Nishi, S.K.; Blanco Mejia, S.; Rahelić, D.; Kahleová, H.; Salas-Salvadó, J.; Kendall, C.W.; Sievenpiper, J.L. DASH dietary pattern and cardiometabolic outcomes: An umbrella review of systematic reviews and meta-analyses. Nutrients 2019, 11, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asghari, G.; Yuzbashian, E.; Mirmiran, P.; Hooshmand, F.; Najafi, R.; Azizi, F. Dietary Approaches to Stop Hypertension (DASH) dietary pattern is associated with reduced incidence of metabolic syndrome in children and adolescents. J. Pediatr. 2016, 174, 178–184.e1. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services. Your Guide to Lowering Your Blood Pressure with DASH; National Heart, Lung, and Blood Institute: Bethesda, MD, USA, 2006; NIH Publication No. 06-4082.
- He, F.J.; Li, J.; Macgregor, G.A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 2013, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Solaiman, Y.; Jesri, A.; Mountford, W.K.; Lackland, D.T.; Zhao, Y.; Egan, B.M. DASH lowers blood pressure in obese hypertensives beyond potassium, magnesium and fibre. J. Hum. Hypertens. 2010, 24, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, L.; Fard, N.R.; Karimi, M.; Baghaei, M.H.; Surkan, P.J.; Rahimi, M.; Esmaillzadeh, A.; Willett, W.C. Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: A randomized crossover clinical trial. Diabetes Care 2011, 34, 55–57. [Google Scholar] [CrossRef] [Green Version]
- Siervo, M.; Lara, J.; Ogbonmwan, I.; Mathers, J.C. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: A systematic review and meta-analysis. J. Nutr. 2013, 143, 818–826. [Google Scholar] [CrossRef]
- Streppel, M.T.; Arends, L.R.; van’t Veer, P.; Grobbee, D.E.; Geleijnse, J.M. Dietary fiber and blood pressure: A meta-analysis of randomized placebo-controlled trials. Arch. Intern. Med. 2005, 9, 95–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penton, D.; Czogalla, J.; Loffing, J. Dietary potassium and the renal control of salt balance and blood pressure. Pflugers Arch. 2015, 467, 513–530. [Google Scholar] [CrossRef] [PubMed]
- Bucher, H.C.; Cook, R.J.; Guyatt, G.H.; Lang, J.D.; Cook, D.J.; Hatala, R.; Hunt, D.L. Effects of dietary calcium supplementation on blood pressure: A metaanalysis of randomized controlled trials. JAMA 1996, 275, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Cormick, G.; Ciapponi, A.; Cafferata, M.L.; Belizan, J.M. Calcium supplementation for prevention of primary hypertension. Cochrane Database Syst. Rev. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Hall, W.L. Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function. Nutr. Res. Rev. 2009, 22, 18–38. [Google Scholar] [CrossRef] [PubMed]
- Asemi, Z.; Samimi, M.; Tabassi, Z.; Shakeri, H.; Sabihi, S.S.; Esmaillzadeh, A. Efects of DASH diet on lipid profles and biomarkers of oxidative stress in overweight and obese women with polycystic ovary syndrome: A randomized clinical trial. Nutrition 2014, 30, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Chitsazi, M.J.; Salehi-Abargouei, A. The efect of dietary approaches to stop hypertension (DASH) on serum infammatory markers: A systematic review and meta-analysis of randomized trials. Clin. Nutr. 2018, 37, 542–550. [Google Scholar] [CrossRef]
