The Effect of Supplementation with Low Doses of a Cod Protein Hydrolysate on Satiety Hormones and Inflammatory Biomarkers in Adults with Metabolic Syndrome: A Randomized, Double-Blind Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects and Study Setting
2.3. Study Visits
2.4. Test Material
2.5. Analyses of Blood Samples
2.6. Randomization
2.7. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Adiponectin and Leptin
3.3. Acylated Ghrelin Levels
3.4. Inflammatory Parameters
3.5. Adverse Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Rask-Madsen, C.; Kahn, C.R. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2052–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Antuna-Puente, B.; Feve, B.; Fellahi, S.; Bastard, J.P. Adipokines: The missing link between insulin resistance and obesity. Diabetes Metab. 2008, 34, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Fisman, E.Z.; Tenenbaum, A. Adiponectin: A manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc. Diabetol. 2014, 13, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trayhurn, P. Endocrine and signalling role of adipose tissue: New perspectives on fat. Acta Physiol. Scand. 2005, 184, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Ahluwalia, N.; Albers, R.; Bosco, N.; Bourdet-Sicard, R.; Haller, D.; Holgate, S.T.; Jönsson, L.S.; Latulippe, M.E.; Marcos, A.; et al. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br. J. Nutr. 2013, 109, S1–S34. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, S.; Jahandideh, F.; Wu, J. Food-derived bioactive peptides on inflammation and oxidative stress. Biomed. Res. Int. 2014, 2014, 608979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [Green Version]
- Madani, Z.; Louchami, K.; Sener, A.; Malaisse, W.J.; Ait Yahia, D. Dietary sardine protein lowers insulin resistance, leptin and TNF-alpha and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome. Int. J. Mol. Med. 2012, 29, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Pilon, G.; Ruzzin, J.; Rioux, L.E.; Lavigne, C.; White, P.J.; Froyland, L.; Jacques, H.; Bryl, P.; Beaulieu, L.; Marette, A. Differential effects of various fish proteins in altering body weight, adiposity, inflammatory status, and insulin sensitivity in high-fat-fed rats. Metabolism 2011, 60, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Zampelas, A.; Panagiotakos, D.B.; Pitsavos, C.; Das, U.N.; Chrysohoou, C.; Skoumas, Y.; Stefanadis, C. Fish consumption among healthy adults is associated with decreased levels of inflammatory markers related to cardiovascular disease: The ATTICA study. J. Am. Coll. Cardiol. 2005, 46, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Ouellet, V.; Weisnagel, S.J.; Marois, J.; Bergeron, J.; Julien, P.; Gougeon, R.; Tchernof, A.; Holub, B.J.; Jacques, H. Dietary cod protein reduces plasma C-reactive protein in insulin-resistant men and women. J. Nutr. 2008, 138, 2386–2391. [Google Scholar] [CrossRef] [Green Version]
- Vikoren, L.A.; Nygard, O.K.; Lied, E.; Rostrup, E.; Gudbrandsen, O.A. A randomised study on the effects of fish protein supplement on glucose tolerance, lipids and body composition in overweight adults. Br. J. Nutr. 2013, 109, 648–657. [Google Scholar] [CrossRef]
- Ouellet, V.; Marois, J.; Weisnagel, S.J.; Jacques, H. Dietary cod protein improves insulin sensitivity in insulin-resistant men and women: A randomized controlled trial. Diabetes Care 2007, 30, 2816–2821. [Google Scholar] [CrossRef] [Green Version]
- Cicero, A.F.G.; Fogacci, F.; Colletti, A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. Br. J. Pharmacol. 2017, 174, 1378–1394. [Google Scholar] [CrossRef]
