Left Ventricular Mass Reduction by a Low-Sodium Diet in Treated Hypertensive Patients †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. Hypertension 2018, 71, e13–e115. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 2018, 36, 2284–2309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Broughton, S.T.; Waits, G.S.; Nguyen, T.; Li, Y.; Soliman, E.Z. Interrelations between hypertension and electrocardiographic left ventricular hypertrophy and their associations with cardiovascular mortality. Am. J. Cardiol. 2019, 123, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Devereux, R.B.; Wachtell, K.; Gerdts, E.; Boman, K.; Nieminen, M.S.; Papademetriou, V.; Rokkedal, J.; Harris, K.; Aurup, P.; Dahlof, B. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA 2004, 292, 2350–2356. [Google Scholar] [CrossRef] [Green Version]
- Soliman, E.Z.; Ambrosius, W.T.; Cushman, W.C.; Zhang, Z.M.; Bates, J.T.; Neyra, J.A.; Carson, T.Y.; Tamariz, L.; Ghazi, L.; Cho, M.E.; et al. Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with hypertension. Circulation 2017, 136, 440–450. [Google Scholar] [CrossRef]
- Brooks, J.E.; Soliman, E.Z.; Upadhya, B. Is left ventricular hypertrophy a valid therapeutic target? Curr. Hypertens. Rep. 2019, 21, 47. [Google Scholar] [CrossRef]
- Salvetti, M.; Paini, A.; Bertacchini, F.; Stassaldi, D.; Aggiusti, C.; Agabiti Rosei, C.; Bassetti, D.; Agabiti Rosei, E.; Muiesan, M.L. Changes in left ventricular geometry during antihypertensive treatment. Pharmacol. Res. 2018, 134, 193–199. [Google Scholar] [CrossRef]
- Stewart, M.H.; Lavie, C.J.; Shah, S.; Englert, J.; Gilliland, Y.; Qamruddin, S.; Dinshaw, H.; Cash, M.; Ventura, H.; Milani, R. Prognostic implications of left ventricular hypertrophy. Prog. Cardiovasc. Dis. 2018, 61, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Kempner, W. Some Effects of the Rice Diet Treatment of Kidney Disease and Hypertension. Bull. N. Y. Acad. Med. 1946, 22, 358–370. [Google Scholar]
- Estes, E.H.; Kerivan, L. An archaeologic dig: A rice-fruit diet reverses ECG changes in hypertension. J. Electrocardiol. 2014, 47, 599–607. [Google Scholar] [CrossRef]
- Snedden, W.; Fernandez, P.G.; Fernandez, D.; Vasdev, S.; Rabin, E.Z. Correlation of left ventricular hypertrophy and its regression by lisinopril with salt-induced hypertension. Can. J. Cardiol. 1988, 4, 237–242. [Google Scholar] [PubMed]
- Campbell, N.R.C. More on dissidents and dietary sodium. Int. J. Epidemiol. 2018, 47, 670–673. [Google Scholar] [CrossRef] [PubMed]
- Mente, A.; O’Donnell, M.; Rangarajan, S.; Dagenais, G.; Lear, S.; McQueen, M.; Diaz, R.; Avezum, A.; Lopez-Jaramillo, P.; Lanas, F.; et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: A pooled analysis of data from four studies. Lancet 2016, 388, 465–475. [Google Scholar] [CrossRef]
- Wang, Y.; Yeh, T.L.; Shih, M.C.; Tu, Y.K.; Chien, K.L. Dietary sodium intake and risk of cardiovascular disease: A systematic review and dose-response meta-analysis. Nutrients 2020, 12, 2934. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Tan, M.; Ma, Y.; MacGregor, G.A. Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2020, 75, 632–647. [Google Scholar] [CrossRef] [PubMed]
