The Effect of a Maternal Mediterranean Diet in Pregnancy on Insulin Resistance is Moderated by Maternal Negative Affect
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Butte, N.F. Carbohydrate and lipid metabolism in pregnancy: Normal compared with gestational diabetes mellitus. Am. J. Clin. Nutr. 2000, 71, 1256s–1261s. [Google Scholar] [CrossRef] [PubMed]
- Landon, M.B.; Spong, C.Y.; Thom, E.; Carpenter, M.W.; Ramin, S.M.; Casey, B.; Wapner, R.J.; Varner, M.W.; Rouse, D.J.; Thorp, J.M., Jr.; et al. A multicenter, randomized trial of treatment for mild gestational diabetes. N. Engl. J. Med. 2009, 361, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- The HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar] [CrossRef] [PubMed]
- Farrar, D. Hyperglycemia in pregnancy: Prevalence, impact, and management challenges. Int. J. Womens Health 2016, 8, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.K.; Odrobina, E.; Yin, J.; Hanley, A.J.; Zinman, B.; Retnakaran, R. Maternal insulin sensitivity during pregnancy predicts infant weight gain and adiposity at 1 year of age. Obesity 2010, 18, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Chandler-Laney, P.C.; Bush, N.C.; Rouse, D.J.; Mancuso, M.S.; Gower, B.A. Maternal glucose concentration during pregnancy predicts fat and lean mass of prepubertal offspring. Diabetes Care 2011, 34, 741–745. [Google Scholar] [CrossRef]
- Lowe, W.L., Jr.; Scholtens, D.M.; Kuang, A.; Linder, B.; Lawrence, J.M.; Lebenthal, Y.; McCance, D.; Hamilton, J.; Nodzenski, M.; Talbot, O.; et al. Hyperglycemia and adverse pregnancy outcome follow-up study (hapo fus): Maternal gestational diabetes mellitus and childhood glucose metabolism. Diabetes Care 2019, 42, 372–380. [Google Scholar] [CrossRef]
- Academy of Nutrition and Dietetics. GDM: Executive Summary of Recommendations. Gestational Diabetes (GDM) Guideline. 2016. Available online: https://www.andeal.org/topic.cfm?menu=5288&cat=5538 (accessed on 13 November 2019).
- Assaf-Balut, C.; Garcia de la Torre, N.; Duran, A.; Fuentes, M.; Bordiu, E.; Del Valle, L.; Valerio, J.; Familiar, C.; Jimenez, I.; Herraiz, M.A.; et al. Medical nutrition therapy for gestational diabetes mellitus based on mediterranean diet principles: A subanalysis of the st carlos gdm prevention study. BMJ Open Diabetes Res. Care 2018, 6, e000550. [Google Scholar] [CrossRef]
- Izadi, V.; Tehrani, H.; Haghighatdoost, F.; Dehghan, A.; Surkan, P.J.; Azadbakht, L. Adherence to the dash and mediterranean diets is associated with decreased risk for gestational diabetes mellitus. Nutrition 2016, 32, 1092–1096. [Google Scholar] [CrossRef]
- Assaf-Balut, C.; Garcia de la Torre, N.; Duran, A.; Fuentes, M.; Bordiu, E.; Del Valle, L.; Familiar, C.; Ortola, A.; Jimenez, I.; Herraiz, M.A.; et al. A mediterranean diet with additional extra virgin olive oil and pistachios reduces the incidence of gestational diabetes mellitus (gdm): A randomized controlled trial: The st. Carlos gdm prevention study. PLoS ONE 2017, 12, e0185873. [Google Scholar] [CrossRef]
