The Interactive Effect of High Doses of Chromium(III) and Different Iron(III) Levels on the Carbohydrate Status, Lipid Profile, and Selected Biochemical Parameters in Female Wistar Rats
Abstract
:1. Introduction
2. Material and Methods
2.1. Test Chemicals
2.2. Animals and Diets
2.3. Data Collection
2.4. Laboratory Analyses
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hansen, A.F.; Simić, A.; Åsvold, B.O.; Romundstad, P.R.; Midthjell, K.; Syversen, T.; Flaten, T.P. Trace elements in early phase type 2 diabetes mellitus—A population-based study. The HUNT study in Norway. J. Trace Elem. Med. Biol. 2017, 40, 46–53. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Elgharabawy, R.M.; Al-Najjar, A.H.; Al-Abdullatif, M.H.; Al-Abdllatif, M.A.; Al-Mogbel, T.A. Impact of iron deficiency anemia treatment on type 2 diabetic complications. Biochem. Mol. Biol. J. 2019, 5, 1–6. [Google Scholar]
- Zhou, Q.; Guo, W.; Jia, Y.; Xu, J. Comparison of chromium and iron distribution in serum and urine among healthy people and prediabetes and diabetes patients. Biomed Res. Int. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basuli, D.; Stevens, R.G.; Torti, F.M.; Torti, S.V. Epidemiological associations between iron and cardiovascular disease and diabetes. Front. Pharmacol. 2014, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Lei, X.; Wang, Q.; Du, Z.; Jiang, L.; Chen, S. Effects of a tripeptide iron on iron-deficiency anemia in rats. Boiol. Trace Elem. Res. 2016, 169, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Gkouvatsos, K.; Papanikolaou, G.; Pantopoulos, K. Regulation of iron transport and the role of transferrin. Biochim. Biophys. Acta Gen. Subj. 2012, 1820, 188–202. [Google Scholar] [CrossRef]
- Auerbach, M.; Adamson, J.W. How we diagnose and treat iron deficiency anemia. Am. J. Hematol. 2016, 91, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Kassebaum, N.J.; Jasrasaria, R.; Naghavi, M.; Wulf, S.K.; Johns, N.; Lozano, R.; Regan, M.; Weatherall, D.; Chou, D.P.; Eisele, T.P.; et al. Red cells, iron, and erythropoiesis. A systematic analysis of global anemia burden from 1990 to 2010. Blood J. 2014, 123, 615–625. [Google Scholar] [CrossRef]
- Naigamwalla, D.Z.; Webb, J.A.; Giger, U. Iron deficiency anemia. Can. Vet. J. 2012, 53, 250–256. [Google Scholar]
- Bjørklund, G.; Aaseth, J.; Skalny, A.V.; Suliburska, J.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. J. Trace Elem. Med. Biol. 2017, 41, 41–53. [Google Scholar] [CrossRef]
- Petry, N.; Olofin, I.; Hurrell, R.F.; Boy, E.; Wirth, J.P.; Moursi, M.; Angel, M.D.; Rohner, F. The proportion of anemia associated with iron deficiency in low, medium, and high human development index countries: A systematic analysis of national surveys. Nutrients 2016, 8, 693. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Golden, C.D.; Myers, S.S. Potential rise in iron deficiency due to future anthropogenic carbon dioxide emissions. GeoHealth 2017, 1, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Chung, J.; Koo, K.-O.; Kim, M.S.; Han, S.N. Hepatic iron storage is related to body adiposity and hepatic inflammation. Nutr. Metab. 2017, 14, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gowin, E.; Horst-Sikorska, W. Żelazne zapasy—Komu w XXI wieku grozi niedobór żelaza? (Iron stores—Who is at risk of iron deficiency in 21st century?). Farm. Współczesna 2010, 3, 139–146. [Google Scholar]
