The Benefits of Including Hummus and Hummus Ingredients into the American Diet to Promote Diet Quality and Health: A Comprehensive Review
Abstract
:1. Introduction
2. Methodology for the Comprehensive Review
3. Nutrient Intake and Diet Quality
4. Type 2 Diabetes Risk Factors
5. Cardiovascular Disease Risk Factors
6. Weight Management
7. Hummus within Healthy Dietary Patterns
8. Translating the Evidence into Practice—Incorporating Legumes and Hummus in Healthy Dietary Patterns
9. Conclusions
Funding
Conflicts of Interest
References
- Silverman, J. Hummus’s Quest to Conquer America, One Mouth at a Time. Available online: https://www.today.com/food/hummus-quest-conquer-america-one-mouth-time-t87156 (accessed on 12 September 2019).
- Graça, J.; Truninger, M.; Junqueira, L.; Schmidt, L. Consumption orientations may support (or hinder) transitions to more plant-based diets. Appetite 2019, 140, 19–26. [Google Scholar] [CrossRef]
- Turmo, I.G. The Mediterranean diet: Consumption, cuisine and food habits. Int. Cent. Adv. Mediterr. Agron. Stud. 2012, 115–132. [Google Scholar]
- U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; U.S. Department of Agriculture: Washington, DC, USA, 2016.
- Lee-Kwan, S.H.; Moore, L.V.; Blanck, H.M.; Harris, D.M.; Galuska, D. Disparities in State-Specific Adult Fruit and Vegetable Consumption—United States, 2015. MMWR. Morb. Mortal. Wkly. Rep. 2017, 66, 1241–1247. [Google Scholar] [CrossRef]
- Dadon, S.B.-E.; Abbo, S.; Reifen, R. Leveraging traditional crops for better nutrition and health—The case of chickpea. Trends Food Sci. Technol. 2017, 64, 39–47. [Google Scholar] [CrossRef]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinumL.): A review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mn, N.P.; Kr, S.; Prasad, D.S. A Review on Nutritional and Nutraceutical Properties of Sesame. J. Nutr. Food Sci. 2012, 2, 2. [Google Scholar] [CrossRef]
- Wallace, T.C.; Murray, R.D.; Zelman, K.M. The Nutritional Value and Health Benefits of Chickpeas and Hummus. Nutrients 2016, 8, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neil, C.E.; Nicklas, T.A.; Fulgoni, V.L., III. Chickpeas and hummus are associated with better nutrient intake, diet quality, and levels of some cardiovascular risk factors: National health and nutrition examination survey 2003-2010. J. Nutr. Food Sci. 2014, 4, 1–7. [Google Scholar]
- Reister, E.J.; Leidy, H.J. An Afternoon Hummus Snack Affects Diet Quality, Appetite, and Glycemic Control in Healthy Adults. J. Nutr. 2020, 150, 2214–2222. [Google Scholar] [CrossRef]
- Pittaway, J.K.; Robertson, I.K.; Ball, M.J. Chickpeas May Influence Fatty Acid and Fiber Intake in an Ad Libitum Diet, Leading to Small Improvements in Serum Lipid Profile and Glycemic Control. J. Am. Diet. Assoc. 2008, 108, 1009–1013. [Google Scholar] [CrossRef]
- Murty, C.M.; Pittaway, J.K.; Ball, M.J. Chickpea supplementation in an Australian diet affects food choice, satiety and bowel health. Appetite 2010, 54, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention Type 2 Diabetes. Available online: https://www.cdc.gov/diabetes/basics/type2.html (accessed on 12 September 2019).
