Association of Plasma Total Cysteine and Anthropometric Status in 6–30 Months Old Indian Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Original Study
2.2. Measurements
2.3. Data management and Analysis
3. Results
3.1. Baseline Characteristics
3.2. Cysteine and Undernutrition
4. Discussion
Limitations and Strength
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNICEF; WHO; World Bank Group. Levels and Trends in Child Malnutrition—Key Findings of the 2018 Edition; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Victora, C.G.; Adair, L.; Fall, C.; Hallal, P.C.; Martorell, R.; Richter, L.; Sachdev, H.S.; Maternal Child Undernutrition Study Group. Maternal and child undernutrition: Consequences for adult health and human capital. Lancet 2008, 371, 340–357. [Google Scholar] [CrossRef] [Green Version]
- Fink, G.; Peet, E.; Danaei, G.; Andrews, K.; McCoy, D.C.; Sudfeld, C.R.; Smith Fawzi, M.C.; Ezzati, M.; Fawzi, W.W. Schooling and wage income losses due to early-childhood growth faltering in developing countries: National, regional, and global estimates. Am. J. Clin. Nutr. 2016, 104, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Grantham-McGregor, S.; Cheung, Y.B.; Cueto, S.; Glewwe, P.; Richter, L.; Strupp, B.; International Child Development Steering Group. Developmental potential in the first 5 years for children in developing countries. Lancet 2007, 369, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Olofin, I.; McDonald, C.M.; Ezzati, M.; Flaxman, S.; Black, R.E.; Fawzi, W.W.; Caulfield, L.E.; Danaei, G.; for the Nutrition Impact Model Study. Associations of suboptimal growth with all-cause and cause-specific mortality in children under five years: A pooled analysis of ten prospective studies. PLoS ONE 2013, 8, e64636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013. [Google Scholar] [CrossRef]
- Imura, K.; Okada, A. Amino acid metabolism in pediatric patients. Nutrition 1998, 14, 143–148. [Google Scholar] [CrossRef]
- WHO. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Shivakumar, N.; Kashyap, S.; Kishore, S.; Thomas, T.; Varkey, A.; Devi, S.; Preston, T.; Jahoor, F.; Sheshshayee, M.S.; Kurpad, A.V. Protein-quality evaluation of complementary foods in Indian children. Am. J. Clin. Nutr. 2019, 109, 1319–1327. [Google Scholar] [CrossRef]
- Uauy, R.; Kurpad, A.; Tano-Debrah, K.; Otoo, G.E.; Aaron, G.A.; Toride, Y.; Ghosh, S. Role of Protein and Amino Acids in Infant and Young Child Nutrition: Protein and Amino Acid Needs and Relationship with Child Growth. J. Nutr. Sci. Vitaminol. 2015, 61, S192–S194. [Google Scholar] [CrossRef] [Green Version]
- Semba, R.D.; Shardell, M.; Sakr Ashour, F.A.; Moaddel, R.; Trehan, I.; Maleta, K.M.; Ordiz, M.I.; Kraemer, K.; Khadeer, M.A.; Ferrucci, L.; et al. Child Stunting is Associated with Low Circulating Essential Amino Acids. EBioMedicine 2016, 6, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Ordiz, M.I.; Semba, R.D.; Moaddel, R.; Rolle-Kampczyk, U.; von Bergen, M.; Herberth, G.; Khadeer, M.; Roder, S.; Manary, M.J. Serum Amino Acid Concentrations in Infants from Malawi are Associated with Linear Growth. Curr. Dev. Nutr. 2019, 3, nzz100. [Google Scholar] [CrossRef]
- Manary, M.; Callaghan, M.; Singh, L.; Briend, A. Protein Quality and Growth in Malnourished Children. Food Nutr. Bull. 2016, 37 (Suppl. 1), S29–S36. [Google Scholar] [CrossRef] [Green Version]
- Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, R. Redox outside the Box: Linking Extracellular Redox Remodeling with Intracellular Redox Metabolism. J. Biol. Chem. 2012, 287, 4397–4402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, P.D.; Kim, M.H.; Oh, H.A.; Nam, S.Y.; Han, N.R.; Jeong, H.J.; Kim, H.M. Cysteine induces longitudinal bone growth in mice by upregulating IGF-I. Int. J. Mol. Med. 2015, 36, 571–576. [Google Scholar] [CrossRef]
- Elshorbagy, A.K.; Valdivia-Garcia, M.; Mattocks, D.A.; Plummer, J.D.; Smith, A.D.; Drevon, C.A.; Refsum, H.; Perrone, C.E. Cysteine supplementation reverses methionine restriction effects on rat adiposity: Significance of stearoyl-coenzyme A desaturase. J. Lipid Res. 2011, 52, 104–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshorbagy, A.K.; Smith, A.D.; Kozich, V.; Refsum, H. Cysteine and obesity. Obesity 2012, 20, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Elshorbagy, A.K.; Kozich, V.; Smith, A.D.; Refsum, H. Cysteine and obesity: Consistency of the evidence across epidemiologic, animal and cellular studies. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 49–57. [Google Scholar] [CrossRef]
- Elshorbagy, A.K.; Samocha-Bonet, D.; Jerneren, F.; Turner, C.; Refsum, H.; Heilbronn, L.K. Food Overconsumption in Healthy Adults Triggers Early and Sustained Increases in Serum Branched-Chain Amino Acids and Changes in Cysteine Linked to Fat Gain. J. Nutr. 2018, 148, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Badaloo, A.; Hsu, J.W.; Taylor-Bryan, C.; Green, C.; Reid, M.; Forrester, T.; Jahoor, F. Dietary cysteine is used more efficiently by children with severe acute malnutrition with edema compared with those without edema. Am. J. Clin. Nutr. 2012, 95, 84–90. [Google Scholar] [CrossRef]
- Green, C.O.; Badaloo, A.V.; Hsu, J.W.; Taylor-Bryan, C.; Reid, M.; Forrester, T.; Jahoor, F. Effects of randomized supplementation of methionine or alanine on cysteine and glutathione production during the early phase of treatment of children with edematous malnutrition. Am. J. Clin. Nutr. 2014, 99, 1052–1058. [Google Scholar] [CrossRef] [Green Version]
- Jahoor, F.; Badaloo, A.; Reid, M.; Forrester, T. Sulfur amino acid metabolism in children with severe childhood undernutrition: Cysteine kinetics. Am. J. Clin. Nutr. 2006, 84, 1393–1399. [Google Scholar] [CrossRef]
- El-Khairy, L.; Vollset, S.E.; Refsum, H.; Ueland, P.M. Plasma total cysteine, pregnancy complications, and adverse pregnancy outcomes: The Hordaland Homocysteine Study. Am. J. Clin. Nutr. 2003, 77, 467–472. [Google Scholar] [CrossRef]
- Kuster, A.; Tea, I.; Ferchaud-Roucher, V.; Le Borgne, S.; Plouzennec, C.; Winer, N.; Roze, J.C.; Robins, R.J.; Darmaun, D. Cord blood glutathione depletion in preterm infants: Correlation with maternal cysteine depletion. PLoS ONE 2011, 6, e27626. [Google Scholar] [CrossRef]
- Bhandari, N.; Bahl, R.; Taneja, S.; Strand, T.; Molbak, K.; Ulvik, R.J.; Sommerfelt, H.; Bhan, M.K. Effect of routine zinc supplementation on pneumonia in children aged 6 months to 3 years: Randomised controlled trial in an urban slum. BMJ 2002, 324, 1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelleher, B.P.; Broin, S.D. Microbiological assay for vitamin B12 performed in 96-well microtitre plates. J. Clin. Pathol. 1991, 44, 592–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molloy, A.M.; Scott, J.M. Microbiological assay for serum, plasma, and red cell folate using cryopreserved, microtiter plate method. Methods Enzymol. 1997, 281, 43–53. [Google Scholar] [CrossRef]
