Dose–Response Relationship between Western Diet and Being Overweight among Teachers in Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sociodemographic and Lifestyle Characteristics Questionnaire
2.3. Dietary Pattern Assessment
2.4. Anthropometric Measurements
2.5. Missing Data
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight (Fact Sheet); World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Soon, J.M.; Tee, E.S. Changing trends in dietary pattern and implications to food and nutrition security in association of Southeast Asian nations (Asean). Int. J. Nutr. Food Sci. 2014, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Goh, E.V.; Azam-Ali, S.; McCullough, F.; Roy Mitra, S. The nutrition transition in Malaysia; Key drivers and recommendations for improved health outcomes. BMC Nutr. 2020, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.L.; Norimah, A.K.; Ismail, M.N. Association of energy intake and macronutrient composition with overweight and obesity in Malay women from Klang Valley. Malays. J. Nutr. 2010, 16, 251–260. [Google Scholar] [PubMed]
- Poti, J.M.; Braga, B.; Qin, B. Ultra-processed food intake and obesity: What really matters for health-processing or nutrient content? Curr. Obes. Rep. 2017, 6, 420–431. [Google Scholar] [CrossRef]
- Murakami, K.; Livingstone, M.B.; Okubo, H.; Sasaki, S. Energy density of the diets of Japanese adults in relation to food and nutrient intake and general and abdominal obesity: A cross-sectional analysis from the 2012 national health and nutrition survey, Japan. Br. J. Nutr. 2017, 117, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Mazidi, M.; Kengne, A.P. Nutrient patterns and their relationship with general and central obesity in US adults. Eur. J. Clin. Investig. 2017, 50, e12745. [Google Scholar] [CrossRef]
- O’Sullivan, T.A.; Bremner, A.P.; Bremer, H.K.; Seares, M.E.; Beilin, L.J.; Mori, T.A.; Lyons-Wall, P.; Devine, A.; Oddy, W.H. Dairy product consumption, dietary nutrient and energy density and associations with obesity in Australian adolescents. J. Hum. Nutr. Diet. 2015, 28, 452–464. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Shyam, S.; Khor, G.L.; Ambak, R.; Mahadir, B.; Hasnan, M.; Ambu, S.; Chu, W.L.; Aris, T. Association between dietary patterns and overweight risk among Malaysian adults: Evidence from nationally representative surveys. Public Health Nutr. 2020, 23, 319–328. [Google Scholar] [CrossRef]
- Roman, G.; Rusu, A.; Graur, M.; Creteanu, G.; Morosanu, M.; Radulian, G.; Amorin, P.; Timar, R.; Pircalaboiu, L.; Bala, C. Dietary patterns and their association with obesity: A cross-sectional study. Acta Endocrinol. 2019, 5, 86–95. [Google Scholar] [CrossRef]
- Medina-Remon, A.; Kirwan, R.; Lamuela-Raventos, R.M.; Estruch, R. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit. Rev. Food Sci. Nutr. 2018, 58, 262–296. [Google Scholar] [CrossRef] [PubMed]
- Jessri, M.; Wolfinger, R.D.; Lou, W.Y.; L’Abbe, M.R. Identification of dietary patterns associated with obesity in a nationally representative survey of Canadian adults: Application of a priori, hybrid, and simplified dietary pattern techniques. Am. J. Clin. Nutr. 2017, 105, 669–684. [Google Scholar] [CrossRef] [PubMed]
- Matta, J.; Nasreddine, L.; Jomaa, L.; Hwalla, N.; Mehio Sibai, A.; Czernichow, S.; Itani, L.; Naja, F. Metabolically healthy overweight and obesity is associated with higher adherence to a traditional dietary pattern: A cross-sectional study among adults in Lebanon. Nutrients 2016, 8, 432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, M.; Xu, L.F.; Hu, D.; Wu, J.; Bai, M.J. Dietary patterns and overweight/obesity: A review article. Iran. J. Public Health 2017, 46, 869–876. [Google Scholar]