- Musso, N.; Carloni, B.; Chiusano, M.C.; Giusti, M. Simple dietary advice reduces 24-h urinary sodium excretion, blood pressure, and drug consumption in hypertensive patients. J. Am. Soc. Hypertens. 2018, 12, 652–659. [Google Scholar] [CrossRef]
- Kong, Y.W.; Baqar, S.; Jerums, G.; Ekinci, E.I. Sodium and Its Role in Cardiovascular Disease—The Debate Continues. Front. Endocrinol. 2016, 7, 164. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, L.A.; De Simone, G.; Pasanisi, F.; Mancini, M.; Mancini, M. Left ventricular mass reduction during salt depletion in arterial hypertension. Hypertension 1984, 6, 755–759. [Google Scholar] [CrossRef] [Green Version]
- Jula, A.M.; Karanko, H.M. Effects on left ventricular hypertrophy of long-term nonpharmacological treatment with sodium restriction in mild-to-moderate essential hypertension. Circulation 1994, 89, 1023–1031. [Google Scholar] [CrossRef] [Green Version]
- Muntner, P.; Shimbo, D.; Carey, R.M.; Charleston, J.B.; Gaillard, T.; Misra, S.; Myers, M.G.; Ogedegbe, G.; Schwartz, J.E.; Townsend, R.R.; et al. Measurement of Blood Pressure in Humans: A Scientific Statement From the American Heart Association. Hypertension 2019, 73, e35–e66. [Google Scholar] [CrossRef]
- WHO. WHO Collaborating Centre for Drug Statistics Methodology, Norwegian Institute of Public Health. In Guidelines for ATC Classification and DDD Assignment, 23th ed.; WHO: Oslo, Norway, 2019. [Google Scholar]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Du Bois, D.; Du Bois, E.F. A formula to estimate the approximate surface area if height and weight be known. Nutrition 1989, 5, 303–311. [Google Scholar] [PubMed]
- Devereux, R.B.; Alonso, D.R.; Lutas, E.M.; Gottlieb, G.J.; Campo, E.; Sachs, I.; Reichek, N. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am. J. Cardiol. 1986, 57, 450–458. [Google Scholar] [CrossRef]
- Cuspidi, C.; Giudici, V.; Negri, F.; Meani, S.; Sala, C.; Zanchetti, A.; Mancia, G. Improving cardiovascular risk stratification in essential hypertensive patients by indexing left ventricular mass to height(2.7). J. Hypertens. 2009, 27, 2465–2471. [Google Scholar] [CrossRef]
- Catena, C.; Colussi, G.; Novello, M.; Verheyen, N.D.; Bertin, N.; Pilz, S.; Tomaschitz, A.; Sechi, L.A. Dietary salt intake is a determinant of cardiac changes after treatment of primary aldosteronism: A prospective study. Hypertension 2016, 68, 204–212. [Google Scholar] [CrossRef]
- Seo, H.Y.; Lee, S.P.; Park, J.B.; Lee, J.M.; Park, E.A.; Chang, S.A.; Kim, H.K.; Park, S.J.; Lee, W.; Kim, Y.J.; et al. Discrepancies in Left Ventricular Mass Calculation Based on Echocardiography and Cardiovascular Magnetic Resonance Measurements in Patients with Left Ventricular Hypertrophy. J. Am. Soc. Echocardiogr. 2015, 28, 1194–1203. [Google Scholar] [CrossRef]
