The Relationship Between Healthy Eating Motivation and Protein Intake in Community-Dwelling Older Adults With Varying Functional Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethics, Consent and Permissions
2.3. Measures
2.3.1. Sociodemographics and Anthropometry
2.3.2. Healthy Eating Motivation (HEM)
2.3.3. Functional Status
2.3.4. Protein Intake
2.4. Statistical Analyses
3. Results
3.1. Participants’ Characteristics
3.2. Descriptive Results of Protein Intake and HEM
3.3. Relationship Between HEM and Total Protein Intake
3.4. Relationship Between HEM and Protein Sources
4. Discussion
4.1. HEM and Aspects of Protein Intake
4.2. Role of Functional Status
4.3. Practical Implications
4.4. Strength and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ortolá, R.; García-Esquinas, E.; García-Varela, G.; Struijk, E.A.; Rodríguez-Artalejo, F.; López-García, E. Influence of changes in diet quality on unhealthy aging: The Seniors-ENRICA Cohort. Am. J. Med. 2019, 132, 1091–1102. [Google Scholar] [CrossRef]
- Naughton, P.; McCarthy, S.N.; McCarthy, M.B. The creation of a healthy eating motivation score and its association with food choice and physical activity in a cross sectional sample of Irish adults. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Hearty, A.P.; McCarthy, S.N.; Kearney, J.M.; Gibney, M.J. Relationship between attitudes towards healthy eating and dietary behaviour, lifestyle and demographic factors in a representative sample of Irish adults. Appetite 2007, 48, 1–11. [Google Scholar] [CrossRef]
- Eertmans, A.; Victoir, A.; Vansant, G.; Van den Bergh, O. Food-Related personality traits, food choice motives and food intake: Mediator and moderator relationships. Food Qual. Prefer. 2005, 16, 714–726. [Google Scholar] [CrossRef]
- Pollard, T.M.; Steptoe, A.; Wardle, J. Motives underlying healthy eating: Using the Food Choice Questionnaire to explain variation in dietary intake. J. Biosoc. Sci. 1998, 30, 165–179. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Van Vliet, S.; Burd, N.A.; van Loon, L.J. The skeletal muscle anabolic response to plant-versus animal-based protein consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznaric, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Kiesswetter, E.; Drey, M.; Sieber, C.C. Nutrition, frailty, and sarcopenia. Aging Clin. Exp. Res. 2017, 29, 43–48. [Google Scholar] [CrossRef]
- Coelho, H.J., Jr.; Milano-Teixeira, L.; Rodrigues, B.; Bacurau, R.; Marzetti, E.; Uchida, M. Relative protein intake and physical function in older adults: A systematic review and meta-analysis of observational studies. Nutrients 2018, 10, 1330. [Google Scholar] [CrossRef] [Green Version]
- Hengeveld, L.M.; Wijnhoven, H.A.H.; Olthof, M.R.; Brouwer, I.A.; Harris, T.B.; Kritchevsky, S.B.; Newman, A.B.; Visser, M. Prospective associations of poor diet quality with long-term incidence of protein-energy malnutrition in community-dwelling older adults: The health, aging, and body composition (Health ABC) study. Am. J. Clin. Nutr. 2018, 107, 155–164. [Google Scholar] [CrossRef]
- Mendonça, N.; Granic, A.; Mathers, J.C.; Hill, T.R.; Siervo, M.; Adamson, A.J.; Jagger, C. Prevalence and determinants of low protein intake in very old adults: Insights from the Newcastle 85+ study. Eur. J. Nutr. 2018, 57, 2713–2722. [Google Scholar] [CrossRef] [Green Version]
