Identification of Cyclopropane Fatty Acids in Human Plasma after Controlled Dietary Intake of Specific Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Participant Characteristics
2.3. CPFAs-Rich Foods
2.4. Dietary Intervention
2.5. Post-Prandial CPFAs Response
2.6. Plasma Sample Preparation
2.7. GC-MS Analysis
2.8. Statistical Analysis
3. Results
3.1. CPFAs Detection and Quantification in Human Plasma
3.2. Chronic Study
3.3. Acute Study
3.4. Effect of the Treatment on Total Fatty Acids Composition in Human Plasma
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wood, R.; Reiser, R. Cyclopropane fatty acid metabolism: Physical and chemical identification of propane ring metabolic products in the adipose tissue. J. Am. Oil Chem. Soc. 1965, 42, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.S.; Floss, H.G. Biosynthesis of cyclic fatty acids containing cyclopropyl-, cyclopentyl-, cyclohexyl-, and cycloheptyl-rings. In Comprehensive Natural Products Chemistry; Barton, S.D., Nakanishi, K., Meth-Cohn, O., Eds.; Pergamon: Oxford, UK, 1999; pp. 61–82. [Google Scholar]
- Bao, X.; Katz, S.; Pollard, M.; Ohlrogge, J. Carbocyclic fatty acids in plants: Biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. Proc. Natl. Acad. Sci. USA 2002, 99, 7172–7177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessjohann, L.A.; Brandt, W.; Thiemann, T. Biosynthesis and metabolism of cyclopropane rings in natural compounds. Chem. Rev. 2003, 103, 1625–1648. [Google Scholar] [CrossRef] [PubMed]
- Montanari, C.; Kamdem, S.L.S.; Serrazanetti, D.I.; Etoa, F.-X.; Guerzoni, M.E. Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses. Food Microbiol. 2010, 27, 493–502. [Google Scholar] [CrossRef]
- Poger, D.; Mark, A.E. A Ring to Rule Them All: The Effect of Cyclopropane Fatty Acids on the Fluidity of Lipid Bilayers. J. Phys. Chem. B 2015, 119, 5487–5495. [Google Scholar] [CrossRef]
- Marseglia, A.; Caligiani, A.; Comino, L.; Righi, F.; Quarantelli, A.; Palla, G. Cyclopropyl and ω-cyclohexyl fatty acids as quality markers of cow milk and cheese. Food Chem. 2013, 140, 711–716. [Google Scholar] [CrossRef]
- Caligiani, A.; Marseglia, A.; Palla, G. An Overview on the Presence of Cyclopropane Fatty Acids in Milk and Dairy Products. J. Agric. Food Chem. 2014, 62, 7828–7832. [Google Scholar] [CrossRef]
- Lolli, V.; Marseglia, A.; Palla, G.; Zanardi, E.; Caligiani, A. Determination of cyclopropane fatty acids in food of animal origin by 1HNMR. J. Anal. Methods Chem. 2018, 2018, 8034042. [Google Scholar] [CrossRef]
- Lolli, V.; Dall’Asta, M.; Del Rio, D.; Palla, G.; Caligiani, A. Presence of cyclopropane fatty acids in foods and estimation of dietary intake in the Italian population. Int. J. Food Sci. Nutr. 2018, 70, 467–473. [Google Scholar] [CrossRef]
- Lolli, V.; Dall’Asta, M.; Del Rio, D.; Caligiani, A. In Vitro digestibility of cyclopropane fatty acids in Grana Padano cheese: A study combining 1 H NMR and GC-MS techniques. J. Food Eng. 2018, 237, 226–230. [Google Scholar] [CrossRef]