- Lara-Castro, C.; Fu, Y.; Chung, B.H.; Garvey, W.T. Adiponectin and the metabolic syndrome: Mechanisms mediating risk for metabolic and cardiovascular disease. Curr. Opin. Lipidol. 2007, 18, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Lara, J.J.; Economou, M.; Wallace, A.M.; Rumley, A.; Lowe, G.; Slater, C.; Caslake, M.; Sattar, N.; Lean, M.E. Benefits of salmon eating on traditional and novel vascular risk factors in young, non-obese healthy subjects. Atherosclerosis 2007, 193, 213–221. [Google Scholar] [CrossRef]
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef]
- Gammelmark, A.; Madsen, T.; Varming, K.; Lundbye-Christensen, S.; Schmidt, E.B. Low-dose fish oil supplementation increases serum adiponectin without affecting inflammatory markers in overweight subjects. Nutr. Res. 2012, 32, 15–23. [Google Scholar] [CrossRef]
- Silva, F.M.; de Almeida, J.C.; Feoli, A.M. Effect of diet on adiponectin levels in blood. Nutr. Rev. 2011, 69, 599–612. [Google Scholar] [CrossRef]
- Hovland, I.H.; Leikanger, I.S.; Stokkeland, O.; Waage, K.H.; Mjos, S.A.; Brokstad, K.A.; McCann, A.; Ueland, P.M.; Slizyte, R.; Carvajal, A.; et al. Effects of low doses of fish and milk proteins on glucose regulation and markers of insulin sensitivity in overweight adults: A randomised, double blind study. Eur. J. Nutr. 2019. [Google Scholar] [CrossRef]
- Ramel, A.; Parra, D.; Martinez, J.A.; Kiely, M.; Thorsdottir, I. Effects of seafood consumption and weight loss on fasting leptin and ghrelin concentrations in overweight and obese European young adults. Eur. J. Nutr. 2009, 48, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Cummings, D.E.; Purnell, J.Q.; Frayo, R.S.; Schmidova, K.; Wisse, B.E.; Weigle, D.S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001, 50, 1714–1719. [Google Scholar] [CrossRef] [Green Version]
- Cummings, D.E. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol. Behav. 2006, 89, 71–84. [Google Scholar] [CrossRef]
- Castaneda, T.R.; Tong, J.; Datta, R.; Culler, M.; Tschop, M.H. Ghrelin in the regulation of body weight and metabolism. Front. Neuroendocrinol. 2010, 31, 44–60. [Google Scholar] [CrossRef]
- Dale, H.F.; Jensen, C.; Hausken, T.; Lied, E.; Hatlebakk, J.G.; Bronstad, I.; Hoff, D.A.L.; Lied, G.A. Acute effect of a cod protein hydrolysate on postprandial acylated ghrelin concentration and sensations associated with appetite in healthy subjects: A double-blind crossover trial. Food Nutr. Res. 2019, 63. [Google Scholar] [CrossRef]
- Jensen, C.; Dale, H.F.; Hausken, T.; Hatlebakk, J.G.; Brønstad, I.; Lied, G.A.; Hoff, D.A.L. Supplementation with Low Doses of a Cod Protein Hydrolysate on Glucose Regulation and Lipid Metabolism in Adults with Metabolic Syndrome: A Randomized, Double-Blind Study. Nutrients 2020, 12, 1991. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation (IDF). The IDF Consensus Worldwide Definition of the Metabolic Syndrome [Report]. 2006 [Updated 05.04.2017]. Available online: https://idf.org/our-activities/advocacy-awareness/resources-and-tools/60:idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html (accessed on 1 February 2019).
- World Health Organization (WHO). Waist circumference and waist–hip ratio. In Proceedings of the Report of a WHO Expert Consultation, Geneva, Switzerland, 8–11 December 2008; p. 39. [Google Scholar]
- World Health Organization (WHO). The WHO STEPwise Approach to Noncommunicable Disease Risk Factor Surveillance. 2017. Available online: https://www.who.int/ncds/surveillance/steps/manual/en/ (accessed on 1 February 2019).
- Norwegian Food Safety Authority and the Norwegian Directorate of Health. Kostholdsplanleggeren 2018. Available online: https://www.kostholdsplanleggeren.no (accessed on 4 November 2019).