- Ronnow Schacht, S.; Vendelbo Lind, M.; Bechshoft, R.L.; Hojfeldt, G.; Reitelseder, S.; Jensen, T.; Pernille Jespersen, A.; Sandris Nielsen, D.; Holm, L.; Tetens, I. Investigating risk of suboptimal macro and micronutrient intake and their determinants in older danish adults with specific focus on protein intake-a cross-sectional study. Nutrients 2019, 11, E795. [Google Scholar] [CrossRef] [Green Version]
- McGrath, R.; Stastny, S.; Casperson, S.; Jahns, L.; Roemmich, J.; Hackney, K.J. Daily protein intake and distribution of daily protein consumed decreases odds for functional disability in older Americans. J. Aging Health 2019. [Google Scholar] [CrossRef]
- Krok-Schoen, J.L.; Archdeacon Price, A.; Luo, M.; Kelly, O.J.; Taylor, C.A. Low dietary protein intakes and associated dietary patterns and functional limitations in an aging population: A NHANES analysis. J. Nutr. Health Aging 2019, 23, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Breen, L.; Phillips, S.M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the ‘anabolic resistance’ of ageing. Nutr. Metab. 2011, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Gorissen, S.H.M.; Witard, O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc. Nutr Soc. 2018, 77, 20–31. [Google Scholar] [CrossRef]
- Rempe, H.M.; Sproesser, G.; Gingrich, A.; Spiegel, A.; Skurk, T.; Brandl, B.; Hauner, H.; Renner, B.; Volkert, D.; Sieber, C.C.; et al. Measuring eating motives in older adults with and without functional impairments with The Eating Motivation Survey (TEMS). Appetite 2019, 137, 1–20. [Google Scholar] [CrossRef]
- Kim, C.O. Food choice patterns among frail older adults: The associations between social network, food choice values, and diet quality. Appetite 2016, 96, 116–121. [Google Scholar] [CrossRef]
- Vainio, A.; Niva, M.; Jallinoja, P.; Latvala, T. From beef to beans: Eating motives and the replacement of animal proteins with plant proteins among Finnish consumers. Appetite 2016, 106, 92–100. [Google Scholar] [CrossRef]
- Lovegrove, J.A.; Givens, D.I. Dairy food products: Good or bad for cardiometabolic disease? Nutr. Res. Rev. 2016, 29, 249–267. [Google Scholar] [CrossRef] [Green Version]
- Larsson, S.C.; Crippa, A.; Orsini, N.; Wolk, A.; Michaelsson, K. Milk consumption and mortality from all causes, cardiovascular disease, and cancer: A systematic review and meta-analysis. Nutrients 2015, 7, 7749–7763. [Google Scholar] [CrossRef]
- Drouin-Chartier, J.P.; Cote, J.A.; Labonte, M.E.; Brassard, D.; Tessier-Grenier, M.; Desroches, S.; Couture, P.; Lamarche, B. Comprehensive review of the impact of dairy fods and dairy fat on cardiometabolic risk. Adv. Nutr. (Bethesda Md.) 2016, 7, 1041–1051. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Landi, F.; Cesari, M.; Calvani, R.; Cherubini, A.; Di Bari, M.; Bejuit, R.; Mshid, J.; Andrieu, S.; Sinclair, A.J.; Sieber, C.C.; et al. The “Sarcopenia and physical fRailty IN older people: Multi-componenT Treatment strategies” (SPRINTT) randomized controlled trial: Design and methods. Aging Clin. Exp. Res. 2017, 29, 89–100. [Google Scholar] [CrossRef]
- Gingrich, A.; Spiegel, A.; Gradl, J.E.; Skurk, T.; Hauner, H.; Sieber, C.C.; Volkert, D.; Kiesswetter, E. Daily and per-meal animal and plant protein intake in relation to muscle mass in healthy older adults without functional limitations: An enable study. Aging Clin. Exp. Res. 2018, 31, 1271–1281. [Google Scholar] [CrossRef]
