Dietary Inflammatory Index during Pregnancy and the Risk of Intrapartum Fetal Asphyxia: The Japan Environment and Children’s Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Calculation of DII
2.4. Obstetric Outcomes and Confounding Factors
2.5. Statistical Analyses
3. Result
3.1. Maternal Background and Obstetric Outcomes
3.2. Comparison of DII and Obstetrics Characteristics among Subgroups
3.3. Relationship between Dietary Inflammatory Index and Fetal Acidosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bendsen, N.T.; Stender, S.; Szecsi, P.B.; Pedersen, S.B.; Basu, S.; Hellgren, L.I.; Newman, J.W.; Larsen, T.M.; Haugaard, S.B.; Astrup, A. Effect of industrially produced trans fat on markers of systemic inflammation: Evidence from a randomized trial in women. J. Lipid Res. 2011, 52, 1821–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J. Nutr. Metab. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- López-Alarcón, M.; Perichart-Perera, O.; Flores-Huerta, S.; Inda-Icaza, P.; Rodríguez-Cruz, M.; Armenta-Álvarez, A.; Bram-Falcón, M.T.; Mayorga-Ochoa, M. Excessive refined carbohydrates and scarce micronutrients intakes increase inflammatory mediators and insulin resistance in prepubertal and pubertal obese children independently of obesity. Mediat. Inflamm. 2014, 2014. [Google Scholar] [CrossRef]
- Basta, G.; Schmidt, A.M.; De Caterina, R. Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes. Cardiovasc. Res. 2004, 63, 582–592. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [Green Version]
- Kelley, D.S.; Adkins, Y.; Reddy, A.; Woodhouse, L.R.; Mackey, B.E.; Erickson, K.L. Sweet bing cherries lower circulating concentrations of markers for chronic inflammatory diseases in healthy humans. J. Nutr. 2013, 143, 340–344. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Khaza’ai, H.; Patimah, I.; Rahmat, A.; Abed, Y. Effect of long chain omega-3 polyunsaturated fatty acids on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: A randomized controlled trial. Food Nutr. Res. 2016, 60. [Google Scholar] [CrossRef] [Green Version]
- Tipoe, G.L.; Leung, T.M.; Hung, M.W.; Fung, M.L. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc. Hematol. Disord. Drug Targets 2007, 7, 135–144. [Google Scholar] [CrossRef]
- Konstantinidou, V.; Covas, M.I.; Muñoz-Aguayo, D.; Khymenets, O.; de la Torre, R.; Saez, G.; Tormos, M.C.; Toledo, E.; Marti, A.; Ruiz-Gutiérrez, V.; et al. In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: A randomized controlled trial. FASEB J. 2010, 24, 2546–2557. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Phillips, C.M.; Chen, L.W.; Heude, B.; Bernard, J.Y.; Harvey, N.C.; Duijts, L.; Mensink-Bout, S.M.; Polanska, K.; Mancano, G.; Suderman, M.; et al. Dietary inflammatory index and non-communicable disease risk: A narrative review. Nutrients 2019, 11, 1873. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Rifas-Shiman, S.L.; Shivappa, N.; Wirth, M.D.; Hébert, J.R.; Gold, D.R.; Gillman, M.W.; Oken, E. Dietary inflammatory potential during pregnancy is associated with lower fetal growth and breastfeeding failure: Results from project viva. J. Nutr. 2016, 146, 728–736. [Google Scholar] [CrossRef]