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nat. Cell Biol. 2006, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Karaca, M.; Magnan, C.; Kargar, C. Functional pancreatic beta-cell mass: Involvement in type 2 diabetes and therapeutic intervention. Diabetes Metab. 2009, 35, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Sung, K.-C.; Jeong, W.-S.; Wild, S.H.; Byrne, C.D. Combined Influence of Insulin Resistance, Overweight/Obesity, and Fatty Liver as Risk Factors for Type 2 Diabetes. Diabetes Care 2012, 35, 717–722. [Google Scholar] [CrossRef] [Green Version]
- Salmerón, J.; Ascherio, A.; Rimm, E.B.; Colditz, G.A.; Spiegelman, D.; Jenkins, D.J.; Stampfer, M.J.; Wing, A.L.; Willett, W.C. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997, 20, 545–550. [Google Scholar] [CrossRef]
- Augustin, L.S.A.; Chiavaroli, L.; Campbell, J.; Ezatagha, A.; Jenkins, A.L.; Esfahani, A.; Kendall, C.W.C. Post-prandial glucose and insulin responses of hummus alone or combined with a carbohydrate food: A dose—response study. Nutr. J. 2015, 15, 13. [Google Scholar] [CrossRef] [Green Version]
- Mollard, R.C.; Wong, C.L.; Luhovyy, B.L.; Cho, F.; Anderson, G.H. Second-meal effects of pulses on blood glucose and subjective appetite following a standardized meal 2 h later. Appl. Physiol. Nutr. Metab. 2014, 39, 849–851. [Google Scholar] [CrossRef]
- Zafar, T.A.; Kabir, Y. Chickpeas suppress postprandial blood glucose concentration, and appetite and reduce energy intake at the next meal. J. Food Sci. Technol. 2017, 54, 987–994. [Google Scholar] [CrossRef]
- Wong, C.L.; Mollard, R.C.; Zafar, T.A.; Luhovyy, B.L.; Anderson, G.H. Food Intake and Satiety Following a Serving of Pulses in Young Men: Effect of Processing, Recipe, and Pulse Variety. J. Am. Coll. Nutr. 2009, 28, 543–552. [Google Scholar] [CrossRef]
- Panlasigui, L.N.; Panlilio, L.M.; Madrid, J.C. Glycaemic response in normal subjects to five different legumes commonly used in the Philippines. Int. J. Food Sci. Nutr. 1995, 46, 155–160. [Google Scholar] [CrossRef]
- Nestel, P.; Cehun, M.; Chronopoulos, A. Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations. Am. J. Clin. Nutr. 2004, 79, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Bahadoran, Z.; Mirmiran, P.; Hosseinpour-Niazi, S.; Azizi, F. A Sesame Seeds-Based Breakfast Could Attenuate Sub-Clinical Inflammation in Type 2 Diabetic Patients: A Randomized Controlled Trial. Int. J. Nutr. Food Sci. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, J.A.; Grusak, M.A. Nutritional value of chickpea. Chickpea Breed. Manag. 2007, 101–142. [Google Scholar]
- Zhou, J.; Martin, R.J.; Tulley, R.T.; Raggio, A.M.; McCutcheon, K.L.; Shen, L.; Danna, S.C.; Tripathy, S.; Hegsted, M.; Keenan, M.J. Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am. J. Physiol. Metab. 2008, 295, E1160–E1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandarana, K.; Gelegen, C.; Irvine, E.E.; Choudhury, A.I.; Amouyal, C.; Andreelli, F.; Withers, D.J.; Batterham, R.L. Peripheral activation of the Y2-receptor promotes secretion of GLP-1 and improves glucose tolerance. Mol. Metab. 2013, 2, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Comerford, K.B.; Pasin, G. Emerging Evidence for the Importance of Dietary Protein Source on Glucoregulatory Markers and Type 2 Diabetes: Different Effects of Dairy, Meat, Fish, Egg, and Plant Protein Foods. Nutrients 2016, 8, 446. [Google Scholar] [CrossRef] [Green Version]