- Lang, S.M.; Ittleman, B.R.; Hahn, E.; Moore, R.A.; Khoury, P.R.; Ollberding, N.J.; Kimball, T.R.; Statile, C.J. Comparison of Left Ventricular Mass Calculation Methods via Two-Dimensional Echocardiogram in Children, Adolescents, and Young Adults With Systemic Hypertension. Am. J. Cardiol. 2019, 124, 239–244. [Google Scholar] [CrossRef]
- Gidding, S.S. Controversies in the assessment of left ventricular mass. Hypertension 2010, 56, 26–28. [Google Scholar] [CrossRef] [Green Version]
- Tarazi, R.C. Regression of left ventricular hypertrophy by medical treatment: Present status and possible implications. Am. J. Med. 1983, 75, 80–86. [Google Scholar] [CrossRef]
- Fagard, R.H.; Celis, H.; Thijs, L.; Wouters, S. Regression of left ventricular mass by antihypertensive treatment: A meta-analysis of randomized comparative studies. Hypertension 2009, 54, 1084–1091. [Google Scholar] [CrossRef] [Green Version]
- Verdecchia, P.; Angeli, F.; Reboldi, G. Intensive Blood Pressure Lowering and Regression of Left Ventricular Hypertrophy. Circulation 2017, 136, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Soliman, E.Z.; Prineas, R.J. Antihypertensive Therapies and Left Ventricular Hypertrophy. Curr. Hypertens. Rep. 2017, 19, 79. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Domenighetti, A.A.; Schafer, S.C.; Weber, J.; Simon, A.; Maillard, M.P.; Pedrazzini, T.; Chen, J.; Lehr, H.A.; Burnier, M. Impact of salt on cardiac differential gene expression and coronary lesion in normotensive mineralocorticoid-treated mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R1025–R1033. [Google Scholar] [CrossRef] [PubMed]
- Alves-Rodrigues, E.N.; Veras, M.M.; Rosa, K.T.; de Castro, I.; Furukawa, L.N.; Oliveira, I.B.; Souza, R.M.; Heiman, J.C. Salt intake during pregnancy alters offspring’s myocardial structure. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 481–486. [Google Scholar] [CrossRef]
- Whaley-Connell, A.T.; Habibi, J.; Aroor, A.; Ma, L.; Hayden, M.R.; Ferrario, C.M.; Demarco, V.G.; Sowers, J.R. Salt loading exacerbates diastolic dysfunction and cardiac remodelling in young female Ren2 rats. Metabolism 2013, 62, 1761–1771. [Google Scholar] [CrossRef] [Green Version]
- Bkaily, G.; Simon, Y.; Menkovic, I.; Bkaily, C.; Jacques, D. High salt-induced hypertrophy of human vascular smooth muscle cells associated with a decrease in glycocalix. J. Mol. Cell. Cardiol. 2018, 125, 1–5. [Google Scholar] [CrossRef]
- Haring, B.; Wang, W.; Lee, E.T.; Jhamnani, S.; Howard, B.V.; Devereux, R.B. Effect of dietary sodium and potassium intake on left ventricular diastolic function and mass in adults ≤ 40 years (from the Strong Heart Study). Am. J. Cardiol. 2015, 115, 1244–1248. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.J.; Bibbins-Domingo, K.; Jin, Z.; Daviglus, M.L.; Goff, D.C.; Jacobs, D.R. Association of sodium and potassium intake with left ventricular mass. Coronary artery risk development in young adults. Hypertension 2011, 58, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, S.; Djoussé, L.; Aguilar, F.G.; Martinez, E.E.; Polsinelli, V.B.; Irvin, M.R.; Arnett, D.K.; Shah, S.J. Association of estimated sodium intake with adverse cardiac structure and function. From the HyperGEN Study. J. Am. Coll. Cardiol. 2017, 70, 715–724. [Google Scholar] [CrossRef]