- Bendall, C.L.; Mayr, H.L.; Opie, R.S.; Bes-Rastrollo, M.; Itsiopoulos, C.; Thomas, C.J. Central obesity and the Mediterranean diet: A systematic review of intervention trials. Crit. Rev. Food Sci. Nutr. 2017, 58, 3070–3084. [Google Scholar] [CrossRef]
- Asghari, G.; Mirmiran, P.; Yuzbashian, E.; Azizi, F. A systematic review of diet quality indices in relation to obesity. Br. J. Nutr. 2017, 117, 1055–1065. [Google Scholar] [CrossRef] [Green Version]
- Buckland, G.; Bach, A.; Serra-Majem, L. Obesity and the Mediterranean diet: A systematic review of observational and intervention studies. Obes. Rev. 2008, 9, 582–593. [Google Scholar] [CrossRef]
- Kim, J.; Jo, I.; Joung, H. A rice-based traditional dietary pattern is associated with obesity in Korean adults. J. Acad. Nutr. Diet. 2012, 112, 246–253. [Google Scholar] [CrossRef]
- Okubo, H.; Sasaki, S.; Murakami, K.; Kim, M.K.; Takahashi, Y.; Hosoi, Y.; Itabashi, M.; II Group the Freshmen in Dietetic Courses Study. Three major dietary patterns are all independently related to the risk of obesity among 3760 Japanese women aged 18–20 years. Int. J. Obes. 2007, 32, 541. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.G.; Wang, Z.H.; Wang, H.J.; Du, W.W.; Su, C.; Zhang, J.; Jiang, H.R.; Zhai, F.Y.; Zhang, B. Dietary patterns and their associations with general obesity and abdominal obesity among young Chinese women. Eur. J. Clin. Nutr. 2015, 69, 1009. [Google Scholar] [CrossRef]
- Shu, L.; Zheng, P.F.; Zhang, X.Y.; Si, C.J.; Yu, X.L.; Gao, W.; Zhang, L.; Liao, D. Association between dietary patterns and the indicators of obesity among Chinese: A cross-sectional study. Nutrients 2015, 7, 7995–8009. [Google Scholar] [CrossRef] [PubMed]
- Moy, F.M.; Hoe, V.C.; Hairi, N.N.; Buckley, B.; Wark, P.A.; Koh, D.; Bueno-de-Mesquita, H.A.; Bulgiba, A.M. Cohort study on clustering of lifestyle risk factors and understanding its association with stress on health and wellbeing among school teachers in Malaysia (cluster)—A study protocol. BMC Public Health 2014, 14, 611. [Google Scholar] [CrossRef] [PubMed]
- Openepi: Open Source Epidemiologic Statistics for Public Health Version. Available online: www.OpenEpi.com (accessed on 4 June 2013).
- Hazizi, A.S.; Zahratul Nur, K.; Mohd Nasir, M.T.; Zaitun, Y.; Tabata, I. Comparison of physical activity prevalence among international physical activity questionnaire (Ipaq), steps/day, and accelerometer in a sample of government employees in Kangar, Perlis, Malaysia. Pertanika J. Sci. Technol. 2014, 22, 16. [Google Scholar]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- DiStefano, C.; Zhu, M.; Mindrila, D. Understanding and using factor scores: Considerations for the applied researcher. Pract. Assess. Res. Eval. 2009, 14, 11. [Google Scholar]
- Eng, J.-Y.; Moy, F.-M.; Bulgiba, A.; Rampal, S. Consistency and generalizability of dietary patterns in a multiethnic working population. J. Acad. Nutr. Diet. 2018, 118, 1249–1262. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Prevention and Managing the Global Epidemic; WHO Obesity Technical Reports Series 894; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Lee, K.J.; Simpson, J.A. Introduction to multiple imputation for dealing with missing data. Respirology 2014, 19, 162–167. [Google Scholar] [CrossRef]
- White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef]
- Stata Statistical Software, Release 13; StataCorp LP: College Stattion, TX, USA, 2013.