- Yang, Y.; Kan, H.; Yu, X.; Yang, Y.; Li, L.; Zhao, M. Relationship between dietary inflammatory index, hs-CRP level in the second trimester and neonatal birth weight: A cohort study. J. Clin. Biochem. Nutr. 2020, 66, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Malin, G.L.; Morris, R.K.; Khan, K.S. Strength of association between umbilical cord pH and perinatal and long term outcomes: Systematic review and meta-analysis. BMJ 2010, 340, c1471. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.W.; Colford, J.M., Jr. Chorioamnionitis as a risk factor for cerebral palsy: A meta-analysis. JAMA 2000, 284, 1417–1424. [Google Scholar] [CrossRef]
- Jobe, A.H. Antenatal factors and the development of bronchopulmonary dysplasia. Semin. Neonatol. 2003, 8, 9–17. [Google Scholar] [CrossRef]
- Rainaldi, M.A.; Perlman, J.M. Pathophysiology of birth asphyxia. Clin. Perinatol. 2016, 43, 409–422. [Google Scholar] [CrossRef]
- Yeh, P.; Emary, K.; Impey, L. The relationship between umbilical cord arterial pH and serious adverse neonatal outcome: Analysis of 51,519 consecutive validated samples. BJOG 2012, 119, 824–831. [Google Scholar] [CrossRef]
- Nelson, K.B.; Grether, J.K. Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. Am. J. Obstet. Gynecol. 1998, 179, 507–513. [Google Scholar] [CrossRef]
- Ishibashi, M.; Kyozuka, H.; Yamaguchi, A.; Fujimori, K.; Hosoya, M.; Yasumura, S.; Masahito, K.; Sato, A.; Ogata, Y.; Hashimoto, K.; et al. Effect of pro-inflammatory diet before pregnancy on gestational age and birth weight: The Japan environment and children’s study. Matern. Child. Nutr. 2019, 16, e12899. [Google Scholar]
- Kawamoto, T.; Nitta, H.; Murata, K.; Toda, E.; Tsukamoto, N.; Hasegawa, M.; Hasegawa, M.; Yamagata, Z.; Kayama, F.; Kishi, R.; et al. Rationale and study design of the Japan environment and children’s study (JECS). BMC Public Health 2014, 14, 25. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, Y.; Takachi, R.; Ishihara, J.; Ishii, Y.; Sasazuki, S.; Sawada, N.; Shinozawa, Y.; Tanaka, J.; Kato, E.; Kitamura, K.; et al. Validity of short and long self-administered food frequency questionnaires in ranking dietary intake in middle-aged and elderly Japanese in the Japan public health center-based prospective study for the next generation (JPHC-NEXT) protocol area. J. Epidemiol. 2016, 26, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Victory, R.; Penava, D.; Da Silva, O.; Natale, R.; Richardson, B. Umbilical cord pH and base excess values in relation to adverse outcome events for infants delivering at term. Am. J. Obstet. Gynecol. 2004, 191, 2021–2028. [Google Scholar] [CrossRef]
- MacLennan, A. A template for defining a causal relation between acute intrapartum events and cerebral palsy: International consensus statement. BMJ 1999, 319, 1054–1059. [Google Scholar] [CrossRef] [Green Version]
- Kyozuka, H.; Fujimori, K.; Hosoya, M.; Yasumura, S.; Yokoyama, T.; Sato, A.; Hashimoto, K. The Japan environment and children’s study (JECS) in Fukushima prefecture: Pregnancy outcome after the great East Japan earthquake. Tohoku J. Exp. Med. 2018, 246, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Kyozuka, H.; Fujimori, K.; Hosoya, M.; Yasumura, S.; Yokoyama, T.; Sato, A.; Hashimoto, K. The effect of maternal age at the first childbirth on gestational age and birth weight: The Japan environment and children’s study (JECS). J. Epidemiol. 2019, 29, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Barton, D.P.; Turner, M.J.; Boylan, P.C.; MacDonald, D.; Stronge, J.M. Fetal acidosis in labour: A prospective study on the effect of parity. Eur. J. Obstet. Gynecol. Reprod. Biol. 1991, 39, 93–98. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. Practice bulletin no. 116: Management of intrapartum fetal heart rate tracings. Obstet. Gynecol. 2010, 116, 1232–1240. [Google Scholar] [CrossRef]