- van der Westhuizen, B.; Schutte, A.E.; Gafane-Matemane, L.F.; Kruger, R. Left ventricular mass independently associates with 24-h sodium excretion in young masked hypertensive adults: The African-PREDICT study. Int. J. Cardiol. 2019, 276, 218–223. [Google Scholar] [CrossRef]
- Nista, F.; Gatto, F.; Albertelli, M.; Musso, N. Sodium intake and target organ damage in hypertension—An update about the role of a real villain. Int. J. Environ. Res. Public Health 2020, 17, 2811. [Google Scholar] [CrossRef] [Green Version]
- Du Cailar, G.; Ribstein, J.; Mimran, A. Dietary sodium and target organ damage in essential hypertension. Am. J. Hypertens. 2002, 15, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Harmsen, E.; Leenen, F.H. Alpha- and beta-adrenoceptor blockade fail to prevent high sodium diet-induced left ventricular hypertrophy. Am. J. Hypertens. 1997, 10, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Varagic, J.; Frohlich, E.D.; Susic, D.; Ahn, J.; Matavelli, L.; López, B.; Díez, J. AT1 receptor antagonism attenuates target organ effects of salt excess in SHRs without affecting pressure. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H853–H858. [Google Scholar] [CrossRef] [Green Version]
- Le Corvoisier, P.; Adamy, C.; Sambin, L.; Crozatier, B.; Berdeaux, A.; Michel, J.B.; Hittinger, L.; Su, J. The cardiac renin-angiotensin system is responsible for high-salt diet-induced left ventricular hypertrophy in mice. Eur. J. Heart Fail. 2010, 12, 1171–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, N.G.; Yuan, B.X.; Leenen, F.H. Sodium-induced cardiac hypertrophy. Cardiac sympathetic activity versus volume load. Circ. Res. 1991, 68, 745–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Elia, L.; La Fata, E.; Giaquinto, A.; Strazzullo, P.; Galletti, F. Effect of dietary salt restriction on central blood pressure: A systematic review and meta-analysis of the intervention studies. J. Clin. Hypertens. 2020, 22, 814–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostis, J.B.; Wilson, A.C.; Shindler, D.M.; Cosgrove, N.M.; Lacy, C.R. Persistence of normotension after discontinuation of lifestyle intervention in the trial of TONE. Trial of Nonpharmacologic Interventions in the Elderly. Am. J. Hypertens. 2002, 15, 732–734. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.P.; Raff, U.; Kopp, C.; Scheppach, B.; Toncar, S.; Wanner, C.; Schlieper, G.; Saritas, T.; Floeger, J.; Schmid, M.; et al. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J. Am. Soc. Nephrol. 2017, 28, 1867–1876. [Google Scholar] [CrossRef]
- Lerchl, K.; Rakova, N.; Dahlmann, A.; Rauh, M.; Goller, U.; Basner, M.; Dinges, D.F.; Beck, L.; Agureev, A.; Larina, I.; et al. Agreement between 24-h salt ingestion and sodium excretion in a controlled environment. Hypertension 2015, 66, 850–857. [Google Scholar] [CrossRef] [Green Version]