- Dale, H.F.; Jensen, C.; Hausken, T.; Lied, E.; Hatlebakk, J.G.; Bronstad, I.; Lihaug Hoff, D.A.; Lied, G.A. Effect of a cod protein hydrolysate on postprandial glucose metabolism in healthy subjects: A double-blind cross-over trial. J. Nutr. Sci. 2018, 7, e33. [Google Scholar] [CrossRef] [Green Version]
- Vildmyren, I.; Cao, H.J.V.; Haug, L.B.; Valand, I.U.; Eng, O.; Oterhals, A.; Austgulen, M.H.; Halstensen, A.; Mellgren, G.; Gudbrandsen, O.A. Daily Intake of Protein from Cod Residual Material Lowers Serum Concentrations of Nonesterified Fatty Acids in Overweight Healthy Adults: A Randomized Double-Blind Pilot Study. Mar. Drugs 2018, 16, 197. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Nordic Councils of Ministers. Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity. 2014. Available online: https://www.norden.org/no/node/7832 (accessed on 1 February 2019).
- Zamora-Sillero, J.; Gharsallaoui, A.; Prentice, C. Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: An Overview. Mar. Biotechnol. 2018, 20, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Hagen, I.V.; Helland, A.; Bratlie, M.; Brokstad, K.A.; Rosenlund, G.; Sveier, H.; Mellgren, G.; Gudbrandsen, O.A. High intake of fatty fish, but not of lean fish, affects serum concentrations of TAG and HDL-cholesterol in healthy, normal-weight adults: A randomised trial. Br. J. Nutr. 2016, 116, 648–657. [Google Scholar] [CrossRef] [Green Version]
- Helland, A.; Bratlie, M.; Hagen, I.V.; Mjos, S.A.; Sornes, S.; Ingvar Halstensen, A.; Brokstad, K.A.; Sveier, H.; Rosenlund, G.; Mellgren, G.; et al. High intake of fatty fish, but not of lean fish, improved postprandial glucose regulation and increased the n-3 PUFA content in the leucocyte membrane in healthy overweight adults: A randomised trial. Br. J. Nutr. 2017, 117, 1368–1378. [Google Scholar] [CrossRef] [Green Version]
- Drotningsvik, A.; Oterhals, A.; Flesland, O.; Nygard, O.; Gudbrandsen, O.A. Fish protein supplementation in older nursing home residents: A randomised, double-blind, pilot study. Pilot Feasibility Stud. 2019, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Delongui, F.; Kallaur, A.P.; Oliveira, S.R.; Bonametti, A.M.; Grion, C.M.; Morimoto, H.K.; Simão, A.N.; Magalhães, G.G.; Reiche, E.M. Serum levels of high sensitive C reactive protein in healthy adults from southern Brazil. J. Clin. Lab. Anal. 2013, 27, 207–210. [Google Scholar] [CrossRef]
- Mills, E.J.; Chan, A.W.; Wu, P.; Vail, A.; Guyatt, G.H.; Altman, D.G. Design, analysis, and presentation of crossover trials. Trials 2009, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Jensen, C.; Dale, H.F.; Hausken, T.; Lied, E.; Hatlebakk, J.G.; Bronstad, I.; Lied, G.A.; Hoff, D.A.L. Supplementation with cod protein hydrolysate in older adults: A dose range cross-over study. J. Nutr. Sci. 2019, 8, e40. [Google Scholar] [CrossRef] [Green Version]
Variable | CPH | Placebo | p-Value | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Gender, female/male | 11/4 | 13/2 | 0.651 | ||