- Olmedo-Requena, R.; Gomez-Fernandez, J.; Amezcua-Prieto, C.; Mozas-Moreno, J.; Khan, K.S.; Jimenez-Moleon, J.J. Pre-pregnancy adherence to the mediterranean diet and gestational diabetes mellitus: A case-control study. Nutrients 2019, 11, 1003. [Google Scholar] [CrossRef] [PubMed]
- Entringer, S.; Buss, C.; Wadhwa, P.D. Prenatal stress, development, health and disease risk: A psychobiological perspective—2015 curt richter award winner. Psychoneuroendocrinology 2015, 62, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Entringer, S. Impact of stress and stress physiology during pregnancy on child metabolic function and obesity risk. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Webb, M.B.; Davies, M.; Ashra, N.; Bodicoat, D.; Brady, E.; Webb, D.; Moulton, C.; Ismail, K.; Khunti, K. The association between depressive symptoms and insulin resistance, inflammation and adiposity in men and women. PLoS ONE 2017, 12, e0187448. [Google Scholar] [CrossRef] [PubMed]
- Skaff, M.M.; Mullan, J.T.; Almeida, D.M.; Hoffman, L.; Masharani, U.; Mohr, D.; Fisher, L. Daily negative mood affects fasting glucose in type 2 diabetes. Health Psychol. 2009, 28, 265–272. [Google Scholar] [CrossRef]
- Ryff, C.D.; Dienberg Love, G.; Urry, H.L.; Muller, D.; Rosenkranz, M.A.; Friedman, E.M.; Davidson, R.J.; Singer, B. Psychological well-being and ill-being: Do they have distinct or mirrored biological correlates? Psychother. Psychosom. 2006, 75, 85–95. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; McGuire, L.; Robles, T.F.; Glaser, R. Psychoneuroimmunology: Psychological Influences on Immune Function and Health. J. Consult. Clin. Psychol. 2002, 70, 537–547. [Google Scholar] [CrossRef]
- Keegan, R.; Naumovski, N. Insulin resistance, glucose regulation, obesity, and mood. In Handbook of Psychocardiology; Alvarenga, M.E., Byrne, D., Eds.; Springer: Singapore, 2016; pp. 849–871. [Google Scholar]
- Joseph, J.J.; Wang, X.; Spanakis, E.; Seeman, T.; Wand, G.; Needham, B.; Golden, S.H. Diurnal salivary cortisol, glycemia and insulin resistance: The multi-ethnic study of atherosclerosis. Psychoneuroendocrinology 2015, 62, 327–335. [Google Scholar] [CrossRef]
- Senn, J.J.; Klover, P.J.; Nowak, I.A.; Mooney, R.A. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 2002, 51, 3391. [Google Scholar] [CrossRef]
- Nieto-Vazquez, I.; Fernández-Veledo, S.; de Alvaro, C.; Lorenzo, M. Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. Diabetes 2008, 57, 3211–3221. [Google Scholar] [CrossRef]
- Lindsay, K.L.; Buss, C.; Wadhwa, P.D.; Entringer, S. The Interplay between Maternal Nutrition and Stress during Pregnancy: Issues and Considerations. Ann. Nutr. Metab. 2017, 70, 191–200. [Google Scholar]
- Lindsay, K.L.; Buss, C.; Wadhwa, P.D.; Entringer, S. The interplay between nutrition and stress in pregnancy: Implications for fetal programming of brain development. Biol. Psychiatry 2019, 85, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, K.L.; Buss, C.; Wadhwa, P.D.; Entringer, S. Maternal Stress Potentiates the Effect of an Inflammatory Diet in Pregnancy on Maternal Concentrations of Tumor Necrosis Factor Alpha. Nutrients 2018, 10, 1252. [Google Scholar] [CrossRef] [PubMed]