- Gingrich, A.; Spiegel, A.; Kob, R.; Schoene, D.; Skurk, T.; Hauner, H.; Sieber, C.C.; Volkert, D.; Kiesswetter, E. Amount, distribution, and quality of protein intake are not associated with muscle mass, strength, and power in healthy older adults without functional limitations—An enable Study. Nutrients 2017, 9, 1358. [Google Scholar] [CrossRef] [Green Version]
- Renner, B.; Sproesser, G.; Strohbach, S.; Schupp, H.T. Why we eat what we eat. The eating motivation survey (TEMS). Appetite 2012, 59, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Steptoe, A.; Pollard, T.M.; Wardle, J. Development of a measure of the motives underlying the selection of food: The food choice questionnaire. Appetite 1995, 25, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Sproesser, G.; Moraes, J.M.M.; Renner, B.; Alvarenga, M.D.S. The Eating Motivation Survey in Brazil: Results from a sample of the general adult population. Front. Psychol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-Extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995, 332, 556–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. A Biol. Sci. Med. Sci. 1994, 49, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Heyes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach, 2nd ed.; Guilford Press: New York, NY, USA, 2017. [Google Scholar]
- Dijkstra, S.C.; Neter, J.E.; Brouwer, I.A.; Huisman, M.; Visser, M. Motivations to eat healthily in older Dutch adults—A cross sectional study. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 141–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostan, R.; Guidarelli, G.; Giampieri, E.; Lanzarini, C.; Berendsen, A.A.M.; Januszko, O.; Jennings, A.; Lyon, N.; Caumon, E.; Gillings, R.; et al. Cross-Sectional analysis of the correlation between daily nutrient intake assessed by 7-day food records and biomarkers of dietary intake among participants of the NU-AGE study. Front. Physiol. 2018, 9, 1359. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.K.; Tooze, J.A.; Garcia, K.; Visser, M.; Rubin, S.; Harris, T.B.; Newman, A.B.; Kritchevsky, S.B. Protein intake and mobility limitation in community-dwelling older adults: The Health ABC Study. J. Am. Geriatr. Soc. 2017, 65, 1705–1711. [Google Scholar] [CrossRef]
- Richter, M.; Baerlocher, K.; Bauer, J.M.; Elmadfa, I.; Heseker, H.; Leschik-Bonnet, E.; Stangl, G.; Volkert, D.; Stehle, P. Revised reference values for the intake of protein. Ann. Nutr. Metab. 2019, 74, 242–250. [Google Scholar] [CrossRef]
- Hengeveld, L.M.; Pelgröm, A.D.A.; Visser, M.; Boer, J.M.A.; Haveman-Nies, A.; Wijnhoven, H.A.H. Comparison of protein intake per eating occasion, food sources of protein and general characteristics between community-dwelling older adults with a low and high protein intake. Clin. Nutr. ESPEN 2019, 29, 165–174. [Google Scholar] [CrossRef]
- Nowson, C.; O’Connell, S. Protein requirements and recommendations for older People: A review. Nutrients 2015, 7, 6874–6899. [Google Scholar] [CrossRef] [Green Version]
- Baum, J.I.; Kim, I.-Y.; Wolfe, R.R. Protein consumption and the elderly: What is the optimal level of intake? Nutrients 2016, 8, 359. [Google Scholar] [CrossRef] [Green Version]