- Minakami, H.; Maeda, T.; Fujii, T.; Hamada, H.; Iitsuka, Y.; Itakura, A.; Itoh, H.; Iwashita, M.; Kanagawa, T.; Kanai, M.; et al. Guidelines for obstetrical practice in Japan: Japan Society of Obstetrics and Gynecology (JSOG) and Japan Association of Obstetricians and Gynecologists (JAOG) 2014 edition. J. Obstet. Gynaecol. Res. 2014, 40, 1469–1499. [Google Scholar] [CrossRef]
- Bleich, A.T.; Alexander, J.M.; McIntire, D.D.; Leveno, K.J. An analysis of second-stage labor beyond 3 hours in nulliparous women. Am. J. Perinatol. 2012, 29, 717–722. [Google Scholar] [CrossRef]
- Peebles, D.M.; Wyatt, J.S. Synergy between antenatal exposure to infection and intrapartum events in causation of perinatal brain injury at term. BJOG 2002, 109, 737–739. [Google Scholar] [CrossRef] [PubMed]
- Salafia, C.M.; Ghidini, A.; Sherer, D.M.; Pezzullo, J.C. Abnormalities of the fetal heart rate in preterm deliveries are associated with acute intra-amniotic infection. J. Soc. Gynecol. Investig. 1998, 5, 188–191. [Google Scholar] [CrossRef]
- Sameshima, H.; Ikenoue, T.; Ikeda, T.; Kamitomo, M.; Ibara, S. Association of nonreassuring fetal heart rate patterns and subsequent cerebral palsy in pregnancies with intrauterine bacterial infection. Am. J. Perinatol. 2005, 22, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Buhimschi, C.S.; Abdel-Razeq, S.; Cackovic, M.; Pettker, C.M.; Dulay, A.T.; Bahtiyar, M.O.; Zambrano, E.; Martin, R.; Norwitz, E.R.; Bhandari, V.; et al. Fetal heart rate monitoring patterns in women with amniotic fluid proteomic profiles indicative of inflammation. Am. J. Perinatol. 2008, 25, 359–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, Y.; Ogawa, M.; Nakai, A.; Tagawa, M.; Ohwada, M.; Ikenoue, T. Severe fetal acidemia in cases of clinical chorioamnionitis in which the infant later developed cerebral palsy. BMC Pregnancy Childbirth 2015, 15, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salafia, C.M.; Mangam, H.E.; Weigl, C.A.; Foye, G.J.; Silberman, L. Abnormal fetal heart rate patterns and placental inflammation. Am. J. Obstet. Gynecol. 1989, 160, 140–147. [Google Scholar] [CrossRef]
- Yasuda, S.; Kyozuka, H.; Nomura, Y.; Fujimori, K. Effect of magnesium sulfate on baroreflex during acute hypoxemia in chronically instrumented fetal sheep [published online ahead of print, 2020 May 27]. J. Obstet. Gynaecol. Res. 2020, 46, 1035–1043. [Google Scholar] [CrossRef]
- Kyozuka, H.; Yasuda, S.; Hiraiwa, T.; Nomura, Y.; Fujimori, K. The change of fetal heart rate short-term variability during the course of histological chorioamnionitis in fetal sheep. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 228, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, A.; Kyozuka, H.; Fujimori, K.; Hosoya, M.; Yasumura, S.; Yokoyama, T.; Sato, A.; Hashimoto, K.; The Japan Environment and Children’s Study Group. Risk of preterm birth, low birthweight and small-for-gestational-age infants in pregnancies with adenomyosis: A cohort study of the Japan environment and children’s study. Acta. Obstet. Gynecol. Scand. 2019, 98, 359–364. [Google Scholar] [CrossRef]