- Viguiliouk, E.; Stewart, S.E.; Jayalath, V.H.; Ng, A.P.; Mirrahimi, A.; De Souza, R.J.; Hanley, A.J.G.; Bazinet, R.P.; Mejia, S.B.; A Leiter, L.; et al. Effect of Replacing Animal Protein with Plant Protein on Glycemic Control in Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2015, 7, 9804–9824. [Google Scholar] [CrossRef]
- Dilawari, J.B.; Kamath, P.S.; Batta, R.P.; Mukewar, S.; Raghavan, S. Reduction of postprandial plasma glucose by Bengal gram dal (Cicer arietinum) and Rajmah (Phaseolus vulgaris). Am. J. Clin. Nutr. 1981, 34, 2450–2453. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, O.W.; Thomsen, C.; Hansen, K.W.; Vesterlund, M.; Winther, E.; Hermansen, K. Effects on Blood Pressure, Glucose, and Lipid Levels of High-Monounsaturated Fat Diet Compared With a High-Carbohydrate Diet in NIDDM Subjects. Diabetes Care 1993, 16, 1565–1571. [Google Scholar] [CrossRef]
- Kotake, J.; Tanaka, Y.; Umehara, N.; Miyashita, A.; Tsuru, T.; Hikida, S.; Mizote, H. Effects of a high-monounsaturated fat diet on glucose and lipid metabolisms in normal and diabetic mice. J. Nutr. Sci. Vitaminol. 2004, 50, 106–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louheranta, A.M.; Sarkkinen, E.S.; Vidgren, H.M.; Schwab, U.S.; Uusitupa, M.I.J. Association of the fatty acid profile of serum lipids with glucose and insulin metabolism during 2 fat-modified diets in subjects with impaired glucose tolerance. Am. J. Clin. Nutr. 2002, 76, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.; McInerney, D.; Owens, D.; Collins, P.; Johnson, A.; Tomkin, G. Diabetes and the Mediterranean diet: A beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium-dependent vasoreactivity. QJM Int. J. Med. 2000, 93, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammad Shahi, M.; Zakerzadeh, M.; Zakerkish, M.; Zarei, M.; Saki, A. Effect of sesamin supplementation on glycemic status, inflammatory markers, and adiponectin levels in patients with type 2 diabetes mellitus. J. Diet. Suppl. 2017, 14, 65–75. [Google Scholar] [CrossRef]
- Sankar, D.; Ali, A.; Sambandam, G.; Rao, R. Sesame oil exhibits synergistic effect with anti-diabetic medication in patients with type 2 diabetes mellitus. Clin. Nutr. 2011, 30, 351–358. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Navar-Boggan, A.M.; Peterson, E.D.; D’Agostino Sr, R.B.; Neely, B.; Sniderman, A.D.; Pencina, M.J. Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation 2015, 131, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, J.L.; Hazzard, W.R.; Schrott, H.G.; Bierman, E.L.; Motulsky, A.G. Hyperlipidemia in coronary heart disease I. Lipid levels in 500 survivors of myocardial infarction. J. Clin. Investig. 1973, 52, 1533–1543. [Google Scholar] [CrossRef] [Green Version]
- Vasan, R.S.; Larson, M.G.; Leip, E.P.; Evans, J.C.; O’Donnell, C.J.; Kannel, W.B.; Levy, D. Impact of High-Normal Blood Pressure on the Risk of Cardiovascular Disease. N. Engl. J. Med. 2001, 345, 1291–1297. [Google Scholar] [CrossRef]
- Wald, N.J.; Law, M. Serum cholesterol and ischaemic heart disease. Atherosclerosis 1995, 118, S1–S5. [Google Scholar] [CrossRef]