- Franzke, B.; Neubauer, O.; Cameron-Smith, D.; Wagner, K.-H. Dietary protein, muscle and physical function in the very old. Nutrients 2018, 10, 935. [Google Scholar] [CrossRef] [Green Version]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Castellani, V.; Sala, S. Environmental impacts of food consumption in Europe. J. Clean. Prod. 2017, 140, 753–765. [Google Scholar] [CrossRef]
- Brander, K.M. Global fish production and climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, I.; Lawrence, W.; Barker, M.; Baird, J.; Dennison, E.; Sayer, A.A.; Cooper, C.; Robinson, S. What influences diet quality in older people? A qualitative study among community-dwelling older adults from the Hertfordshire Cohort Study, UK. Public Health Nutr. 2017, 20, 2685–2693. [Google Scholar] [CrossRef] [Green Version]
- Locher, J.L.; Ritchie, C.S.; Roth, D.L.; Sen, B.; Douglas, K.V.; Vailas, L.I. Food choice among homebound older adults: Motivations and perceived barriers. J. Nutr. Health Aging 2009, 13, 659–664. [Google Scholar] [CrossRef]
- Wylie, C.; Copeman, J.; Kirk, S.F.L. Health and social factors affecting the food choice and nutritional intake of elderly people with restricted mobility. J. Hum. Nutr. Diet. 1999, 12, 375–380. [Google Scholar] [CrossRef]
- Tobler, C.; Visschers, V.H.M.; Siegrist, M. Eating green. Consumers’ willingness to adopt ecological food consumption behaviors. Appetite 2011, 57, 674–682. [Google Scholar] [CrossRef]
- Hagmann, D.; Siegrist, M.; Hartmann, C. Meat avoidance: Motives, alternative proteins and diet quality in a sample of Swiss consumers. Public Health Nutr. 2019, 22, 2448–2459. [Google Scholar] [CrossRef]
- German Nutrition Society. 10 Guidelines of the German Nutrition Society (DGE) for a Wholesome Diet; German Nutrition Society: Bonn, Germany, 2017. [Google Scholar]
- World Cancer Research Fund International; American Institute for Cancer Research. Recommendations and Public Health and Policy Implications; Continuous Update Project Expert Report, 2018; World Cancer Research Fund International: London, UK; UK American Institute for Cancer Research: Washington, DC, USA, 2018. [Google Scholar]
- Mullee, A.; Vermeire, L.; Vanaelst, B.; Mullie, P.; Deriemaeker, P.; Leenaert, T.; De Henauw, S.; Dunne, A.; Gunter, M.J.; Clarys, P.; et al. Vegetarianism and meat consumption: A comparison of attitudes and beliefs between vegetarian, semi-vegetarian, and omnivorous subjects in Belgium. Appetite 2017, 114, 299–305. [Google Scholar] [CrossRef]
- Lazzarini, G.A.; Zimmermann, J.; Visschers, V.H.M.; Siegrist, M. Does environmental friendliness equal healthiness? Swiss consumers’ perception of protein products. Appetite 2016, 105, 663–673. [Google Scholar] [CrossRef]
- Bucher, T.; Muller, B.; Siegrist, M. What is healthy food? Objective nutrient profile scores and subjective lay evaluations in comparison. Appetite 2015, 95, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.H.; Oikawa, S.Y.; Phillips, S.M. Dietary protein to maintain muscle mass in aging: A case for per-meal protein recommendations. J. Frailty Aging 2016, 5, 49–58. [Google Scholar] [PubMed]
- Deeming, C. Food and nutrition security at risk in later life: Evidence from the United Kingdom expenditure & food survey. J. Soc. Policy 2011, 40, 471–492. [Google Scholar]