- Sledzinski, T.; Mika, A.; Stepnowski, P.; Proczko-Markuszewska, M.; Kaska, L.; Stefaniak, T.; Swierczynski, J. Identification of Cyclopropaneoctanoic Acid 2-Hexyl in Human Adipose Tissue and Serum. Lipids 2013, 48, 839–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mika, A.; Stepnowski, P.; Chmielewski, M.; Malgorzewicz, S.; Kaska, L.; Proczko, M.; Ratnicki-Sklucki, K.; Sledzinski, M.; Sledzinski, T. Increased Serum Level of Cyclopropaneoctanoic Acid 2-Hexyl in Patients with Hypertriglyceridemia-Related Disorders. Lipids 2016, 51, 867–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.E.; Whitehead, K.; Saulnier, D.; Thomas, C.M.; Versalovic, J.; Britton, R.A. Cyclopropane fatty acid synthase mutants of probiotic human-derived lactobacillus reuteri are defective in tnf inhibition. Gut Microbes 2011, 2, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.-C.; Béguin, P.; Bourez, S.; Perfield, J.W.; Mignolet, E.; Debier, C.; Schneider, Y.-J.; Larondelle, Y. Conversion of t11t13 CLA into c9t11 CLA in Caco-2 Cells and Inhibition by Sterculic Oil. PLoS ONE 2012, 7, e032824. [Google Scholar] [CrossRef] [Green Version]
- Bichi, E.; Toral, P.G.; Hervás, G.; Frutos, P.; Gómez-Cortés, P.; Juárez, M.; de la Fuente, M.A. Inhibition of Δ9-desaturase activity with sterculic acid: Effect on the endogenous synthesis of cis-9 18:1 and cis-9, trans-11 18:2 in dairy sheep. J. Dairy Sci. 2012, 95, 5242–5252. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.-D.; Amaral, J.; Lee, J.W.; Larráyoz, I.M.; Rodriguez, I.R. Sterculic acid antagonizes 7-ketocholesterol-mediated inflammation and inhibits choroidal neovascularization. Biochim. Biophys. Acta BBA 2012, 1821, 637–646. [Google Scholar] [CrossRef] [Green Version]
- Kadegowda, A.K.G.; Burns, T.A.; Pratt, S.L.; Duckett, S.K. Inhibition of Stearoyl-CoA Desaturase 1 Reduces Lipogenesis in Primary Bovine Adipocytes. Lipids 2013, 48, 967–976. [Google Scholar] [CrossRef]
- Peláez, R.; Pariente, A.; Pérez-Sala, Á.; Larráyoz, I.M. Sterculic Acid: The Mechanisms of Action beyond Stearoyl-CoA Desaturase Inhibition and Therapeutic Opportunities in Human Diseases. Cells 2020, 9, 140. [Google Scholar] [CrossRef] [Green Version]
- Caligiani, A.; Nocetti, M.; Lolli, V.; Marseglia, A.; Palla, G. Development of a Quantitative GC–MS Method for the Detection of Cyclopropane Fatty Acids in Cheese as New Molecular Markers for Parmigiano Reggiano Authentication. J. Agric. Food Chem. 2016, 64, 4158–4164. [Google Scholar] [CrossRef] [PubMed]
- Società Italiana di Nutrizione Umana (SINU). LARN—Livelli di Assunzione di Riferimento di Nutrienti ed Energia per la Popolazione Italiana. IV Revision; SICS: Milano, Italy, 2014. [Google Scholar]
- Han, L.-D.; Xia, J.-F.; Liang, Q.-L.; Wang, Y.; Wang, Y.-M.; Hu, P.; Li, P.; Luo, G. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography–mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal. Chim. Acta 2011, 689, 85–91. [Google Scholar] [CrossRef]
- Patenaude, A.; Rodriguez-Leyva, D.; Edel, A.L.; Dibrov, E.; Dupasquier, C.M.C.; Austria, J.A.; Richard, M.N.; Chahine, M.N.; Malcolmson, L.J.; Pierce, G.N. Bioavailability of α-linolenic acid from flaxseed diets as a function of the age of the subject. Eur. J. Clin. Nutr. 2009, 63, 1123–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castello, F.; Costabile, G.; Bresciani, L.; Tassotti, M.; Naviglio, D.; Luongo, D.; Ciciola, P.; Vitale, M.; Vetrani, C.; Galaverna, G.; et al. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Arch. Biochem. Biophys. 2018, 646, 1–9. [Google Scholar] [CrossRef]