- Graham, I.M.; Cooney, M.-T.; Bradley, D.; Dudina, A.; Reiner, Ž. Dyslipidemias in the Prevention of Cardiovascular Disease: Risks and Causality. Curr. Cardiol. Rep. 2012, 14, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Blood Pressure Lowering Treatment Trialists’ Collaboration. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: Results of prospectively designed overviews of randomized trials. Arch. Intern. Med. 2005, 165, 1410–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karanja, N.; Erlinger, T.P.; Pao-Hwa, L.; Miller, E.R.; Bray, G.A. The DASH diet for high blood pressure: From clinical trial to dinner table. Clevel. Clin. J. Med. 2004, 71, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.M.; Fleming, J.A.; Kris-Etherton, P.M. The role of diet and nutritional supplements in preventing and treating cardiovascular disease. Curr. Opin. Cardiol. 2009, 24, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Pittaway, J.; Ahuja, K.; Cehun, M.; Chronopoulos, A.; Robertson, I.; Nestel, P.; Ball, M. Dietary Supplementation with Chickpeas for at Least 5 Weeks Results in Small but Significant Reductions in Serum Total and Low-Density Lipoprotein Cholesterols in Adult Women and Men. Ann. Nutr. Metab. 2006, 50, 512–518. [Google Scholar] [CrossRef]
- Pittaway, J.K.; Ahuja, K.D.K.; Robertson, I.K.; Ball, M.J. Effects of a controlled diet supplemented with chickpeas on serum lipids, glucose tolerance, satiety and bowel function. J. Am. Coll. Nutr. 2007, 26, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Mathur, K.S.; Khan, M.A.; Sharma, R.D. Hypocholesterolaemic effect of Bengal gram: A long-term study in man. BMJ 1968, 1, 30–31. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, E.J.; Levy, R.I.; Ernst, N.D.; Van Sant, F.D.; Brewer, H.B., Jr. The effects of low cholesterol, high polyunsaturated fat, and low fat diets on plasma lipid and lipoprotein cholesterol levels in normal and hypercholesterolemic subjects. Am. J. Clin. Nutr. 1981, 34, 1758–1763. [Google Scholar] [CrossRef] [Green Version]
- Mensink, R.P.; Katan, M.B. Effect of a Diet Enriched with Monounsaturated or Polyunsaturated Fatty Acids on Levels of Low-Density and High-Density Lipoprotein Cholesterol in Healthy Women and Men. N. Engl. J. Med. 1989, 321, 436–441. [Google Scholar] [CrossRef] [Green Version]
- Lesna, I.K.; Suchanek, P.; Kovář, J.; Stavek, P.; Poledne, R. Replacement of dietary saturated FAs by PUFAs in diet and reverse cholesterol transport. J. Lipid Res. 2008, 49, 2414–2418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, F.H.; Grundy, S.M. Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. J. Lipid Res. 1985, 26, 194–202. [Google Scholar] [PubMed]
- Mustad, V.A.; Etherton, T.D.; Cooper, A.D.; Mastro, A.M.; Pearson, T.A.; Jonnalagadda, S.S.; Kris-Etherton, P.M. Reducing saturated fat intake is associated with increased levels of LDL receptors on mononuclear cells in healthy men and women. J. Lipid Res. 1997, 38, 459–468. [Google Scholar]
- Fernandez, M.L.; West, K.L. Mechanisms by which Dietary Fatty Acids Modulate Plasma Lipids. J. Nutr. 2005, 135, 2075–2078. [Google Scholar] [CrossRef] [PubMed]
- Yagiz, Y.; Gu, L. Potential Health Promoting Properties of Isoflavones, Saponins, Proanthocyanidins, and Other Phytonutrients in Pulses. In Health Benefits of Pulses; Springer: New York, NY, USA, 2019; pp. 109–127. [Google Scholar]
- Lichtenstein, A.H. Soy Protein, Isoflavones and Cardiovascular Disease Risk. J. Nutr. 1998, 128, 1589–1592. [Google Scholar] [CrossRef]