- Klatzkin, R.R.; Dasani, R.; Warren, M.; Cattaneo, C.; Nadel, T.; Nikodem, C.; Kissileff, H.R. Negative affect is associated with increased stress-eating for women with high perceived life stress. Physiol. Behav. 2019, 210, 112639. [Google Scholar] [CrossRef] [PubMed]
- Ford, P.A.; Jaceldo-Siegl, K.; Lee, J.W.; Youngberg, W.; Tonstad, S. Intake of mediterranean foods associated with positive affect and low negative affect. J. Psychosom. Res. 2013, 74, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sánchez-Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol. Psychiatry 2019, 24, 965–986. [Google Scholar] [CrossRef] [PubMed]
- Chatzi, L.; Melaki, V.; Sarri, K.; Apostolaki, I.; Roumeliotaki, T.; Georgiou, V.; Vassilaki, M.; Koutis, A.; Bitsios, P.; Kogevinas, M. Dietary patterns during pregnancy and the risk of postpartum depression: The mother-child ‘rhea’ cohort in crete, greece. Public Health Nutr. 2011, 14, 1663–1670. [Google Scholar] [CrossRef]
- Barker, E.D.; Kirkham, N.; Ng, J.; Jensen, S.K. Prenatal maternal depression symptoms and nutrition, and child cognitive function. Br. J. Psychiatry 2013, 203, 417–421. [Google Scholar] [CrossRef]
- Baskin, R.; Hill, B.; Jacka, F.N.; O’Neil, A.; Skouteris, H. The association between diet quality and mental health during the perinatal period. A systematic review. Appetite 2015, 91, 41–47. [Google Scholar] [CrossRef]
- Chatzi, L.; Rifas-Shiman, S.L.; Georgiou, V.; Joung, K.E.; Koinaki, S.; Chalkiadaki, G.; Margioris, A.; Sarri, K.; Vassilaki, M.; Vafeiadi, M.; et al. Adherence to the mediterranean diet during pregnancy and offspring adiposity and cardiometabolic traits in childhood. Pediatr. Obes. 2017, 12 (Suppl. 1), 47–56. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Gesteiro, E.; Rodriguez Bernal, B.; Bastida, S.; Sanchez-Muniz, F.J. Maternal diets with low healthy eating index or mediterranean diet adherence scores are associated with high cord-blood insulin levels and insulin resistance markers at birth. Eur. J. Clin. Nutr. 2012, 66, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, K.L.; Brennan, L.; Kennelly, M.A.; Curran, S.; Coffey, M.; Smith, T.P.; Foley, M.E.; Hatunic, M.; McAuliffe, F.M. Maternal metabolic response to dietary treatment for impaired glucose tolerance and gestational diabetes mellitus. Ir. J. Med. Sci. 2018, 187, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, S.; Dirice, E.; De Jesus, D.F.; Hu, J.; Kulkarni, R.N. Maternal insulin resistance and transient hyperglycemia impact the metabolic and endocrine phenotypes of offspring. Am. J. Physiol. Endocrinol. Metab. 2014, 307, E906–E918. [Google Scholar] [CrossRef]
- Ong, K.K.; Diderholm, B.; Salzano, G.; Wingate, D.; Hughes, I.A.; MacDougall, J.; Acerini, C.L.; Dunger, D.B. Pregnancy insulin, glucose, and bmi contribute to birth outcomes in nondiabetic mothers. Diabetes Care 2008, 31, 2193–2197. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, R.; Rosignoli, P.; De Bartolomeo, A.; Fuccelli, R.; Servili, M.; Montedoro, G.F.; Morozzi, G. Oxidative DNA damage is prevented by extracts of olive oil, hydroxytyrosol, and other olive phenolic compounds in human blood mononuclear cells and hl60 cells. J. Nutr. 2008, 138, 1411–1416. [Google Scholar] [CrossRef] [PubMed]