- Dunbar, J. Practical aspects of dietary management of hypertension: Compliance. Can. J. Physiol. Pharmacol. 1986, 64, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Luft, F.C.; Morris, C.D.; Weinberger, M.H. Compliance to a low-salt diet. Am. J. Clin. Nutr. 1997, 65 (Suppl. S2), 698S–703S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohta, Y.; Tsuchihashi, T.; Onaka, U.; Eto, K.; Tominaga, M.; Ueno, M. Long-term compliance with salt restriction in Japanese hypertensive patients. Hypertens. Res. 2005, 28, 953–957. [Google Scholar] [CrossRef] [PubMed]
Time 0 Mean ± SD | Time 1 Mean ± SD | Time 2 Mean ± SD | |
---|---|---|---|
Weight kg | 73.16 ± 14.07 | 71.51 ± 13.41 * | 71.30 ± 13.21 |
BMI kg/m2 | 26.19 ± 4.71 | 25.61 ± 4.39 * | 25.50 ± 4.25 |
SBP mmHg | 134.3 ± 16.29 | 125.1 ± 9.84 § | 125.0 ± 10.33 |
DBP mmHg | 81.16 ± 11.73 | 75.36 ± 8.19 § | 75.08 ± 7.63 |
LVMI g/m2 | 97.19 ± 19.68 | ----------------- | 93.91 ± 21.17 ** |
UNaVmEq/24 h | 159.8 ± 45.08 | 110.6 ± 34.25 § | 122.1 ± 46.52 # |
UKV mEq/24 h | 61.38 ± 27.72 | 57.22 ± 22.43 | 61.25 ± 17.49 |
DDD | 1.772 ± 0.918 | 1.308 ± 0.731 § | 1.343 ± 0.728 |
Reducers | Non-Reducers | |||||
---|---|---|---|---|---|---|
Time 0 Mean ± SD | Time 1 Mean ± SD | Time 2 Mean ± SD | Time 0 Mean ± SD | Time 1 Mean ± SD | Time 2 Mean ± SD | |
Weight kg | 72.64 ± 15.17 | 71.29 ± 14.55 [*] | 71.14 ± 14.29 | 73.79 ± 12.69 | 71.79 ± 11.97 [*] | 71.50 ± 11.87 |
BMI kg/m2 | 26.28 ± 5.31 | 25.78 ± 5.01 [*] | 25.72 ± 4.74 | 26.09 ± 3.67 | 25.39 ± 3.53 [*] | 25.30 ± 3.59 |
SBP mmHg | 134.3 ± 16.10 | 126.2 ± 10.94 [*] | 125.3 ± 10.69 | 134.2 ± 16.67 | 123.7 ± 8.17 [§] | 124.5 ± 9.95 |
DBP mmHg | 80.84 ± 12.23 | 75.88 ± 8.99 [*] | 74.97 ± 7.67 | 81.55 ± 11.18 | 74.71 ± 7.11 [*] | 75.21 ± 7.64 |
LVMI g/m2 | 97.09 ± 20.42 | -------------- | 86.38 ± 18.17 *[§] | 97.31 ± 18.91 | ------------ | 103.1 ± 21.06 *[§] |
UNaV mEq/24 h | 161.0 ± 42.22 | 113.6 ± 32.39 [§] | 97.3 ± 23.01 *[§] | 158.2 ± 48.66 | 106.8 ± 36.32 [§] | 152.6 ± 49.96 *[§] |
UKV mEq/24 h | 59.74 ± 24.50 | 54.81 ± 15.17 | 61.53 ± 15.91 | 63.39 ± 31.30 | 60.16 ± 28.82 | 60.92 ± 19.38 |
DDD | 1.72 ± 0.83 | 1.31 ± 0.74 [§] | 1.24 ± 0.70 | 1.83 ± 1.02 | 1.31 ± 0.72 [§] | 1.46 ± 0.75 |
All Patients (n = 138) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Simple Linear Regression Analysis | Multiple Regression Analysis | ||||||||||
Dependent Variable | Independent Variables (IVs) | R2 | B | β | Significance (p Value) | Dependent Variable | Independent Variables (IVs) | R2 | B | β | Significance (p Value) |
LVMI | - | - | - | - | - | LVMI | All IVs (block) | 0.369 | - | - | p < 0.0001 |
UNaV | 0.310 | 0.235 | 0.557 | p < 0.0001 | UNaV | - | 0.278 | 0.611 | p < 0.0001 | ||
SBP | 0.015 | 0.247 | 0.121 | p = 0.158 | SBP | - | 0.345 | 0.168 | p = 0.027 | ||
DBP | 0.008 | 0.253 | 0.091 | p = 0.287 | DBP | - | 0.316 | 0.114 | p = 0.125 | ||
DDD | 0.0003 | 0.531 | 0.018 | p = 0.832 | DDD | −3.298 | −0.113 | p = 0.116 | |||
Reducers (n = 76) | |||||||||||
Simple Linear Regression Analysis | Multiple Regression Analysis | ||||||||||