- Oakenfull, D.; Sidhu, G.S. Could saponins be a useful treatment for hypercholesterolaemia? Eur. J. Clin. Nutr. 1990, 44, 79–88. [Google Scholar] [PubMed]
- Zulet, M.A.; Martínez, J.A. Corrective role of chickpea intake on a dietary-induced model of hypercholesterolemia. Plant. Foods Hum. Nutr. 1995, 48, 269–277. [Google Scholar] [CrossRef]
- Kahlon, T.S.; Smith, G.E.; Shao, Q. In vitro binding of bile acids by kidney bean (Phaseolus vulgaris), black gram (Vigna mungo), bengal gram (Cicer arietinum) and moth bean (Phaseolus aconitifolins). Food Chem. 2005, 90, 241–246. [Google Scholar] [CrossRef]
- Mathur, K.S.; Singhal, S.S.; Sharma, R.D. Effect of Bengal Gram on Experimentally Induced High Levels of Cholesterol in Tissues and Serum in Albino Rats. J. Nutr. 1964, 84, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Major, A.W. Pulses and lipaemia, short-and long-term effect: Potential in the prevention of cardiovascular disease. Br. J. Nutr. 2002, 88, 263–271. [Google Scholar] [CrossRef]
- Mirmiran, P.; Bahadoran, Z.; Golzarand, M.; Rajab, A.; Azizi, F. Ardeh (Sesamum indicum) could improve serum triglycerides and atherogenic lipid parameters in type 2 diabetic patients: A randomized clinical trial. Arch. Iran. Med. 2013, 16, 651–656. [Google Scholar]
- Kris-Etherton, P.M.; Pearson, T.A.; Wan, Y.; Hargrove, R.L.; Moriarty, K.; Fishell, V.; Etherton, T.D. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 1999, 70, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Hirose, N.; Inoue, T.; Nishihara, K.; Sugano, M.; Akimoto, K.; Shimizu, S.; Yamada, H. Inhibition of cholesterol absorption and synthesis in rats by sesamin. J. Lipid Res. 1991, 32, 629–638. [Google Scholar] [PubMed]
- Majdalawieh, A.F.; Ro, H.-S. Sesamol and sesame (Sesamum indicum) oil enhance macrophage cholesterol efflux via up-regulation of PPARγ1 and LXRα transcriptional activity in a MAPK-dependent manner. Eur. J. Nutr. 2015, 54, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Visavadiya, N.P.; Narasimhacharya, A. Sesame as a hypocholesteraemic and antioxidant dietary component. Food Chem. Toxicol. 2008, 46, 1889–1895. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Beydoun, M.A.; Min, J.; Xue, H.; Kaminsky, L.A.; Cheskin, L.J. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int. J. Epidemiol. 2020, 49, 810–823. [Google Scholar] [CrossRef]
- National Institute of Health. Managing Overweight and Obesity in Adults: Systematic Evidence Review from the Obesity Expert Panel. 2013. Available online: https://www.nhlbi.nih.gov/health-topics/managing-overweight-obesity-in-adults (accessed on 14 September 2019).
- Zafar, T.A.; Kabir, Y.; Ghazaii, C. Low glycemic index foods suppress glycemic responses, appetite and food intake in young Kuwaiti females. Kuwait J. Sci. Eng. 2011, 38, 111–123. [Google Scholar]
- Ariel, A. The hummus wars. Gastron. J. Food Cult. 2012, 12, 34–42. [Google Scholar] [CrossRef]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2017, 73, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Kane, H. Poll Reveals Everything You Ever Wanted to Know about Israelis’ Hummus-eating Habits. Haaretz 2016. Available online: https://www.haaretz.com/food/israelis-and-hummus-everything-you-ever-wanted-to-know-1.5381568 (accessed on 14 September 2019).