- Paiva-Martins, F.; Fernandes, J.; Rocha, S.; Nascimento, H.; Vitorino, R.; Amado, F.; Borges, F.; Belo, L.; Santos-Silva, A. Effects of olive oil polyphenols on erythrocyte oxidative damage. Mol. Nutr. Food Res. 2009, 53, 609–616. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Verberne, L.; De Irala, J.; Ruíz-Canela, M.; Toledo, E.; Serra-Majem, L.; Martínez-González, M.A. Dietary fat intake and the risk of depression: The sun project. PLoS ONE 2011, 6, e16268. [Google Scholar] [CrossRef]
- Baskin, R.; Hill, B.; Jacka, F.N.; O’Neil, A.; Skouteris, H. Antenatal dietary patterns and depressive symptoms during pregnancy and early post-partum. Matern. Child Nutr. 2017, 13, e12218. [Google Scholar] [CrossRef]
- Golding, J.; Steer, C.; Emmett, P.; Davis, J.M.; Hibbeln, J.R. High levels of depressive symptoms in pregnancy with low omega-3 fatty acid intake from fish. Epidemiology 2009, 20, 598–603. [Google Scholar] [CrossRef]
- Chang, M.W.; Brown, R.; Nitzke, S.; Smith, B.; Eghtedary, K. Stress, sleep, depression and dietary intakes among low-income overweight and obese pregnant women. Matern Child Health J. 2015, 19, 1047–1059. [Google Scholar] [CrossRef]
- Smith, K.E.; Mason, T.B.; Crosby, R.D.; Engel, S.G.; Crow, S.J.; Wonderlich, S.A.; Peterson, C.B. State and trait positive and negative affectivity in relation to restraint intention and binge eating among adults with obesity. Appetite 2018, 120, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Udo, T.; Grilo, C.M.; Brownell, K.D.; Weinberger, A.H.; Dileone, R.J.; McKee, S.A. Modeling the effects of positive and negative mood on the ability to resist eating in obese and non-obese individuals. Eat Behav. 2013, 14, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Smyth, J.; Ockenfels, M.C.; Porter, L.; Kirschbaum, C.; Hellhammer, D.H.; Stone, A.A. Stressors and mood measured on a momentary basis are associated with salivary cortisol secretion. Psychoneuroendocrinology 1998, 23, 353–370. [Google Scholar] [CrossRef]
- Jacobs, N.; Myin-Germeys, I.; Derom, C.; Delespaul, P.; van Os, J.; Nicolson, N.A. A momentary assessment study of the relationship between affective and adrenocortical stress responses in daily life. Biol. Psychol. 2007, 74, 60–66. [Google Scholar] [CrossRef]
- Van Eck, M.; Berkhof, H.; Nicolson, N.; Sulon, J. The Effects of Perceived Stress, Traits, Mood States, and Stressful Daily Events on Salivary Cortisol. Psychosom. Med. 1996, 58, 447–458. [Google Scholar] [CrossRef]
- Geer, E.B.; Islam, J.; Buettner, C. Mechanisms of glucocorticoid-induced insulin resistance: Focus on adipose tissue function and lipid metabolism. Endocrinol. Metab. Clin. N. Am. 2014, 43, 75–102. [Google Scholar] [CrossRef]
- Anagnostis, P.; Athyros, V.G.; Tziomalos, K.; Karagiannis, A.; Mikhailidis, D.P. Clinical review: The pathogenetic role of cortisol in the metabolic syndrome: A hypothesis. J. Clin. Endocrinol. Metab. 2009, 94, 2692–2701. [Google Scholar] [CrossRef]
- Siddiqui, A.; Madhu, S.V.; Sharma, S.B.; Desai, N.G. Endocrine stress responses and risk of type 2 diabetes mellitus. Stress 2015, 18, 498–506. [Google Scholar] [CrossRef]