- Lee, J.S.; Frongillo, E.A., Jr. Factors associated with food insecurity among U.S. elderly persons: Importance of functional impairments. J. Gerontol. B Psychol. Sci. Soc. Sci. 2001, 56, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The role of the anabolic properties of plant-versus animal-based protein sources in supporting muscle mass maintenance: A critical review. Nutrients 2019, 11, E1825. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, R.R.; Baum, J.I.; Starck, C.; Moughan, P.J. Factors contributing to the selection of dietary protein food sources. Clin. Nutr. 2018, 37, 130–138. [Google Scholar] [CrossRef]
- Coelho, H.J., Jr.; Calvani, R.; Goncalves, I.O.; Rodrigues, B.; Picca, A.; Landi, F.; Bernabei, R.; Uchida, M.C.; Marzetti, E. High relative consumption of vegetable protein is associated with faster walking speed in well-functioning older adults. Aging Clin. Exp. Res. 2019, 31, 837–844. [Google Scholar] [CrossRef]
- Gazzani, D.; Zamboni, F.; Spelta, F.; Ferrari, P.; Mattioli, V.; Cazzoletti, L.; Zanolin, E.; Tardivo, S.; Ferrari, M. Vegetable but not animal protein intake is associated to a better physical performance: A study on a general population sample of adults. Food Nutr. Res. 2019, 63. [Google Scholar] [CrossRef]
- Kolasa, K.M.; Rickett, K. Barriers to providing nutrition counseling cited by physicians: A survey of primary care practitioners. Nutri. Clin. Pract. 2010, 25, 502–509. [Google Scholar] [CrossRef]
- England, C.Y.; Andrews, R.C.; Jago, R.; Thompson, J.L. A systematic review of brief dietary questionnaires suitable for clinical use in the prevention and management of obesity, cardiovascular disease and type 2 diabetes. Eur. J. Clin. Nutr. 2015, 69, 977–1003. [Google Scholar] [CrossRef] [Green Version]
- Wijnhoven, H.A.H.; Elstgeest, L.E.M.; de Vet, H.C.W.; Nicolaou, M.; Snijder, M.B.; Visser, M. Development and validation of a short food questionnaire to screen for low protein intake in community-dwelling older adults: The Protein Screener 55+ (Pro55+). PLoS ONE 2018, 13, e0196406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, R.L.; Appleton, K.M. The consumption of protein-rich foods in older adults: An exploratory focus group study. J. Nutr. Educ. Behav. 2013, 45, 751–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appleton, K.M. Barriers to and facilitators of the consumption of animal-based protein-rich foods in older adults. Nutrients 2016, 8, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tukker, A.; Goldbohm, R.A.; de Koning, A.; Verheijden, M.; Kleijn, R.; Wolf, O.; Pérez-Domínguez, I.; Rueda-Cantuche, J.M. Environmental impacts of changes to healthier diets in Europe. Ecol. Econ. 2011, 70, 1776–1788. [Google Scholar] [CrossRef]
- Van der Weele, C.; Feindt, P.; Jan van der Goot, A.; van Mierlo, B.; van Boekel, M. Meat alternatives: An integrative comparison. Trends Food Sci. Technol. 2019, 88, 505–512. [Google Scholar] [CrossRef]
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing current criticism regarding the value of self-report dietary data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, F. Attitudes and the attitude-behavior relation: Reasoned and automatic processes. Eur. Rev. Soc. Psychol. 2000, 1–33. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Van der Meij, B.S.; Wijnhoven, H.A.H.; Lee, J.S.; Houston, D.K.; Hue, T.; Harris, T.B.; Kritchevsky, S.B.; Newman, A.B.; Visser, M. Poor appetite and dietary intake in community-dwelling older adults. J. Am. Geriatr. Soc. 2017, 65, 2190–2197. [Google Scholar] [CrossRef] [Green Version]