- Gotsis, E.; Anagnostis, P.; Mariolis, A.; Vlachou, A.; Katsiki, N.; Karagiannis, A. Health benefits of the Mediterranean diet: An update of research over the last 5 years. Angiology 2015, 66, 304–318. [Google Scholar] [CrossRef]
- Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. Am. J. Clin. Nutr. 2010, 92, 1189–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilenko, N.; Fraser, D.; Vardi, H.; Shai, I.; Shahar, D.R. Mediterranean diet and cardiovascular diseases in an Israeli population. Prev. Med. 2005, 40, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Bazzano, L.; He, J.; Ogden, L. Legume consumption and risk of coronary heart disease in US men and women. NHANES I epidemiologic follow-up study. ACC Curr. J. Rev. 2001, 11, 31–32. [Google Scholar] [CrossRef]
- Agurs-Collins, T.; Smoot, D.; Afful, J.; Makambi, K.; Adams-Campbell, L.L. Legume intake and reduced colorectal adenoma risk in African-Americans. J. Natl. Black Nurses’ Assoc. JNBNA 2006, 17, 6–12. [Google Scholar]
- Darmadi-Blackberry, I.; Wahlqvist, M.L.; Kouris-Blazos, A.; Steen, B.; Lukito, W.; Horie, Y.; Horie, K. Legumes: The most important dietary predictor of survival in older people of different ethnicities. Asia Pac. J. Clin. Nutr. 2004, 13, 217–220. [Google Scholar]
- Eleftheriou, D.; Benetou, V.; Trichopoulou, A.; La Vecchia, C.; Bamia, C. Mediterranean diet and its components in relation to all-cause mortality: Meta-analysis. Br. J. Nutr. 2018, 120, 1081–1097. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Missbach, B.; König, J.; Hoffmann, G. Adherence to a Mediterranean diet and risk of diabetes: A systematic review and meta-analysis. Public Health Nutr. 2015, 18, 1292–1299. [Google Scholar] [CrossRef] [Green Version]
- Rosato, V.; Temple, N.J.; La Vecchia, C.; Castellan, G.; Tavani, A.; Guercio, V. Mediterranean diet and cardiovascular disease: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2019, 58, 173–191. [Google Scholar] [CrossRef]
- Esposito, K.; Kastorini, C.-M.; Panagiotakos, D.; Giugliano, D. Mediterranean Diet and Weight Loss: Meta-Analysis of Randomized Controlled Trials. Metab. Syndr. Relat. Disord. 2011, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- ChooseMyPlate.gov.2020. Sample 2-Week Menus. Available online: https://www.choosemyplate.gov/eathealthy/budget/budget-sample-two-week-menus (accessed on 29 October 2020).
Nutrient | Value per Serving and per 100 g a | ||||||
---|---|---|---|---|---|---|---|
Chickpeas, Cooked, Boiled without Salt | Sesame Butter, Tahini, from Roasted/Toasted Kernels | Hummus, Commercial | |||||
FoodData Central ID | 173757 | 170189 | 174289 | ||||
Serving Size | 1 Cup (164 g) | 100 g | 2 tbsp (30 g) | 100 g | 2 tbsp (28 g) | % Daily Value | 100 g |
Macronutrients | |||||||
Energy, kcal | 269 | 164 | 179 | 595 | 67 | 237 | |
Protein, g | 14.5 | 8.9 | 5.1 | 17 | 2.21 | ~3% | 7.78 |
Fat, g | 4.25 | 2.6 | 16.1 | 53.8 | 5.05 | 6% | 17.82 |
Carbohydrate, g | 45 | 27.4 | 6.4 | 21.19 | 4.25 | 2% | 15 |
Fiber, g | 12.5 | 7.6 | 2.8 | 9.3 | 1.56 | 6% | 5.5 |