- Hackett, R.A.; Steptoe, A.; Kumari, M. Association of diurnal patterns in salivary cortisol with type 2 diabetes in the whitehall ii study. J. Clin. Endocrinol. Metab. 2014, 99, 4625–4631. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; McGuire, L.; Robles, T.F.; Glaser, R. Emotions, morbidity, and mortality: New perspectives from psychoneuroimmunology. Annu. Rev. Psychol. 2002, 53, 83–107. [Google Scholar] [CrossRef]
- Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with c-reactive protein, il-1, and il-6: A meta-analysis. Psychosom. Med. 2009, 71, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Glaser, R.; Robles, T.F.; Sheridan, J.; Malarkey, W.B.; Kiecolt-Glaser, J.K. Mild depressive symptoms are associated with amplified and prolonged inflammatory responses after influenza virus vaccination in older adults. Arch. Gen. Psychiatry 2003, 60, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- De Felice, F.G.; Ferreira, S.T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to alzheimer disease. Diabetes 2014, 63, 2262–2272. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S.; Peraldi, P.; Budavari, A.; Ellis, R.; White, M.F.; Spiegelman, B.M. Irs-1-mediated inhibition of insulin receptor tyrosine kinase activity in tnf-alpha- and obesity-induced insulin resistance. Science 1996, 271, 665–668. [Google Scholar] [CrossRef]
- Silva, N.D.M.L.E.; Lam, M.P.; Soares, C.N.; Munoz, U.P.; Milev, R.; De Felice, F.G. Insulin Resistance as a Shared Pathogenic Mechanism Between Depression and Type 2 Diabetes. Front. Psychol. 2019, 10, 57. [Google Scholar] [CrossRef]
- de Castro, J.; Sevillano, J.; Marciniak, J.; Rodriguez, R.; González-Martín, C.; Viana, M.; Eun-suk, O.H.; de Mouzon, S.H.; Herrera, E.; Ramos, M.P. Implication of low level inflammation in the insulin resistance of adipose tissue at late pregnancy. Endocrinology 2011, 152, 4094–4105. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; Fagundes, C.P.; Andridge, R.; Peng, J.; Malarkey, W.B.; Habash, D.; Belury, M.A. Depression, daily stressors and inflammatory responses to high-fat meals: When stress overrides healthier food choices. Mol. Psychiatry 2017, 22, 476–482. [Google Scholar] [CrossRef]
Maternal Characteristic | Value |
---|---|
Age (years; mean ± SD) | 27.95 ± 5.30 |
SES Index (mean ± SD) | 3.23 ± 0.93 |
Pre-pregnancy BMI (kg/m2; mean ± SD) | 26.50 ± 6.46 |
BMI category (N (%)) | |
<25.0 kg/m2 | 105 (51.7) |
25.0–29.9 kg/m2 | 51 (25.1) |
>29.9 kg/m2 | 43 (21.2) |
Ethnicity (N (%)) | |
Hispanic | 87 (42.9) |
Non-Hispanic | 107 (52.7) |
Primiparous (N (%)) | 84 (41.4) |
Smoking during pregnancy: yes (N (%)) | 15 (7.4) |
Obstetric risk condition: yes (N (%)) | 44 (21.7) |
T3 HOMA-IR (median (IQR)) | 3.12 (2.63) |
T1 MDS (mean ± SD) | 1.86 ± 1.28 |
T2 MDS (mean ± SD) | 1.98 ± 1.34 |
T1 NAS (mean ± SD) | 0.41 ± 0.38 |
T2 NAS (mean ± SD) | 0.42 ± 0.43 |
Early Pregnancy | Mid-Pregnancy | |||
---|---|---|---|---|
Below Median NAS | Above Median NAS | Below Median NAS | Above Median NAS | |
Lowest MDS tertile | 43 (48.9%) | 33 (37.9%) | 42 (43.8%) | 36 (37.9%) |