- Sanders, T.A. How important is the relative balance of fat and carbohydrate as sources of energy in relation to health? Proc. Nutr. Soc. 2016, 75, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, S.; Neuenschwander, M.; Schwedhelm, C.; Hoffmann, G.; Bechthold, A.; Boeing, H.; Schwingshackl, L. Food groups and risk of overweight, obesity, and weight gain: A systematic review and dose-response meta-analysis of prospective studies. Adv. Nutr. 2019, 10, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Rouhani, M.H.; Salehi-Abargouei, A.; Surkan, P.J.; Azadbakht, L. Is there a relationship between red or processed meat intake and obesity? A systematic review and meta-analysis of observational studies. Obes. Rev. 2014, 15, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Nour, M.; Lutze, S.A.; Grech, A.; Allman-Farinelli, M. The relationship between vegetable intake and weight outcomes: A systematic review of cohort studies. Nutrients 2018, 10, 1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallo, D.N.; Horino, M.; McCarthy, W.J. Adult intake of minimally processed fruits and vegetables: Associations with cardiometabolic disease risk factors. J. Acad. Nutr. Diet. 2016, 116, 1387–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Hoffmann, G.; Kalle-Uhlmann, T.; Arregui, M.; Buijsse, B.; Boeing, H. Fruit and vegetable consumption and changes in anthropometric variables in adult populations: A systematic review and meta-analysis of prospective cohort studies. PLoS ONE 2015, 10, e0140846. [Google Scholar] [CrossRef] [PubMed]
- Rautiainen, S.; Wang, L.; Lee, I.M.; Manson, J.E.; Buring, J.E.; Sesso, H.D. Higher intake of fruit, but not vegetables or fiber, at baseline is associated with lower risk of becoming overweight or obese in middle-aged and older women of normal bmi at baseline. J. Nutr. 2015, 145, 960–968. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.M.; DeClercq, V.; Cui, Y.; Forbes, C.; Grandy, S.; Keats, M.; Parker, L.; Sweeney, E.; Dummer, T.J.B. Fruit and vegetable intake and body adiposity among populations in Eastern Canada: The Atlantic partnership for tomorrow’s health study. BMJ Open 2018, 8, e018060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Monforte, M.; Sanchez, E.; Barrio, F.; Costa, B.; Flores-Mateo, G. Metabolic syndrome and dietary patterns: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2017, 56, 925–947. [Google Scholar] [CrossRef]
- Shab-Bidar, S.; Golzarand, M.; Hajimohammadi, M.; Mansouri, S. A posteriori dietary patterns and metabolic syndrome in adults: A systematic review and meta-analysis of observational studies. Public Health Nutr. 2018, 21, 1681–1692. [Google Scholar] [CrossRef] [Green Version]
- Rezagholizadeh, F.; Djafarian, K.; Khosravi, S.; Shab-Bidar, S. A posteriori healthy dietary patterns may decrease the risk of central obesity: Findings from a systematic review and meta-analysis. Nutr. Res. 2017, 41, 1–13. [Google Scholar] [CrossRef]
- Institute for Public Health. National health and morbidity survey 2014: Malaysian adult nutrition survey (MANS). In Food Consumption Statistics of Malaysia; Institute for Public Health, Ministry of Health: Kuala Lumpur, Malaysia, 2014; Volume 3. [Google Scholar]