- Husek, P. Simultaneous profile analysis of plasma amino and organic acids by capillary gas chromatography. J. Chromatogr. B Biomed. Appl. 1995, 669, 352–357. [Google Scholar] [CrossRef]
- Fedosov, S.N.; Brito, A.; Miller, J.W.; Green, R.; Allen, L.H. Combined indicator of vitamin B12 status: Modification for missing biomarkers and folate status and recommendations for revised cut-points. Clin. Chem. Lab. Med. 2015, 53, 1215–1225. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: An overview. J. Nutr. 2006, 136, 1636S–1640S. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Child Growth Standards: Methods and Development: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age World Health Organization Multicentre Growth Reference Study; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Twisk, J.W.R. Continuous outcome variables—Relationships with other variables. In Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide; Cambridge University Press: Cambridge, UK, 2012; pp. 51–85. [Google Scholar] [CrossRef]
- Zou, G. A modified poisson regression approach to prospective studies with binary data. Am. J. Epidemiol. 2004, 159, 702–706. [Google Scholar] [CrossRef]
- Bhutta, Z.A.; Das, J.K.; Rizvi, A.; Gaffey, M.F.; Walker, N.; Horton, S.; Webb, P.; Lartey, A.; Black, R.E.; The Lancet Nutrition Interventions Review Group; et al. Evidence-based interventions for improvement of maternal and child nutrition: What can be done and at what cost? Lancet 2013, 382, 452–477. [Google Scholar] [CrossRef]
- Nabwera, H.M.; Fulford, A.J.; Moore, S.E.; Prentice, A.M. Growth faltering in rural Gambian children after four decades of interventions: A retrospective cohort study. Lancet. Global Health 2017, 5, e208–e216. [Google Scholar] [CrossRef] [Green Version]
- Golden, M.H.; Ramdath, D. Free radicals in the pathogenesis of kwashiorkor. Proc. Nutr. Soc. 1987, 46, 53–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odigwe, C.C.; Smedslund, G.; Ejemot-Nwadiaro, R.I.; Anyanechi, C.C.; Krawinkel, M.B. Supplementary vitamin E, selenium, cysteine and riboflavin for preventing kwashiorkor in preschool children in developing countries. Cochrane Database Syst. Rev. 2010, CD008147. [Google Scholar] [CrossRef] [PubMed]
- Ciliberto, H.; Ciliberto, M.; Briend, A.; Ashorn, P.; Bier, D.; Manary, M. Antioxidant supplementation for the prevention of kwashiorkor in Malawian children: Randomised, double blind, placebo controlled trial. BMJ 2005, 330, 1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, E.A.; Cifuentes-Zuniga, F.; Figueroa, E.; Villanueva, C.; Hernandez, C.; Alegria, R.; Arroyo-Jousse, V.; Penaloza, E.; Farias, M.; Uauy, R.; et al. N-Acetylcysteine, a glutathione precursor, reverts vascular dysfunction and endothelial epigenetic programming in intrauterine growth restricted guinea pigs. J. Physiol. 2017, 595, 1077–1092. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, Y.; Chen, Y.; Zhang, L.; Wang, T. N-Acetylcysteine protects against intrauterine growth retardation-induced intestinal injury via restoring redox status and mitochondrial function in neonatal piglets. Eur. J. Nutr. 2019, 58, 3335–3347. [Google Scholar] [CrossRef]
- Arora, N.; Strand, T.A.; Chandyo, R.K.; Elshorbagy, A.; Shrestha, L.; Ueland, P.M.; Ulak, M.; Schwinger, C. Association of Maternal Plasma Total Cysteine and Growth among Infants in Nepal: A Cohort Study. Nutrients 2020, 12, 2849. [Google Scholar] [CrossRef]