Middle MDS tertile | 20 (22.7%) | 30 (34.5%) | 28 (29.2%) | 27 (28.4%) |
Highest MDS tertile | 25 (28.4%) | 24 (27.6%) | 26 (27.1%) | 32 (33.7%) |
Unadjusted Analysis | B | Std. Error | 95% CI | p-Value | |
T1 MDS | −0.101 | 0.039 | −0.179 | −0.024 | 0.011 |
T1 NAS | 0.139 | 0.139 | −0.135 | 0.413 | 0.318 |
Adjusted Analysis | |||||
T1 MDS | −0.059 | 0.037 | −0.133 | 0.015 | 0.118 |
T1 NAS | 0.147 | 0.130 | −0.110 | 0.404 | 0.262 |
Maternal age | −0.027 | 0.009 | −0.045 | −0.009 | 0.004 |
SES index | 0.012 | 0.062 | −0.111 | 0.135 | 0.845 |
Pre-pregnancy BMI | 0.029 | 0.007 | 0.014 | 0.043 | <0.001 |
Ethnicity | −0.190 | 0.110 | −0.407 | 0.028 | 0.087 |
Unadjusted Analysis | B | Std. Error | 95% CI | p-Value | |
T2 MDS | −0.038 | 0.035 | −0.108 | −0.031 | 0.277 |
T2 NAS | 0.050 | 0.111 | −0.168 | 0.269 | 0.650 |
Adjusted Analysis | |||||
T2 MDS | 0.006 | 0.034 | −0.062 | 0.073 | 0.867 |
T2 NAS | 0.095 | 0.104 | −0.110 | 0.300 | 0.363 |
Maternal age | −0.024 | 0.009 | −0.042 | −0.006 | 0.008 |
SES index | −0.001 | 0.059 | −0.117 | 0.114 | 0.986 |
Pre-pregnancy BMI | 0.030 | 0.007 | 0.016 | 0.044 | <0.001 |
Ethnicity | −0.208 | 0.100 | −0.406 | −0.001 | 0.040 |
Unadjusted Analysis | B | Std. Error | 95% CI | p-Value | |
Interaction T1-MDS*NAS | 0.007 | 0.125 | −0.239 | 0.253 | 0.957 |
Adjusted Analysis | |||||
Interaction T1-MDS*NAS | −0.043 | 0.117 | −0.274 | 0.188 | 0.711 |
Maternal age | −0.027 | 0.009 | −0.045 | −0.009 | 0.004 |
SES index | 0.011 | 0.062 | −0.112 | 0.135 | 0.859 |
Pre-pregnancy BMI | 0.029 | 0.007 | 0.014 | 0.043 | <0.001 |
Ethnicity | −0.187 | 0.111 | −0.406 | 0.032 | 0.093 |
Unadjusted Analysis | B | Std. Error | 95% CI | p-Value | |
Interaction T2-MDS*NAS | 0.173 | 0.071 | 0.033 | 0.312 | 0.035 |
Adjusted Analysis | |||||
Interaction T2-MDS*NAS | 0.142 | 0.067 | 0.010 | 0.274 | 0.035 |
Maternal age | −0.025 | 0.009 | −0.043 | −0.008 | 0.005 |
SES index | −0.005 | 0.058 | −0.120 | 0.109 | 0.927 |
Pre-pregnancy BMI | 0.027 | 0.007 | 0.013 | 0.041 | <0.001 |
Ethnicity | −0.199 | 0.100 | −0.395 | −0.002 | 0.047 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindsay, K.L.; Buss, C.; Wadhwa, P.D.; Entringer, S. The Effect of a Maternal Mediterranean Diet in Pregnancy on Insulin Resistance is Moderated by Maternal Negative Affect. Nutrients 2020, 12, 420. https://doi.org/10.3390/nu12020420
Lindsay KL, Buss C, Wadhwa PD, Entringer S. The Effect of a Maternal Mediterranean Diet in Pregnancy on Insulin Resistance is Moderated by Maternal Negative Affect. Nutrients. 2020; 12(2):420. https://doi.org/10.3390/nu12020420
Chicago/Turabian StyleLindsay, Karen L., Claudia Buss, Pathik D. Wadhwa, and Sonja Entringer. 2020. "The Effect of a Maternal Mediterranean Diet in Pregnancy on Insulin Resistance is Moderated by Maternal Negative Affect" Nutrients 12, no. 2: 420. https://doi.org/10.3390/nu12020420
APA StyleLindsay, K. L., Buss, C., Wadhwa, P. D., & Entringer, S. (2020). The Effect of a Maternal Mediterranean Diet in Pregnancy on Insulin Resistance is Moderated by Maternal Negative Affect. Nutrients, 12(2), 420. https://doi.org/10.3390/nu12020420