- Ng, A.K.; Koo, H.C.; Hamid Jan, J.M.; Mohd Nasir, M.T.; Tan, S.Y.; Appukutty, M.; Nurliyana, A.R.; Thielecke, F.; Hopkins, S.; Ong, M.K.; et al. Whole grain intakes in the diets of Malaysian children and adolescents—Findings from the mybreakfast study. PLoS ONE 2015, 10, e0138247. [Google Scholar]
- FAOSTAT. Food Balance Sheets. Available online: http://faostat3.fao.org (accessed on 15 June 2016).
Characteristics | Overall | Western Diet | Prudent Diet | ||||||
---|---|---|---|---|---|---|---|---|---|
Q1 | Q3 | Q5 | p-Trend a | Q1 | Q3 | Q5 | p-Trend a | ||
Age (years) | 40.3 (9.0) | 42.5 ± 0.3 | 40.3 ± 0.3 | 38.2 ± 0.3 | <0.001 | 38.9 ± 0.3 | 40.6 ± 0.3 | 40.9 ± 0.3 | <0.001 |
Gender | |||||||||
Men | 1174 (17.4) | 16.2 (1.3) | 17.9 (1.3) | 25.4 (1.5) | <0.001 | 24.8 (1.5) | 22.4 (1.4) | 12.0 (1.2) | <0.001 |
Women | 5568 (82.6) | 21.2 (0.6) | 20.2 (0.6) | 18.5 (0.5) | 19.0 (0.6) | 19.3 (0.5) | 22.0 (0.6) | ||
Race | |||||||||
Malay | 4542 (67.4) | 11.9 (0.5) | 20.2 (0.7) | 26.9 (0.7) | <0.001 | 22.5 (0.7) | 21.3 (0.7) | 14.1 (0.6) | <0.001 |
Chinese | 1507 (22.4) | 37.3 (1.4) | 18.9 (1.1) | 5.5 (0.7) | 14.6 (1.0) | 16.9 (1.0) | 32.3 (1.4) | ||
Indian | 649 (9.6) | 38.6 (2.4) | 18.9 (1.9) | 3.0 (0.8) | 15.7 (1.8) | 15.9 (1.8) | 34.4 (2.3) | ||
Others | 44 (0.7) | 44.2 (8.6) | 20.5 (6.9) | 7.2 (4.1) | 9.5 (5.7) | 21.9 (7.0) | 34.5 (8.7) | ||
Education level | |||||||||
Diploma | 1517 (22.5) | 35.5 (1.5) | 18.2 (1.2) | 8.7 (0.8) | <0.001 | 16.9 (1.2) | 17.2 (1.1) | 29.6 (1.4) | <0.001 |
Degree | 4859 (72.1) | 15.6 (0.6) | 20.1 (0.6) | 23.2 (0.6) | 20.9 (0.6) | 21.0 (0.6) | 17.0 (0.6) | ||
Master/PhD | 366 (5.4) | 20.9 (2.3) | 22.4 (2.3) | 18.5 (2.3) | 20.2 (2.3) | 15.9 (2.1) | 23.5 (2.4) | ||
Urban status | |||||||||
Urban | 4521 (67.1) | 15.6 (0.9) | 20.0 (0.9) | 24.2 (1.0) | <0.001 | 21.9 (1.0) | 20.3 (1.0) | 16.4 (0.9) | <0.001 |
Rural | 2221 (32.9) | 22.7 (0.7) | 19.7 (0.6) | 17.5 (0.6) | 19.1 (0.6) | 19.6 (0.6) | 22.1 (0.7) | ||
Physical activity level | |||||||||
Low | 1252 (24.8) | 24.4 (1.3) | 19.8 (1.2) | 17.1 (1.2) | <0.001 | 22.0 (1.3) | 19.5 (1.3) | 19.6 (1.2) | 0.263 |
Moderate | 2770 (54.9) | 19.8 (0.8) | 20.4 (0.8) | 19.7 (0.8) | 18.3 (0.8) | 19.1 (0.8) | 22.3 (0.9) | ||
High | 1025 (20.3) | 17.9 (1.3) | 19.9 (1.4) | 20.7 (1.4) | 20.3 (1.4) | 22.5 (1.5) | 17.0 (1.3) | ||
Smoking status | |||||||||
Never smoked | 5249 (93.4) | 20.9 (0.5) | 19.9 (0.5) | 18.9 (0.5) | <0.001 | 19.6 (0.5) | 19.5 (0.5) | 21.1 (0.5) | <0.001 |
Former smoker | 129 (2.3) | 13.6 (3.1) | 14.5 (3.5) | 35.6 (4.6) | 25.3 (4.3) | 25.8 (3.9) | 8.4 (2.7) | ||
Current smoker | 241 (4.3) | 12.7 (2.2) | 20.5 (2.6) | 27.3 (3.0) | 24.7 (3) | 24.3 (2.8) | 7.7 (1.9) | ||
Daily energy (kcal/day) | 2874.1 ± 21.7 | 1519.9 ± 17.7 | 2923.6 ± 38.9 | 3873.3 ± 46.3 | <0.001 | 1804.4 ± 24.2 | 3373.8 ± 53.0 | 2971.6 ± 43.9 | <0.001 |
Carbohydrate (%TE) b | 48.3 ± 0.3 | 49.3 ± 0.3 | 48.4 ± 0.2 | 47.1 ± 0.2 | <0.001 | 51.8 ± 0.2 | 48.4 ± 0.2 | 44.3 ± 0.2 | <0.001 |
Protein (%TE) b | 18.2 ± 0.1 | 16.7 ± 0.1 | 18.4 ± 0.1 | 19.2 ± 0.1 | <0.001 | 17.7 ± 0.1 | 18.3 ± 0.1 | 18.7 ± 0.1 | <0.001 |