- Lopes, H.F.; Martin, K.L.; Nashar, K.; Morrow, J.D.; Goodfriend, T.L.; Egan, B.M. DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension 2003, 41, 422–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | All (n = 244) | DASH Score Tertiles | p-Value | ||
---|---|---|---|---|---|
T1 (Lowest) (n = 73) | T2 (n = 102) | T3 (Highest) (n = 69) | |||
Age (years) | 21.6 ± 2.85 | 21.6 ± 3.26 | 21.6 ± 2.69 | 21.6 ± 2.67 | 0.996 |
Sex | 0.414 | ||||
Male | 85 (34.8) | 21 (28.8) | 39 (38.2) | 25 (36.2) | |
Female | 159 (65.2) | 52 (71.2) | 63 (61.8) | 44 (63.8) | |
Religion | <0.001 | ||||
Christian | 131 (53.7) | 47 (64.4) | 61 (59.8) | 23 (33.3) | |
Muslim | 113 (46.3) | 26 (35.6) | 41 (40.2) | 46 (66.7) | |
Parental obesity | 0.185 | ||||
Yes | 52 (21.3) | 17 (23.3) | 21 (20.6) | 14 (20.3) | |
No | 192 (78.7) | 56 (76.7) | 81 (79.4) | 55 (79.7) | |
PAQ-C summary score | 4.0 ± 0.73 | 3.9 ± 0.79 | 4.0 ± 0.66 | 4.1 ± 0.75 | 0.126 |
BMI (kg/m2) | 23.2 ± 3.62 | 23.1 ± 4.05 | 23.3 ± 3.14 | 23.1 ± 3.88 | 0.932 |
Fat mass (%) | 23.1 ± 8.75 | 24.7 ± 8.46 | 23.1 ± 9.05 | 21.6 ± 8.68 | 0.138 |
Visceral fat rating | 2.4 ± 2.07 | 2.6 ± 1.90 | 2.4 ± 1.81 | 2.3 ± 2.56 | 0.045 |
WC (cm) | 77.7 ± 10.15 | 80.1 ± 9.15 | 77.6 ± 10.50 | 73.7 ± 10.53 | 0.023 |
Hip circumference (cm) | 101.72 ± 10.44 | 103.65 ± 12.41 | 101.28 ± 9.63 | 100.23 ± 10.11 | 0.467 |
WHR | 0.8 ± 0.09 | 0.9 ± 0.09 | 0.8 ± 0.09 | 0.7 ± 0.07 | 0.235 |
Systolic BP (mmHg) | 115.7 ± 11.61 | 118.2 ± 13.33 | 114.4 ± 10.65 | 111.6 ± 10.12 | 0.010 |
Diastolic BP (mmHg) | 67.7 ± 9.41 | 69.3 ± 12.13 | 66.7 ± 10.11 | 65.2 ± 9.60 | 0.549 |
Mean BP (mmHg) | 91.7 ± 9.77 | 95.7 ± 11.23 | 93.2 ± 10.37 | 91.9 ± 9.17 | 0.295 |
Characteristics | All (n = 244) | DASH Score Tertiles | p-Value | ||
---|---|---|---|---|---|
T1 (lowest) (n = 73) | T2 (n = 102) | T3 (highest) (n = 69) | |||
Energy (kcal/day) | 2.0 ± 0.65 | 2.2 ± 0.56 | 2.0 ± 0.60 | 1.9 ± 0.80 | 0.011 |
Nutrients (Daily Intake/1000 kcal) | |||||
Carbohydrate (g) | 236.3 ± 86.82 | 236.8 ± 72.49 | 232.6 ± 78.25 | 241.1 ± 110.61 | 0.004 |
Fiber (g) | 13.3 ± 5.91 | 12.4 ± 5.14 | 13.1 ± 5.53 | 14.6 ± 6.98 | 0.031 |
Protein (g) | 84.3 ± 29.20 | 86.7 ± 23.46 | 84.7 ± 28.14 | 81.2 ± 31.65 | 0.030 |
Total fat (g) | 84.1 ± 30.82 | 92.8 ± 31.33 | 82.4 ± 27.92 | 77.6 ± 32.69 | 0.010 |
SFA (g) | 25.8 ± 10.95 | 29.4 ± 11.74 | 25.2 ± 9.75 | 22.9 ± 10.88 | 0.001 |
Omega-3 fatty acid (g) | 0.6 ± 0.40 | 0.6 ± 0.35 | 0.6 ± 0.41 | 0.5 ± 0.43 | 0.357 |
Omega-6 fatty acid (g) | 5.4 ± 3.10 | 5.6 ± 2.59 | 5.4 ± 3.26 | 5.2 ± 3.38 | 0.232 |
MFA (g) | 30.4 ± 12.13 | 33.5 ± 13.18 | 30.7 ± 11.42 | 26.8 ± 11.19 | 0.005 |
Cholesterol (mg) | 413.0 ± 182.65 | 452.0 ± 193.73 | 411.9 ± 161.64 | 373.5 ± 193.52 | 0.037 |
Calcium (mg) | 833.5 ± 328.09 | 819.4 ± 407.14 | 832.2 ± 320.40 | 848.99 ± 249.79 | 0.002 |
Magnesium (mg) | 231.9 ± 84.71 | 222.1 ± 65.85 | 229.4 ± 73.22 | 244.2± 113.24 | <0.001 |
Potassium (g) | 2.5 ± 0.93 | 2.4 ± 0.85 | 2.5 ± 0.82 | 2.6 ± 1.14 | 0.012 |
Sodium (g) | 2.6 ± 1.2 | 2.8 ± 0.94 | 2.7 ± 0.89 | 2.4 ± 1.13 | 0.001 |
Food Groups (Daily Intake/1000 kcal) | |||||