Age, years | 52.8 | 6.26 | 53.4 | 6.83 | 0.804 |
Body weight, kg | 96.5 | 12.8 | 93.4 | 12.2 | 0.509 |
BMI, kg/m2 | 32.7 | 2.24 | 32.4 | 3.25 | 0.751 |
Waist circumference | 107.6 | 9.72 | 105.7 | 10.7 | 0.630 |
Systolic BP, mmHg | 136.9 | 15.9 | 138.5 | 15.1 | 0.756 |
Diastolic BP, mmHg | 88.2 | 10.1 | 86.7 | 6.44 | 0.702 |
Energy intake, kcal | 1882 | 485 | 1812 | 386 | 0.668 |
Protein intake, g/kg BW/day | 0.9 | 0.2 | 0.9 | 0.3 | 0.992 |
Antihypertensive, n | 5 | 9 | − | ||
Smokers, n | 1 | 2 | − |
Baseline | 8 Weeks | p-Value 1 | p-Value 2 | ||||
---|---|---|---|---|---|---|---|
Median | 25th, 75th Percentile | Median | 25th, 75th Percentile | ||||
Hs-CRP, mg/L | 0.029 * | ||||||
CPH | 4.0 | 1.0, 4.0 | 4.0 | 2.0, 6.0 | 0.021 * | ||
Placebo | 3.0 | 1.5, 7.0 | 3.0 | 2.0, 7.0 | 0.389 | ||
IL-1β, pg/mL | 0.567 | ||||||
CPH | 0.13 | 0.13, 0.41 | 0.13 | 0.13, 0.41 | 0.574 | ||
Placebo | 0.13 | 0.13, 0.41 | 0.13 | 0.13, 0.41 | 0.589 | ||
IL-6, pg/mL | 0.935 | ||||||
CPH | 1.04 | 0.52, 1.77 | 0.90 | 0.74, 1.48 | 0.394 | ||
Placebo | 1.19 | 0.75, 1.34 | 1.04 | 0.59, 1.34 | 0.396 | ||
IL-8, pg/mL | 0.174 | ||||||
CPH | 15.8 | 11.9, 20.3 | 17.6 | 14.0, 22.5 | 0.096 | ||
Placebo | 18.1 | 15.1, 26.9 | 16.7 | 12.2, 23.0 | 0.281 | ||
TNF-α, pg/mL | 0.935 | ||||||
CPH | 0.57 | 0.22, 0.93 | 0.93 | 0.22, 0.93 | 0.573 | ||
Placebo | 0.22 | 0.11, 0.93 | 0.57 | 0.22, 0.93 | 0.280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, C.; Dale, H.F.; Hausken, T.; Hatlebakk, J.G.; Brønstad, I.; Lied, G.A.; Hoff, D.A.L. The Effect of Supplementation with Low Doses of a Cod Protein Hydrolysate on Satiety Hormones and Inflammatory Biomarkers in Adults with Metabolic Syndrome: A Randomized, Double-Blind Study. Nutrients 2020, 12, 3421. https://doi.org/10.3390/nu12113421
Jensen C, Dale HF, Hausken T, Hatlebakk JG, Brønstad I, Lied GA, Hoff DAL. The Effect of Supplementation with Low Doses of a Cod Protein Hydrolysate on Satiety Hormones and Inflammatory Biomarkers in Adults with Metabolic Syndrome: A Randomized, Double-Blind Study. Nutrients. 2020; 12(11):3421. https://doi.org/10.3390/nu12113421
Chicago/Turabian StyleJensen, Caroline, Hanna Fjeldheim Dale, Trygve Hausken, Jan Gunnar Hatlebakk, Ingeborg Brønstad, Gülen Arslan Lied, and Dag Arne Lihaug Hoff. 2020. "The Effect of Supplementation with Low Doses of a Cod Protein Hydrolysate on Satiety Hormones and Inflammatory Biomarkers in Adults with Metabolic Syndrome: A Randomized, Double-Blind Study" Nutrients 12, no. 11: 3421. https://doi.org/10.3390/nu12113421
APA StyleJensen, C., Dale, H. F., Hausken, T., Hatlebakk, J. G., Brønstad, I., Lied, G. A., & Hoff, D. A. L. (2020). The Effect of Supplementation with Low Doses of a Cod Protein Hydrolysate on Satiety Hormones and Inflammatory Biomarkers in Adults with Metabolic Syndrome: A Randomized, Double-Blind Study. Nutrients, 12(11), 3421. https://doi.org/10.3390/nu12113421