- Prandini, A.; Sigolo, S.; Tansini, G.; Brogna, N.; Piva, G. Different level of conjugated linoleic acid (CLA) in dairy products from Italy. J. Food Compos. Anal. 2007, 20, 472–479. [Google Scholar] [CrossRef]
- Fontes, A.L.; Pimentel, L.L.; Simões, C.D.; Gomes, A.M.P.; Rodríguez-Alcalá, L.M. Evidences and perspectives in the utilization of CLNA isomers as bioactive compounds in foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 2611–2622. [Google Scholar] [CrossRef]
Characteristics of Subjects | Mean ± SD |
---|---|
Age, years | 29 ± 6 |
Weight, kg | 69 ± 15 |
BMI, kg/m2 | 23.4 ± 3.0 |
Grana Padano (50 g) 2 | Whole UHT 3 Cow Milk (250 mL) 2 | |
---|---|---|
Energy (kcal) | 196 | 155 |
Fats (g) | 14.5 | 8.8 |
Carbohydrates (g) | 0.0 | 11.6 |
Fiber (g) | 0.0 | 0.0 |
Proteins (g) | 16.5 | 8.3 |
Cyclopropane fatty acids (mg) 1 | 15.3 ± 1.0 | 6.8 ± 0.4 |
Plasma CPFAs 1 (µmol/L) | ||
---|---|---|
Time (h) | Test Meal 2 | Control Meal 3 |
0 | 0.12 ± 0.01 | 0.12 ± 0.01 |
1 | 0.12 ± 0.01 | 0.12 ± 0.01 |
2 | 0.07 ± 0.01 | 0.12 ± 0.01 |
3 | 0.15 ± 0.01 | 0.12 ± 0.01 |
4 | 0.23 ± 0.01 | 0.12 ± 0.01 |
6 | 4.04 ± 0.01 | 0.12 ± 0.01 |
8 | 11.34 ± 0.02 | 0.12 ± 0.01 |
24 | 0.09 ± 0.01 | 0.12 ± 0.01 |
g/100 g Total FAME | |||
---|---|---|---|
FAME | t00 | t0 | t6 |
C12:0 Lauric | 0.53 ± 0.11 | 0.32 ± 0.07 | 0.40 ± 0.08 |
C14:0 Myristic | 3.18 ± 0.65 | 2.10 ± 0.37 | 2.62 ± 0.51 |
C16:0 Palmitic | 16.13 ± 0.70 | 24.33 ± 1.16 | 14.68 ± 0.64 |
C18:0 Stearic | 11.36 ± 1.72 | 9.21 ± 1.60 | 9.87 ± 1.48 |
Other SFA | 3.76 ± 0.60 | 4.42 ± 2.22 | 7.45 ± 4.95 |
Total SFA | 34.97 ± 3.77 | 40.37 ± 5.42 | 35.02 ± 7.65 |
C14:1 | 0.34 ± 0.07 | 0.17 ± 0.04 | 0.22 ± 0.04 |
C16:1 Palmitoleic | 5.02 ± 0.83 | 3.98 ± 0.61 | 3.83 ± 0.55 |
C18:1 Oleic | 36.16 ± 0.38 | 33.93 ± 0.46 | 37.87 ± 0.66 |
Other MUFA | 1.08 ± 0.19 | 0.94 ± 0.15 | 0.75 ± 0.10 |
Total MUFA | 42.61 ± 1.50 | 39.01 ± 1.26 | 42.67 ± 1.35 |
C18:2 Linoleic | 8.66 ± 1.24 | 8.30 ± 1.43 | 9.50 ± 1.65 |
Other n-6 PUFA | 5.94 ± 1.43 | 5.63 ± 1.17 | 5.79 ± 0.94 |
Total n-3 PUFA | 1.17 ± 0.28 | 1.06 ± 0.30 | 0.90 ± 0.18 |
Total PUFA | 22.40 ± 4.15 | 20.60 ± 3.92 | 22.28 ± 3.56 |
CPFAs 1 | 0.03 ± 0.01 a | 0.01 ± 0.01 b | 0.03 ± 0.01 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lolli, V.; Dall’Asta, M.; Del Rio, D.; Caligiani, A. Identification of Cyclopropane Fatty Acids in Human Plasma after Controlled Dietary Intake of Specific Foods. Nutrients 2020, 12, 3347. https://doi.org/10.3390/nu12113347
Lolli V, Dall’Asta M, Del Rio D, Caligiani A. Identification of Cyclopropane Fatty Acids in Human Plasma after Controlled Dietary Intake of Specific Foods. Nutrients. 2020; 12(11):3347. https://doi.org/10.3390/nu12113347
Chicago/Turabian StyleLolli, Veronica, Margherita Dall’Asta, Daniele Del Rio, and Augusta Caligiani. 2020. "Identification of Cyclopropane Fatty Acids in Human Plasma after Controlled Dietary Intake of Specific Foods" Nutrients 12, no. 11: 3347. https://doi.org/10.3390/nu12113347
APA StyleLolli, V., Dall’Asta, M., Del Rio, D., & Caligiani, A. (2020). Identification of Cyclopropane Fatty Acids in Human Plasma after Controlled Dietary Intake of Specific Foods. Nutrients, 12(11), 3347. https://doi.org/10.3390/nu12113347