Total (N = 250) | Female (n = 144) | Male (n = 106) | ||||
---|---|---|---|---|---|---|
n/mean | %/SD | n/mean | %/SD | n/mean | %/SD | |
Characteristic | ||||||
Age [years] | 79.3 | ±4.2 | 80.1 | ±4.6 | 78.3 | ±3.5 |
Living alone * | 158 | 63.2% | 115 | 79.9% | 43 | 40.6% |
Weight [kg] * | 74.3 | ±16.3 | 67.4 | ±15.0 | 83.5 | ±13.0 |
BMI [kg/m2] | 27.7 | ±5.1 | 27.3 | ±5.6 | 28.2 | ±4.3 |
SPPB [score, 0–12 p.] | 9.6 | ±2.5 | 9.1 | ±2.6 | 10.2 | ±2.4 |
HEM [score, 1–7p.] | 4.9 | ±1.5 | 5.2 | ±1.5 | 4.5 | ±1.4 |
Daily dietary intake | ||||||
Energy [kcal] * | 1806.1 | ±418 | 1652.7 | ±338.2 | 2014.5 | ±427.1 |
Carbohydrates [g] * | 188.9 | ±51.2 | 173.8 | ±41.0 | 209.5 | ±56.6 |
Fat [g] * | 77.6 | ±20.7 | 73.0 | ±18.0 | 83.9 | ±22.5 |
Protein [g] * | 67.7 | ±17.7 | 62.4 | ±14.3 | 74.8 | ±19.3 |
Protein [g/kg BW] | 0.94 | ±0.28 | 0.96 | ±0.27 | 0.92 | ±0.28 |
Protein intake ≥0.8g/kg/BW | 174 | 69.6% | 109 | 75.5% | 65 | 61.3% |
Protein intake ≥1.0g/kg/BW | 94 | 37.6% | 55 | 38.2% | 39 | 36.8% |
Animal-based protein [g] * | 42.1 | ±15.2 | 37.7 | ±12.1 | 48.0 | ±16.8 |
Meat and meat products [g] * | 17.9 | ±11.5 | 14.8 | ±8.9 | 22.2 | ±13.2 |
Dairy products [g] | 13.3 | ±8.4 | 13.2 | ±8.3 | 13.4 | ±8.5 |
Fish and seafood [g] | 4.9 | ±4.8 | 4.3 | ±4.2 | 5.5 | ±5.4 |
Other animal-based p. s. [g] | 6.0 | ±3.9 | 5.4 | ±3.2 | 6.9 | ±4.6 |
Plant-based protein [g] | 25.6 | ±8.2 | 24.7 | ±7.6 | 26.8 | ±8.7 |
Starchy foods [g] | 13.6 | ±5.4 | 13.1 | ±5.4 | 14.1 | ±5.4 |
Fruits and vegetables [g] | 4.8 | ±3.0 | 4.9 | ±2.8 | 4.7 | ±3.3 |
Pulses and nuts and seeds [g] | 2.2 | ±3.8 | 2.4 | ±4.2 | 2.0 | ±3.1 |
Other plant-based p.s. [g] * | 5.0 | ±3.2 | 4.3 | ±2.5 | 6.0 | ±3.8 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Energy | 1 | 1 | 0.76 * | 0.53 * | 0.57 * | 0.36 * | 0.31 * | 0.26 * | 0.20 * | 0.58 * | 0.47 * | 0.14 * | 0.08 | 0.45 * |
Protein [g] | 2 | 1 | 0.70 * | 0.89 * | 0.60 * | 0.51 * | 0.35 * | 0.16 * | 0.52 * | 0.45 * | 0.20 * | 0.15 * | 0.19 * | |
Protein [g/kg BW] | 3 | 1 | 0.56 * | 0.27 * | 0.48 * | 0.25 * | 0.05 | 0.47 * | 0.39 * | 0.20 * | 0.23 * | 0.09 | ||
Animal-based protein [g] | 4 | 1 | 0.72 * | 0.49 * | 0.36 * | 0.26 * | 0.07 | 0.15 * | −0.02 | −0.09 | 0.05 | |||
Meat and meat products [g] | 5 | 1 | −0.10 | 0.02 | 0.03 | −0.04 | 0.08 | −0.11 | −0.12 | 0.00 | ||||
Dairy products [g] | 6 | 1 | 0.06 | −0.02 | 0.10 * | 0.16 * | 0.18 * | 0.04 | 0.02 | |||||
Fish and seafood [g] | 7 | 1 | −0.01 | 0.08 | 0.08 | 0.05 | 0.04 | −0.03 | ||||||
Other animal-based p.s. [g] | 8 | 1 | −0.14 * | −0.11 | −0.19 * | −0.15 * | 0.19 * | |||||||
Plant-based protein [g] | 9 | 1 | 0.71 * | 0.47 * | 0.50 * | 0.32 * | ||||||||
Starchy foods [g] | 10 | 1 | 0.08 | −0.02 | 0.06 | |||||||||
Fruits and vegetables [g] | 11 | 1 | 0.25 * | −0.17 * | ||||||||||
Pulses and nuts and seeds [g] | 12 | 1 | −0.11 | |||||||||||
Other plant-based p. s. [g] | 13 | 1 |
B | SE | 95% CI | β | p | Model Fit | ||
---|---|---|---|---|---|---|---|
Protein [g] | |||||||
Constant | 28.57 | 18.50 | −7.87 | 65.01 | <0.001 | R2 = 0.596, F(6,243) = 59.86, p = < 0.001 | |
HEM | −0.18 | 0.51 | −1.18 | 0.82 | −0.02 | 0.723 | |
SPPB | −0.22 | 0.33 | −0.87 | 0.43 | −0.03 | 0.508 | |
Gender | −0.04 | 1.67 | −3.34 | 3.25 | 0.00 | 0.980 | |
Age | −0.33 | 0.19 | −0.70 | 0.04 | −0.08 | 0.076 | |
BMI | 0.36 | 0.16 | 0.06 | 0.67 | 0.11 | 0.021 | |
Energy (kcal) | 0.03 | 0.00 | 0.03 | 0.04 | 0.76 | <0.001 | |