- Elshorbagy, A.K.; Nurk, E.; Gjesdal, C.G.; Tell, G.S.; Ueland, P.M.; Nygard, O.; Tverdal, A.; Vollset, S.E.; Refsum, H. Homocysteine, cysteine, and body composition in the Hordaland Homocysteine Study: Does cysteine link amino acid and lipid metabolism? Am. J. Clin. Nutr. 2008, 88, 738–746. [Google Scholar] [CrossRef] [Green Version]
- Elshorbagy, A.K.; Valdivia-Garcia, M.; Refsum, H.; Butte, N. The association of cysteine with obesity, inflammatory cytokines and insulin resistance in Hispanic children and adolescents. PLoS ONE 2012, 7, e44166. [Google Scholar] [CrossRef]
- Bhandari, N.; Bahl, R.; Taneja, S.; Strand, T.; Molbak, K.; Ulvik, R.J.; Sommerfelt, H.; Bhan, M.K. Substantial reduction in severe diarrheal morbidity by daily zinc supplementation in young north Indian children. Pediatrics 2002, 109, e86. [Google Scholar] [CrossRef] [Green Version]
- Taneja, S.; Strand, T.A.; Sommerfelt, H.; Bahl, R.; Bhandari, N. Zinc supplementation for four months does not affect growth in young north Indian children. J. Nutr. 2010, 140, 630–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutcheon, J.A.; Chiolero, A.; Hanley, J.A. Random measurement error and regression dilution bias. BMJ 2010, 340, c2289. [Google Scholar] [CrossRef] [Green Version]
- Stipanuk, M.H. Cysteine, Taurine, and Homocysteine. In Modern Nutrition in Health and Disease, 11th ed.; Ross, C.A., Ed.; Wolters Kluwer Health; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Kuriyan, R.; Kurpad, A.V. Complementary feeding patterns in India. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 799–805. [Google Scholar] [CrossRef]
- Stipanuk, M.H.; Ueki, I.; Dominy, J.E., Jr.; Simmons, C.R.; Hirschberger, L.L. Cysteine dioxygenase: A robust system for regulation of cellular cysteine levels. Amino Acids 2009, 37, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.P.; Park, Y.; Gletsu-Miller, N.; Liang, Y.; Yu, T.; Accardi, C.J.; Ziegler, T.R. Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humans. Nutrition 2011, 27, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keusch, G.T.; Denno, D.M.; Black, R.E.; Duggan, C.; Guerrant, R.L.; Lavery, J.V.; Nataro, J.P.; Rosenberg, I.H.; Ryan, E.T.; Tarr, P.I.; et al. Environmental enteric dysfunction: Pathogenesis, diagnosis, and clinical consequences. Clin. Infect. Dis. 2014, 59 (Suppl. 4), S207–S212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keusch, G.T.; Rosenberg, I.H.; Denno, D.M.; Duggan, C.; Guerrant, R.L.; Lavery, J.V.; Tarr, P.I.; Ward, H.D.; Black, R.E.; Nataro, J.P.; et al. Implications of acquired environmental enteric dysfunction for growth and stunting in infants and children living in low- and middle-income countries. Food Nutr. Bull. 2013, 34, 357–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prendergast, A.J.; Kelly, P. Interactions between intestinal pathogens, enteropathy and malnutrition in developing countries. Curr. Opin. Infect. Dis. 2016, 29, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Prendergast, A.J.; Rukobo, S.; Chasekwa, B.; Mutasa, K.; Ntozini, R.; Mbuya, M.N.; Jones, A.; Moulton, L.H.; Stoltzfus, R.J.; Humphrey, J.H. Stunting is characterized by chronic inflammation in Zimbabwean infants. PLoS ONE 2014, 9, e86928. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Wang, L.; Yi, D.; Wu, G. N-acetylcysteine and intestinal health: A focus on its mechanism of action. Front. Biosci. 2015, 20, 872–891. [Google Scholar] [CrossRef]