Variable | Q1 (Most Anti-Inflammatory Group) | Q2 | Q3 | Q4 | Q5 (Most Pro-Inflammatory Group) | p-Value |
---|---|---|---|---|---|---|
n = 11,308 | n = 11,291 | n = 11,379 | n = 11,315 | n = 11,197 | ||
Maternal background | ||||||
DII, mean (±SD) | −3.67 (0.79) | −1.64 (0.49) | −0.02 (0.46) | 1.62 (0.50) | 3.72 (0.81) | <0.01 a |
Maternal age, mean year (±SD) | 31.9 (4.7) | 31.4 (4.7) | 31.0 (4.8) | 30.5 (4.9) | 29.3 (5.2) | <0.01 a |
Maternal age category, % | ||||||
≤19 | 0.4 | 0.5 | 0.7 | 0.9 | 1.9 | <0.01 b |
20–29 | 30.5 | 34.2 | 37.9 | 42.0 | 50.5 | |
≥30 | 69.1 | 65.3 | 61.4 | 57.1 | 47.6 | |
BMI, % | ||||||
<18.5 | 15.7 | 16.2 | 16.8 | 16.7 | 16.9 | <0.01 b |
18.5–24.9 | 76.0 | 75.9 | 74.8 | 74.4 | 72.8 | |
≥25.0 | 8.3 | 7.9 | 8.4 | 8.9 | 10.3 | |
Primipara, % | 30.9 | 35.9 | 39.2 | 42.3 | 49.0 | <0.01 b |
Smoking, % | 3.4 | 3.3 | 3.6 | 4.9 | 6.3 | <0.01 b |
UmA-pH, mean (±SD) | 7.31 (0.14) | 7.32 (0.08) | 7.31 (0.10) | 7.31 (0.10) | 7.31 (0.15) | <0.01 a |
UmA-pH < 7.20, % | 6.1 | 6.3 | 6.6 | 5.9 | 7.1 | <0.01 b |
UmA-pH < 7.10, % | 1.0 | 1.0 | 1.0 | 1.1 | 1.2 | 0.24 b |
UmA-pH < 7.00, % | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.39 b |
Nulliparous | Multiparous | p-Value | |
---|---|---|---|
n = 22,289 | n = 34,210 | ||
Variable | |||
Maternal age, mean year (±SD) | 29.3 (5.1) | 31.8 (4.6) | <0.01 a |
DII, mean (±SD) | 0.41 (2.61) | −0.27 (2.61) | <0.01 a |
DII, % | |||
Q1(Most anti-inflammatory) | 15.8 | 22.8 | <0.01 b |
Q2 | 18.0 | 21.2 | |
Q3 | 19.9 | 20.1 | |
Q4 | 21.5 | 19.2 | |
Q5 (Most pro-inflammatory) | 24.9 | 16.8 | |
UmA-pH, mean (±SD) | 7.30 (0.11) | 7.32 (0.12) | <0.01 a |
UmA-pH < 7.20, % | 8.7 | 4.9 | <0.01 b |
UmA-pH < 7.10, % | 1.4 | 0.8 | <0.01 b |
UmA-pH < 7.00, % | 0.2 | 0.2 | 0.18 b |
Duration of labor, median hours (IQR) | 9 (6–15) | 4 (3–7) | <0.01 c |
Parity | Q1(Most Anti-Inflammatory Group) | Q2 | Q3 | Q4 | Q5 (Most Pro-Inflammatory Group) | |
---|---|---|---|---|---|---|
Nulliparous | ||||||
Number | 3495 | 4051 | 4463 | 4788 | 5492 | |
Case, % | 8.5 | 8.9 | 8.7 | 7.9 | 9.4 | |
Model 1 OR (95% CI) | Ref | 1.05 (0.90–1.23) | 1.03 (0.88–1.20) | 0.92 (0.79–1.08) | 1.12 (0.96–1.30) | |
Model 2 aOR (95% CI) | Ref | 1.04 (0.89–1.22) | 1.03 (0.88–1.21) | 0.93 (0.79–1.09) | 1.12 (0.97–1.31) | |
Model 3 aOR (95% CI) | Ref | 1.04 (0.90–1.22) | 1.03 (0.88–1.21) | 0.94 (0.80–1.10) | 1.12 (0.96–1.30) | |
Multiparous | ||||||
Number | 7813 | 7240 | 6916 | 6527 | 5705 | |
Case, % | 5.1 | 4.9 | 5.1 | 4.5 | 4.8 | |
Model 1 OR (95% CI) | Ref | 0.96 (0.83–1.11) | 1.02 (0.88–1.18) | 0.88 (0.75–1.02) | 0.94 (0.80–1.10) | |
Model 2 aOR (95% CI) | Ref | 0.96 (0.83–1.11) | 1.03 (0.89–1.19) | 0.89 (0.76–1.04) | 0.97 (0.83–1.14) | |
Model 3 aOR (95% CI) | Ref | 0.96 (0.83–1.11) | 1.02 (0.88–1.19) | 0.88 (0.75–1.03) | 0.97 (0.83–1.14) |
Parity | Q1(Most Anti-Inflammatory Group) | Q2 | Q3 | Q4 | Q5 (Most Pro-Inflammatory Group) | |
---|---|---|---|---|---|---|
Nulliparous | ||||||
Number | 3495 | 4051 | 4463 | 4788 | 5492 | |