Protein [g/kg BW] | |||||||
Constant | 1.40 | 0.30 | 0.81 | 1.98 | <0.001 | R2 = 0.580; F(6,243) = 55.85, p = < 0.001 | |
HEM | 0.01 | 0.01 | −0.01 | 0.02 | 0.04 | 0.370 | |
SPPB | −0.01 | 0.01 | −0.02 | 0.00 | −0.11 | 0.023 | |
Gender | −0.16 | 0.03 | −0.21 | −0.10 | −0.28 | <0.001 | |
Age | 0.00 | 0.00 | −0.01 | 0.00 | −0.04 | 0.391 | |
BMI | −0.03 | 0.00 | −0.03 | −0.02 | −0.46 | <0.001 | |
Energy (kcal) | 0.00 | 0.00 | 0.00 | 0.00 | 0.62 | <0.001 |
B | SE | 95% CI | β | p | Model Fit | ||
---|---|---|---|---|---|---|---|
Animal-based protein (g) | |||||||
Constant | 19.98 | 19.65 | −18.73 | 58.68 | 0.310 | R2 = 0.381, F(6,243) = 24.98, p = < 0.001 | |
HEM | −0.69 | 0.54 | −1.75 | 0.37 | -0.07 | 0.201 | |
SPPB | −0.17 | 0.35 | −0.86 | 0.53 | -0.03 | 0.640 | |
Gender | 1.86 | 1.78 | −1.64 | 5.36 | 0.06 | 0.297 | |
Age | −0.31 | 0.20 | −0.70 | 0.08 | -0.09 | 0.122 | |
BMI | 0.45 | 0.17 | 0.13 | 0.78 | 0.15 | 0.007 | |
Energy (kcal) | 0.02 | 0.00 | 0.02 | 0.02 | 0.55 | <0.001 | |
Meat and meat products (g) | |||||||
Constant | −18.56 | 16.53 | −51.11 | 14.00 | 0.263 | R2 = 0.241, F(6,243) = 12.87, p = < 0.001 | |
HEM | −1.08 | 0.45 | −1.97 | −0.19 | −0.14 | 0.018 | |
SPPB | 0.09 | 0.30 | −0.50 | 0.67 | 0.02 | 0.770 | |
Gender | 3.05 | 1.50 | 0.10 | 5.99 | 0.13 | 0.043 | |
Age | 0.07 | 0.17 | −0.26 | 0.40 | 0.03 | 0.671 | |
BMI | 0.55 | 0.14 | 0.27 | 0.82 | 0.24 | < 0.001 | |
Energy(kcal) | 0.01 | 0.00 | 0.01 | 0.01 | 0.32 | < 0.001 | |
Dairy products (g) | |||||||
Constant | 23.68 | 12.78 | −1.50 | 48.86 | 0.065 | R2 = 0.139, F(6,243) = 6.52, p = < 0.001 | |
HEM | 0.42 | 0.35 | −0.27 | 1.11 | 0.07 | 0.229 | |
SPPB | 0.12 | 0.23 | −0.34 | 0.57 | 0.04 | 0.612 | |
Gender | −2.36 | 1.16 | −4.64 | −0.08 | −0.14 | 0.042 | |
Age | −0.26 | 0.13 | −0.51 | 0.00 | −0.13 | 0.048 | |
BMI | −0.07 | 0.11 | −0.28 | 0.14 | −0.04 | 0.512 | |
Energy (kcal) | 0.01 | 0.00 | 0.00 | 0.01 | 0.33 | < 0.001 | |
Fish and seafood (g) | |||||||
Constant | 5.97 | 7.62 | −9.05 | 20.98 | 0.434 | R2 = 0.073, F(6,243) = 3.17, p = 0.005 | |
HEM | −0.19 | 0.21 | −0.60 | 0.22 | −0.06 | 0.370 | |
SPPB | 0.01 | 0.14 | −0.26 | 0.28 | 0.01 | 0.926 | |
Gender | −0.03 | 0.69 | −1.39 | 1.33 | 0.00 | 0.966 | |
Age | −0.06 | 0.08 | −0.21 | 0.09 | −0.05 | 0.456 | |
BMI | −0.03 | 0.06 | −0.15 | 0.10 | −0.03 | 0.665 | |
Energy (kcal) | 0.00 | 0.00 | 0.00 | 0.00 | 0.24 | 0.001 | |
Other animal-based p.s. (g) | |||||||
Constant | 8.88 | 6.06 | −3.06 | 20.83 | 0.144 | R2 = 0.106, F(6,243) = 4.81, p = < 0.001 | |
HEM | 0.15 | 0.17 | −0.18 | 0.48 | 0.06 | 0.362 | |
SPPB | −0.38 | 0.11 | −0.60 | −0.17 | −0.25 | 0.001 | |
Gender | 1.20 | 0.55 | 0.12 | 2.28 | 0.15 | 0.030 | |
Age | −0.07 | 0.06 | −0.19 | 0.05 | −0.07 | 0.284 | |
BMI | 0.00 | 0.05 | −0.10 | 0.11 | 0.01 | 0.926 | |
Energy (kcal) | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.004 | |
Plant-based protein (g) | |||||||
Constant | 4.80 | 10.72 | −16.32 | 25.91 | 0.655 | R2 = 0.381, F(7,242) = 21.27, p = < 0.001 | |
HEM | 0.64 | 0.29 | 0.05 | 1.22 | 0.11 | 0.032 | |
SPPB | −0.04 | 0.19 | −0.41 | 0.34 | −0.01 | 0.851 | |
HEM*SPPB | 1.17 | 0.42 | 0.34 | 1.99 | 0.15 | 0.006 | |
Gender | −2.21 | 0.97 | −4.11 | −0.31 | −0.13 | 0.023 | |
Age | 0.01 | 0.11 | −0.20 | 0.22 | 0.00 | 0.931 | |
BMI | −0.08 | 0.09 | −0.26 | 0.10 | −0.05 | 0.377 | |
Energy (kcal) | 0.01 | 0.00 | 0.01 | 0.01 | 0.64 | <0.001 | |