Sugar, g | 7.87 | 4.8 | 0.15 | 0.49 | 0.18 | 0.62 | |
Added Sugar, g | 0 | 0 | 0 | 0 | 0 | 0% | 0 |
Minerals | |||||||
Calcium, mg | 80 | 49 | 128 | 426 | 13 | 1% | 47 |
Iron, mg | 4.74 | 2.89 | 2.69 | 8.95 | 0.72 | 4% | 2.54 |
Magnesium, mg | 78 | 48 | 29 | 95 | 21 | 5% | 75 |
Phosphorus, mg | 276 | 168 | 220 | 732 | 51 | 4% | 181 |
Potassium, mg | 477 | 291 | 124 | 414 | 88 | 2% | 312 |
Sodium, mg | 11.5 | 7 | 35 | 115 | 121 | 5% | 426 |
Zinc, mg | 2.5 | 1.53 | 1.39 | 4.62 | 0.4 | 4% | 1.44 |
Copper, mg | 0.58 | 0.35 | 0.48 | 1.61 | 0.11 | 12% | 0.38 |
Manganese, mg | 1.69 | 1 | 0.44 | 1.45 | 0.33 | 14% | 1.16 |
Selenium, μg | 6.07 | 3.7 | 10.32 | 34.4 | 1.33 | 2% | 4.7 |
Vitamins | |||||||
Vitamin C, mg | 2.13 | 1.3 | 0 | 0 | 0 | 0% | 0 |
Thiamin, mg | 0.19 | 0.12 | 0.36 | 1.22 | 0.05 | 4% | 0.16 |
Riboflavin, mg | 0.1 | 0.06 | 0.14 | 0.47 | 0.04 | 3% | 0.13 |
Niacin, mg NE | 0.86 | 0.52 | 1.63 | 5.45 | 0.29 | 2% | 1 |
Pantothenic acid, mg | 0.47 | 0.29 | 0.2 | 0.69 | 0.1 | 2% | 0.35 |
Vitamin B6, mg | 0.23 | 0.14 | 0.04 | 0.15 | 0.04 | 2% | 0.15 |
Folate, mg DFE | 282 | 172 | 29 | 98 | 13 | 3% | 48 |
Choline, mg | 70.2 | 42.8 | 7.7 | 25.8 | NR (b) | NR (b) | |
Vitamin B12, μg | 0 | 0 | 0 | 0 | 0 | 0% | 0 |
Vitamin A, μg RAE | 1.6 | 1 | 0.9 | 3 | 0.28 | 0% | 1 |
Vitamin D, μg | 0 | 0 | 0 | 0 | 0 | 0% | 0 |
Vitamin K, μg | 6.56 | 4 | 0 | 0 | 6.46 | 5% | 22.8 |
Vitamin E, mg | 0.57 | 0.35 | 0.07 | 0.25 | 0.44 | 3% | 1.54 |
Lipids | |||||||
Saturated, g | 0.44 | 0.27 | 2.26 | 7.53 | 0.73 | 4% | 2.56 |
Monosaturated, g | 0.96 | 0.58 | 6 | 20.3 | 1.5 | 5.34 | |
Polyunsaturated, g | 1.9 | 1.2 | 7 | 23.56 | 2.5 | 8.8 |
Standard Meal | Revised Meal | Overall Change in Daily Nutrients | |
---|---|---|---|
Breakfast | Toast with 1 tsp butter and 1 Tbsp jam | Toast with 1 tbsp hummus |
|
Lunch | Sandwich with 2 tbsp mayonnaise | Sandwich with 2 tbsp hummus | |
Dinner | Salad with salad dressing | Salad with salad dressing and topped with 1/3 cup chickpeas |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reister, E.J.; Belote, L.N.; Leidy, H.J. The Benefits of Including Hummus and Hummus Ingredients into the American Diet to Promote Diet Quality and Health: A Comprehensive Review. Nutrients 2020, 12, 3678. https://doi.org/10.3390/nu12123678
Reister EJ, Belote LN, Leidy HJ. The Benefits of Including Hummus and Hummus Ingredients into the American Diet to Promote Diet Quality and Health: A Comprehensive Review. Nutrients. 2020; 12(12):3678. https://doi.org/10.3390/nu12123678
Chicago/Turabian StyleReister, Evan J., Lynn N. Belote, and Heather J. Leidy. 2020. "The Benefits of Including Hummus and Hummus Ingredients into the American Diet to Promote Diet Quality and Health: A Comprehensive Review" Nutrients 12, no. 12: 3678. https://doi.org/10.3390/nu12123678
APA StyleReister, E. J., Belote, L. N., & Leidy, H. J. (2020). The Benefits of Including Hummus and Hummus Ingredients into the American Diet to Promote Diet Quality and Health: A Comprehensive Review. Nutrients, 12(12), 3678. https://doi.org/10.3390/nu12123678