Dependent Variable | Independent Variables (IVs) | R2 | B | β | Significance (p Value) | Dependent Variable | Independent Variables (IVs) | R2 | B | β | Significance (p Value) |
LVMI | - | - | - | - | - | LVMI | All IVs (block) | 0.257 | - | - | p = 0.0003 |
UNaV | 0.136 | 0.291 | 0.369 | p = 0.001 | UNaV | - | 0.273 | 0.345 | p = 0.002 | ||
SBP | 0.131 | 0.616 | 0.362 | p = 0.001 | SBP | - | 0.534 | 0.314 | p = 0.005 | ||
DBP | 0.025 | 0.378 | 0.160 | p = 0.169 | DBP | - | 0.046 | 0.020 | p = 0.858 | ||
DDD | 0.005 | −1.804 | -0.069 | p = 0.554 | DDD | - | −4.786 | −0.183 | p = 0.099 | ||
Non Reducers (n = 62) | |||||||||||
Simple Linear Regression Analysis | Multiple Regression Analysis | ||||||||||
Dependent Variable | Independent Variables (IVs) | R2 | B | β | Significance (p Value) | Dependent Variable | Independent Variables (IVs) | R2 | B | β | Significance (p Value) |
LVMI | - | - | - | - | - | LVMI | All IVs (block) | 0.300 | - | - | p = 0.0004 |
UNaV | 0.247 | 0.209 | 0.497 | p < 0.0001 | UNaV | - | 0.247 | 0.586 | p < 0.0001 | ||
SBP | 0.009 | −0.196 | 0.093 | p = 0.474 | SBP | - | −0.015 | −0.007 | p = 0.957 | ||
DBP | 0.0005 | 0.061 | 0.022 | p = 0.865 | DBP | - | 0.679 | 0.246 | p = 0.065 | ||
DDD | 0.001 | −0.833 | −0.030 | p = 0.819 | DDD | - | −2.831 | −0.101 | p = 0.385 |
All Patients (n = 138) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Simple Linear Regression Analysis | Multiple Regression Analysis | ||||||||||
Dependent Variable | Independent Variables (IVs) | R2 | B | β | Significance (p Value) | Dependent Variable | Independent Variables (IVs) | R2 | B | Β | Significance (p Value) |
Δ LVMI | - | - | - | - | - | Δ LVMI | All IVs (block) | 0.454 | - | - | p < 0.000001 |
Δ UNaV | 0.449 | 0.175 | 0.670 | p < 0.000001 | Δ UNaV | - | 0.177 | 0.677 | p < 0.000001 | ||
Δ SBP | 0.001 | 0.025 | 0.039 | p = 0.725 | Δ SBP | - | −0.010 | 0.012 | p = 0.890 | ||
Δ DBP | 0.000 | 0.000 | 0.000 | p = 0.998 | Δ DBP | - | −0.077 | 0.060 | p = 0.493 | ||
Δ DDD | 0.015 | 0.250 | 0.123 | p = 0.152 | Δ DDD | 0.116 | 0.006 | p = 0.931 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musso, N.; Gatto, F.; Nista, F.; Dotto, A.; Shen, Z.; Ferone, D. Left Ventricular Mass Reduction by a Low-Sodium Diet in Treated Hypertensive Patients. Nutrients 2020, 12, 3714. https://doi.org/10.3390/nu12123714
Musso N, Gatto F, Nista F, Dotto A, Shen Z, Ferone D. Left Ventricular Mass Reduction by a Low-Sodium Diet in Treated Hypertensive Patients. Nutrients. 2020; 12(12):3714. https://doi.org/10.3390/nu12123714
Chicago/Turabian StyleMusso, Natale, Federico Gatto, Federica Nista, Andrea Dotto, Zhongyi Shen, and Diego Ferone. 2020. "Left Ventricular Mass Reduction by a Low-Sodium Diet in Treated Hypertensive Patients" Nutrients 12, no. 12: 3714. https://doi.org/10.3390/nu12123714
APA StyleMusso, N., Gatto, F., Nista, F., Dotto, A., Shen, Z., & Ferone, D. (2020). Left Ventricular Mass Reduction by a Low-Sodium Diet in Treated Hypertensive Patients. Nutrients, 12(12), 3714. https://doi.org/10.3390/nu12123714