Starchy foods (g) | |||||||
Constant | 7.54 | 7.79 | −7.80 | 22.87 | 0.334 | R2 = 0.244, F(6,243) = 13.08, p = < 0.001 | |
HEM | −0.32 | 0.21 | −0.74 | 0.10 | −0.09 | 0.135 | |
SPPB | −0.05 | 0.14 | −0.32 | 0.23 | −0.02 | 0.728 | |
Gender | −1.57 | 0.70 | −2.96 | -0.18 | −0.14 | 0.027 | |
Age | −0.01 | 0.08 | −0.16 | 0.15 | −0.01 | 0.934 | |
BMI | −0.06 | 0.07 | −0.19 | 0.07 | −0.05 | 0.384 | |
Energy (kcal) | 0.01 | 0.00 | 0.01 | 0.01 | 0.53 | <0.001 | |
Fruits and vegetables (g) | |||||||
Constant | 2.38 | 4.81 | −7.11 | 11.86 | 0.622 | R2 = 0.091, F(7,242) = 3.45, p = 0.002 | |
HEM | 0.41 | 0.13 | 0.15 | 0.67 | 0.20 | 0.002 | |
SPPB | 0.10 | 0.09 | −0.07 | 0.26 | 0.08 | 0.265 | |
HEM*SPPB | 0.45 | 0.19 | 0.08 | 0.82 | 0.15 | 0.018 | |
Gender | −0.70 | 0.43 | −1.56 | 0.15 | −0.11 | 0.107 | |
Age | −0.03 | 0.05 | −0.12 | 0.07 | −0.04 | 0.580 | |
BMI | 0.01 | 0.04 | −0.07 | 0.09 | 0.02 | 0.722 | |
Energy (kcal) | 0.00 | 0.00 | 0.00 | 0.00 | 0.17 | 0.017 | |
Pulses and nuts and seeds (g) | |||||||
Constant | 4.29 | 6.10 | −7.73 | 16.31 | 0.483 | R2 = 0.048, F(6,243) =2.06, p = 0.059 | |
HEM | 0.41 | 0.17 | 0.08 | 0.74 | 0.16 | 0.016 | |
SPPB | −0.15 | 0.11 | −0.37 | 0.06 | −0.10 | 0.161 | |
Gender | −0.35 | 0.55 | −1.44 | 0.74 | −0.05 | 0.529 | |
Age | −0.03 | 0.06 | −0.15 | 0.09 | −0.03 | 0.613 | |
BMI | −0.06 | 0.05 | −0.16 | 0.04 | −0.08 | 0.259 | |
Energy (kcal) | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.095 | |
Other plant-based p.s. (g) | |||||||
Constant | −6.79 | 4.69 | −16.03 | 2.45 | 0.149 | R2 = 0.213, F(6,243) = 10.99, p = < 0.001 | |
HEM | 0.06 | 0.13 | −0.19 | 0.32 | 0.03 | 0.634 | |
SPPB | 0.06 | 0.08 | −0.11 | 0.23 | 0.05 | 0.479 | |
Gender | 0.61 | 0.42 | −0.23 | 1.44 | 0.09 | 0.153 | |
Age | 0.05 | 0.05 | −0.04 | 0.14 | 0.07 | 0.288 | |
BMI | 0.01 | 0.04 | −0.06 | 0.09 | 0.02 | 0.723 | |
Energy (kcal) | 0.00 | 0.00 | 0.00 | 0.00 | 0.41 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rempe, H.M.; Sproesser, G.; Hannink, A.; Skurk, T.; Brandl, B.; Hauner, H.; Renner, B.; Volkert, D.; Sieber, C.C.; Freiberger, E.; et al. The Relationship Between Healthy Eating Motivation and Protein Intake in Community-Dwelling Older Adults With Varying Functional Status. Nutrients 2020, 12, 662. https://doi.org/10.3390/nu12030662
Rempe HM, Sproesser G, Hannink A, Skurk T, Brandl B, Hauner H, Renner B, Volkert D, Sieber CC, Freiberger E, et al. The Relationship Between Healthy Eating Motivation and Protein Intake in Community-Dwelling Older Adults With Varying Functional Status. Nutrients. 2020; 12(3):662. https://doi.org/10.3390/nu12030662
Chicago/Turabian StyleRempe, Hanna M., Gudrun Sproesser, Anne Hannink, Thomas Skurk, Beate Brandl, Hans Hauner, Britta Renner, Dorothee Volkert, Cornel C. Sieber, Ellen Freiberger, and et al. 2020. "The Relationship Between Healthy Eating Motivation and Protein Intake in Community-Dwelling Older Adults With Varying Functional Status" Nutrients 12, no. 3: 662. https://doi.org/10.3390/nu12030662
APA StyleRempe, H. M., Sproesser, G., Hannink, A., Skurk, T., Brandl, B., Hauner, H., Renner, B., Volkert, D., Sieber, C. C., Freiberger, E., & Kiesswetter, E. (2020). The Relationship Between Healthy Eating Motivation and Protein Intake in Community-Dwelling Older Adults With Varying Functional Status. Nutrients, 12(3), 662. https://doi.org/10.3390/nu12030662