Total fat (%TE) b | 33.4 ± 0.1 | 33.9 ± 0.2 | 33.1 ± 0.2 | 33.6 ± 0.1 | < 0.106 | 30.4 ± 0.2 | 33.3 ± 0.2 | 36.8 ± 0.2 | <0.001 |
BMI (kg/m2) | 25.2 (22.2,28.7) | 25.1 ± 0.1 | 25.8 ± 0.2 | 26.6 ± 0.2 | <0.001 | 25.7 ± 0.2 | 26.0 ± 0.2 | 25.6 ± 0.2 | 0.451 |
BMI classification c | 276 (4.1) | ||||||||
Underweight/normal | 2944 (43.8) | 23.4 (0.8) | 19.8 (0.8) | 17.0 (0.7) | <0.001 | 20.7 (0.8) | 19.3 (0.7) | 21.5 (0.8) | 0.506 |
Overweight | 2253 (33.5) | 18.5 (0.9) | 20.3 (1.0) | 20.8 (0.9) | 19.8 (1.0) | 20.3 (1.0) | 19.1 (0.9) | ||
Obese | 1248 (18.6) | 15.9 (1.2) | 18.7 (1.2) | 24.4 (1.3) | 18.5 (1.3) | 20.5 (1.3) | 19.1 (1.2) |
Western Diet | Prudent Diet | |||||
---|---|---|---|---|---|---|
All Participants | Men | Women | All Participants | Men | Women | |
Model 1 a | ||||||
Quintiles of score c | ||||||
Quintile 1 | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Quintile 2 | 1.37 (1.14, 1.65) | 1.24 (0.74, 2.06) | 1.39 (1.13, 1.70) | 1.10 (0.91, 1.33) | 1.08 (0.70, 1.68) | 1.12 (0.91, 1.38) |
Quintile 3 | 1.62 (1.32, 1.99) | 1.66 (0.97, 2.85) | 1.61 (1.29, 2.01) | 0.95 (0.78, 1.15) | 1.02 (0.64, 1.64) | 0.94 (0.76, 1.17) |
Quintile 4 | 1.96 (1.56, 2.45) | 1.70 (0.98, 2.94) | 2.01 (1.57, 2.57) | 0.92 (0.75, 1.13) | 0.77 (0.47, 1.28) | 0.96 (0.76, 1.20) |
Quintile 5 | 2.30 (1.83, 2.88) | 1.87 (1.07, 3.28) | 2.40 (1.86, 3.10) | 0.82 (0.68, 0.99) | 0.71 (0.42, 1.21) | 0.84 (0.68, 1.03) |
p-trend | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.041 |
R-squared | 0.2231 | 0.0732 | 0.3056 | 0.0043 | 0.1208 | 0.0037 |
Model 2 b | ||||||
Quintiles of score c | ||||||
Quintile 1 | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Quintile 2 | 1.16 (0.95, 1.41) | 1.15 (0.67, 1.96) | 1.16 (0.93, 1.44) | 1.24 (1.02, 1.50) | 1.19 (0.76, 1.87) | 1.25 (1.01, 1.55) |
Quintile 3 | 1.22 (0.98, 1.51) | 1.36 (0.77, 2.42) | 1.19 (0.94, 1.51) | 1.15 (0.94, 1.41) | 1.19 (0.73, 1.93) | 1.14 (0.91, 1.43) |
Quintile 4 | 1.31 (1.03, 1.67) | 1.37 (0.76, 2.50) | 1.30 (1.00, 1.70) | 1.20 (0.97, 1.49) | 0.97 (0.56, 1.66) | 1.24 (0.98, 1.58) |
Quintile 5 | 1.43 (1.11, 1.83) | 1.39 (0.75, 2.60) | 1.45 (1.09, 1.91) | 1.18 (0.96, 1.45) | 0.93 (0.52, 1.67) | 1.22 (0.97, 1.52) |
p-trend | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.735 |
R-squared | 0.1077 | 0.0417 | 0.1160 | 0.0043 | 0.0043 | −0.0004 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eng, J.Y.; Moy, F.M.; Bulgiba, A.; Rampal, S. Dose–Response Relationship between Western Diet and Being Overweight among Teachers in Malaysia. Nutrients 2020, 12, 3092. https://doi.org/10.3390/nu12103092
Eng JY, Moy FM, Bulgiba A, Rampal S. Dose–Response Relationship between Western Diet and Being Overweight among Teachers in Malaysia. Nutrients. 2020; 12(10):3092. https://doi.org/10.3390/nu12103092
Chicago/Turabian StyleEng, Jui Yee, Foong Ming Moy, Awang Bulgiba, and Sanjay Rampal. 2020. "Dose–Response Relationship between Western Diet and Being Overweight among Teachers in Malaysia" Nutrients 12, no. 10: 3092. https://doi.org/10.3390/nu12103092
APA StyleEng, J. Y., Moy, F. M., Bulgiba, A., & Rampal, S. (2020). Dose–Response Relationship between Western Diet and Being Overweight among Teachers in Malaysia. Nutrients, 12(10), 3092. https://doi.org/10.3390/nu12103092