Sweets (g) | 137.3 ± 145.89 | 155.2 ± 92.14 | 139.3 ± 89.72 | 117.6 ± 76.14 | <0.001 |
Red or processed meats (g) | 43.6 ± 25.97 | 49.3 ± 23.59 | 46.7 ± 25.85 | 34.8 ± 26.49 | 0.001 |
Fruits (g) | 361.1 ± 221.75 | 263.7 ± 124.24 | 316.2 ± 195.64 | 503.6 ± 262.53 | <0.001 |
Vegetables (g) | 223.3 ± 124.10 | 167.1 ± 100.08 | 233.3 ± 109.30 | 269.6 ± 144.82 | 0.002 |
Nuts and legumes (g) | 80.1 ± 56.91 | 60.9 ± 40.18 | 78.9 ± 61.51 | 100.7 ± 58.47 | 0.005 |
Low-fat dairy products (g) | 167.2 ± 108.71 | 147.95 ± 80.98 | 151.5 ± 102.31 | 202.2 ± 133.24 | <0.001 |
Whole grains (g) | 32.1 ± 22.76 | 24.4 ± 16.07 | 31.6 ± 24.61 | 40.3 ± 23.39 | 0.005 |
DASH Score Tertiles | p-Value | Pairwise Difference [T3–T1] | p-Value | |||
---|---|---|---|---|---|---|
T1 (Lowest) | T2 | T3 (Highest) | ||||
Model 1 | ||||||
Systolic BP (mmHg) | 116.2 (113.3; 119.2) | 114.6 (111.9; 117.6) | 111.5 (108.8; 114.2) | 0.009 | −4.70 (−8.8; −0.6) | 0.010 |
Diastolic BP (mmHg) | 67.7 (65.2; 70.2) | 65.5 (62.8; 68.2) | 63.1 (60.3; 65.9) | 0.236 | −4.60 (−8.2; −1.0) | 0.345 |
Visceral fat rating | 2.5 (2.1; 2.9) | 2.3 (1.9; 2.7) | 2.1 (1.6; 2.6) | 0.027 | −0.4 (−3.3; 2.6) | 0.041 |
WC (cm) | 78.9 (75.8; 81.9) | 77.2 (74.4; 79.9) | 76.2 (73.3; 79.1) | 0.008 | −2.7 (−6.9; 1.5) | 0.035 |
Model 2 | ||||||
Systolic BP (mmHg) | 115.8 (113.3; 118.4) | 113.2 (110.7; 115.7) | 111.4 (108.9; 113.8) | 0.005 | −4.36 (−7.3; −1.4) | 0.004 |
Diastolic BP (mmHg) | 67.1 (65.9; 68.3) | 65.2 (62.8; 67.6) | 63.0 (61.7; 65.3) | 0.245 | −4.1 (−7.4; −0.8) | 0.365 |
Visceral fat rating | 2.5 (2.1; 2.9) | 2.3 (2.0; 2.7) | 2.1 (1.7; 2.5) | 0.025 | −0.4 (−3.5; 2.7) | 0.024 |
WC (cm) | 78.7 (75.8; 81.6) | 77.4 (73.5; 81.3) | 75.5 (71.8; 79.2) | 0.003 | −3.2 (−7.20; 0.7) | 0.019 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Prado, S.; Schmidt-RioValle, J.; Montero-Alonso, M.A.; Fernández-Aparicio, Á.; González-Jiménez, E. Stricter Adherence to Dietary Approaches to Stop Hypertension (DASH) and Its Association with Lower Blood Pressure, Visceral Fat, and Waist Circumference in University Students. Nutrients 2020, 12, 740. https://doi.org/10.3390/nu12030740
Navarro-Prado S, Schmidt-RioValle J, Montero-Alonso MA, Fernández-Aparicio Á, González-Jiménez E. Stricter Adherence to Dietary Approaches to Stop Hypertension (DASH) and Its Association with Lower Blood Pressure, Visceral Fat, and Waist Circumference in University Students. Nutrients. 2020; 12(3):740. https://doi.org/10.3390/nu12030740
Chicago/Turabian StyleNavarro-Prado, Silvia, Jacqueline Schmidt-RioValle, Miguel A. Montero-Alonso, Ángel Fernández-Aparicio, and Emilio González-Jiménez. 2020. "Stricter Adherence to Dietary Approaches to Stop Hypertension (DASH) and Its Association with Lower Blood Pressure, Visceral Fat, and Waist Circumference in University Students" Nutrients 12, no. 3: 740. https://doi.org/10.3390/nu12030740
APA StyleNavarro-Prado, S., Schmidt-RioValle, J., Montero-Alonso, M. A., Fernández-Aparicio, Á., & González-Jiménez, E. (2020). Stricter Adherence to Dietary Approaches to Stop Hypertension (DASH) and Its Association with Lower Blood Pressure, Visceral Fat, and Waist Circumference in University Students. Nutrients, 12(3), 740. https://doi.org/10.3390/nu12030740