Case, % | 1.1 | 1.5 | 1.3 | 1.4 | 1.8 | |
Model 1 OR (95% CI) | Ref | 1.33 (0.89–2.00) | 1.19 (0.79–1.78) | 1.26 (0.85–1.87) | 1.61 (1.11–2.34) | |
Model 2 aOR (95% CI) | Ref | 1.31 (0.87–1.97) | 1.12 (0.78–1.77) | 1.28 (0.86–1.90) | 1.64 (1.12–2.39) | |
Model 3 aOR (95% CI) | Ref | 1.33 (0.88–2.02) | 1.22 (0.80–1.84) | 1.32 (0.88–1.98) | 1.64 (1.11–2.42) | |
Multiparous | ||||||
Number | 7813 | 7240 | 6916 | 6527 | 5705 | |
Case, % | 0.9 | 0.7 | 0.7 | 0.9 | 0.7 | |
Model 1 OR (95% CI) | Ref | 0.83 (0.58–1.19) | 0.82 (0.57–1.18) | 0.97 (0.69–1.39) | 0.78 (0.53–1.15) | |
Model 2 aOR (95% CI) | Ref | 0.84 (0.59–1.20) | 0.84 (0.59–1.21) | 1.00 (0.70–1.42) | 0.84 (0.57–1.24) | |
Model 3 aOR (95% CI) | Ref | 0.82 (0.57–1.17) | 0.79 (0.55–1.14) | 0.95 (0.67–1.36) | 0.81 (0.55–1.21) |
Parity | Q1(Most Anti-Inflammatory Group) | Q2 | Q3 | Q4 | Q5 (Most Pro-Inflammatory Group) | |
---|---|---|---|---|---|---|
Nulliparous | ||||||
Number | 3495 | 4051 | 4463 | 4788 | 5492 | |
Case, % | 0.1 | 0.3 | 0.1 | 0.2 | 0.3 | |
Model 1 OR (95% CI) | Ref | 2.59 (0.84–8.05) | 0.98 (0.26–3.65) | 1.64 (0.51–5.34) | 2.55 (0.85–7.63) | |
Model 2 aOR (95% CI) | Ref | 2.67 (0.86–8.30) | 1.05 (0.28–3.92) | 1.79 (0.55–5.83) | 2.26 (0.87–8.21) | |
Model 3 aOR (95% CI) | Ref | 2.43 (0.77–7.63) | 1.05 (0.28–3.90) | 1.78 (0.55–5.79) | 2.47 (0.80–7.64) | |
Multiparous | ||||||
Number | 7813 | 7240 | 6916 | 6527 | 5705 | |
Case, % | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | |
Model 1 OR (95% CI) | Ref | 0.75 (0.32–1.75) | 1.04 (0.48–2.23) | 0.74 (0.31–1.78) | 1.16 (0.52–2.59) | |
Model 2 aOR (95% CI) | Ref | 0.76 (0.32–1.78) | 1.06 (0.49–2.33) | 0.76 (0.31–1.84) | 1.22 (0.54–2.74) | |
Model 3 aOR (95% CI) | Ref | 0.70 (0.28–1.62) | 0.97 (0.44–2.18) | 0.76 (0.31–1.83) | 1.22 (0.55–2.75) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyozuka, H.; Murata, T.; Fukuda, T.; Yamaguchi, A.; Kanno, A.; Yasuda, S.; Sato, A.; Ogata, Y.; Kuse, M.; Hosoya, M.; et al. Dietary Inflammatory Index during Pregnancy and the Risk of Intrapartum Fetal Asphyxia: The Japan Environment and Children’s Study. Nutrients 2020, 12, 3482. https://doi.org/10.3390/nu12113482
Kyozuka H, Murata T, Fukuda T, Yamaguchi A, Kanno A, Yasuda S, Sato A, Ogata Y, Kuse M, Hosoya M, et al. Dietary Inflammatory Index during Pregnancy and the Risk of Intrapartum Fetal Asphyxia: The Japan Environment and Children’s Study. Nutrients. 2020; 12(11):3482. https://doi.org/10.3390/nu12113482
Chicago/Turabian StyleKyozuka, Hyo, Tsuyoshi Murata, Toma Fukuda, Akiko Yamaguchi, Aya Kanno, Shun Yasuda, Akiko Sato, Yuka Ogata, Masahito Kuse, Mitsuaki Hosoya, and et al. 2020. "Dietary Inflammatory Index during Pregnancy and the Risk of Intrapartum Fetal Asphyxia: The Japan Environment and Children’s Study" Nutrients 12, no. 11: 3482. https://doi.org/10.3390/nu12113482
APA StyleKyozuka, H., Murata, T., Fukuda, T., Yamaguchi, A., Kanno, A., Yasuda, S., Sato, A., Ogata, Y., Kuse, M., Hosoya, M., Yasumura, S., Hashimoto, K., Nishigori, H., Fujimori, K., & the Japan Environment and Children’s Study (JECS) Group. (2020). Dietary Inflammatory Index during Pregnancy and the Risk of Intrapartum Fetal Asphyxia: The Japan Environment and Children’s Study. Nutrients, 12(11), 3482. https://doi.org/10.3390/nu12113482