- Wu, G.Y. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
Characteristic | All Children (n = 2102) | <25th Percentile Cysteine (n = 1576) | ≥25th Percentile Cysteine (n = 526) |
---|---|---|---|
Mean age (SD), months | 15.4 (7.5) | 17.0 (7.1) ** | 14.8 (7.6) |
Proportion male, % | 52.1 | 49.6 | 53.0 |
Proportion breastfed, % | 69.1 | 53.4 ** | 74.3 |
Mean years of schooling of mother (SD) | 5.2 (4.5) | 4.8 (4.5) * | 5.3 (4.6) |
Mean years of schooling of father (SD) | 8.4 (4.1) | 7.8 (4.2) ** | 8.6 (4.0) |
Median family size (IQR) | 5 (4–7) | 6 (4–7) | 5 (4–7) |
Median annual household income (IQR), US$ | 720 (480–1080) | 660 (480–960) * | 720 (480–1200) |
Mean HAZ at enrolment (SD) | −1.78 (1.18) | −2.10 (1.19) ** | −1.67 (1.16) |
Mean HAZ at study end (SD) | −1.92 (1.14) | −2.24 (1.13) ** | −1.81 (1.12) |
Mean WHZ at enrolment (SD) | −1.15 (1.03) | −1.35 (0.98) ** | −1.09 (1.03) |
Mean WHZ at study end (SD) | −1.19 (0.95) | −1.21 (0.94) | −1.18 (0.96) |
Mean WAZ at enrolment (SD) | −1.81 (1.09) | −2.11 (1.07) ** | −1.71 (1.08) |
Mean WAZ at study end (SD) | −1.86 (1.04) | −2.06 (1.05) ** | −1.80 (1.04) |
Mean plasma total cysteine concentration (SD), μmol/L | 179 (25) | 149 (14) | 190 (19) |
Median plasma cobalamin concentration (IQR), pmol/L | 206 (141–300) | 213 (145–308) | 204 (140–297) |
Median plasma folate concentration (IQR), nmol/L | 10.6 (6.4–19.8) | 7.3 (4.8–12.1) ** | 12.0 (7.3–22.7) |
Median plasma MMA concentration (IQR), μmol/L | 0.65 (0.37–1.29) | 0.55 (0.33–1.13) * | 0.67 (0.38–1.34) |
Median plasma tHcy concentration (IQR), μmol/L | 10.8 (8.3–14.8) | 9.6 (7.6–13.1) ** | 11.2 (8.6–15.5) |
Mean 3cB12 (SD) | −1.03 (1.01) | −0.84 (1.06) | −1.09 (0.99) |
GEE 1 1 | GEE 2 2 | GEE 3 3 | |
---|---|---|---|
Outcome | Coeff (95% CI) | Coeff (95% CI) | RR (95% CI) |
HAZ | |||
Unadjusted | 0.0083 (0.0063, 0.0102) | −0.42 (−0.53, −0.31) | 1.37 (1.26, 1.50) |
Adjusted 4 | 0.0053 (0.0034, 0.0071) | −0.28 (−0.39, −0.18) | 1.22 (1.12, 1.33) |
WHZ | |||
Unadjusted | 0.0046 (0.0031, 0.0061) | −0.16 (−0.25, −0.08) | 1.17 (1.01, 1.38) |
Adjusted 5 | 0.0034 (0.0018, 0.0049) | −0.10 (−0.19, −0.01) | 1.12 (0.95, 1.32) |
WAZ | |||
Unadjusted | 0.0073 (0.0056, 0.0090) | −0.33 (−0.43, −0.23) | 1.32 (1.20, 1.44) |
Adjusted 6 | 0.0050 (0.0033, 0.0066) | −0.21 (−0.31, −0 11) | 1.21 (1.10, 1.33) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwinger, C.; Chowdhury, R.; Sharma, S.; Bhandari, N.; Taneja, S.; Ueland, P.M.; Strand, T.A. Association of Plasma Total Cysteine and Anthropometric Status in 6–30 Months Old Indian Children. Nutrients 2020, 12, 3146. https://doi.org/10.3390/nu12103146
Schwinger C, Chowdhury R, Sharma S, Bhandari N, Taneja S, Ueland PM, Strand TA. Association of Plasma Total Cysteine and Anthropometric Status in 6–30 Months Old Indian Children. Nutrients. 2020; 12(10):3146. https://doi.org/10.3390/nu12103146
Chicago/Turabian StyleSchwinger, Catherine, Ranadip Chowdhury, Shakun Sharma, Nita Bhandari, Sunita Taneja, Per M. Ueland, and Tor A. Strand. 2020. "Association of Plasma Total Cysteine and Anthropometric Status in 6–30 Months Old Indian Children" Nutrients 12, no. 10: 3146. https://doi.org/10.3390/nu12103146
APA StyleSchwinger, C., Chowdhury, R., Sharma, S., Bhandari, N., Taneja, S., Ueland, P. M., & Strand, T. A. (2020). Association of Plasma Total Cysteine and Anthropometric Status in 6–30 Months Old Indian Children. Nutrients, 12(10), 3146. https://doi.org/10.3390/nu12103146