- Swanson, C.A. Iron intake and regulation: Implications for iron deficiency and iron overload. Alcohol 2003, 30, 99–102. [Google Scholar] [CrossRef]
- Gutowska, I.; Machoy, Z.; Machoy-Mokrzynska, A.; Machalinski, B. The role of iron in metal-metal interactions in hard tissues of roe deer (Capreolus Capreolus L.). Ann. Acad. Med. Stetin. 2009, 55, 16–21. [Google Scholar]
- Muñoz, M.; García-Erce, J.A.; Remacha, Á.F. Disorders of iron metabolism. Part II: Iron deficiency and iron overload. J. Clin. Pathol. 2011, 64, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Bacon, B.R.; Adams, P.C.; Kowdley, K.V.; Powell, L.W.; Tavill, A.S. Diagnosis and management of hemochromatosis: 2011 Practice Guideline by the American Association for the Study of Liver Diseases. Hepatology 2011, 54, 328–343. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef]
- Krisai, P.; Leib, S.; Aeschbacher, S.; Kofler, T.; Assadian, M.; Maseli, A.; Todd, J.; Estis, J.; Risch, M.; Risch, L.; et al. Relationships of iron metabolism with insulin resistance and glucose levels in young and healthy adults. Eur. J. Intern. Med. 2016, 32, 31–37. [Google Scholar] [CrossRef]
- Hua, Y.; Clark, S.; Ren, J.; Sreejayan, N. Molecular mechanisms of chromium in alleviating insulin resistance. J. Nutr. Biochem. 2012, 23, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltaci, N.G.; Guler, C.; Ceylan, H.; Kalin, S.N.; Adem, S.; Kocpinar, E.F.; Erdoğan, O.; Budak, H. In vitro and in vivo effects of iron on the expression and activity of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase in rat spleen. J. Biochem. Mol. Toxicol. 2019, 33, e22229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampaio, F.A.; Monte Feitosa, M.; Hermes Sales, C.; Costa e Silva, D.M.; Clímaco Cruz, K.J.; Oliveira, F.E.; Colli, C.; do Nascimento Marreiro, D. Influence of magnesium on biochemical parameters of iron and oxidative stress in patients with type 2 diabetes. Nutr. Hosp. 2014, 30, 570–576. [Google Scholar] [CrossRef]
- Soliman, A.T.; De Sanctis, V.; Yassin, M.; Soliman, N. Iron deficiency anemia and glucose metabolism. Acta Biomed. 2017, 88, 112–118. [Google Scholar] [CrossRef]
- Jiang, F.; Sun, Z.Z.; Tang, Y.T.; Xu, C.; Jiao, X.Y. Hepcidin expression and iron parameters change in type 2 diabetic patients. Diabetes Res. Clin. Pract. 2011, 93, 43–48. [Google Scholar] [CrossRef]
- Jatobá, C.A.N.; De Rezende, A.A.; De Paiva Rodrigues, S.J.; De Almeida Câmara, M.M.; Das Graças Almeida, M.; Freire-Neto, F.; Da Rocha, L.R.M.; Da Medeiros, A.C.; Brandão-Neto, J.; De Carvalho Formiga, M.C.; et al. Liver iron overload induced by tamoxifen in diabetic and non-diabetic female wistar rats. BioMetals 2008, 21, 171–178. [Google Scholar] [CrossRef]
- Cooksey, R.C.; Jones, D.; Gabrielsen, S.; Huang, J.; Simcox, J.; Luo, B.; Soesanto, Y.; Rienhoff, H.; Abel, E.D.; McClain, D. Dietary iron restriction or iron chelation protects from diabetes and loss of beta-cell function in the obese (Ob/Ob Lep-/-) mouse. Am. J. Physiol. Endocrinol. Metab. 2010, 298, 1236–1243. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.R.; Awan, F.R. Metals in the pathogenesis of type 2 diabetes. J. Diabetes Metab. Disord. 2014, 13, 16. [Google Scholar] [CrossRef] [Green Version]
- Renuka, P.; Vasantha, M. Study of the serum levels of iron, ferritin and magnesium in diabetic complications. Int. J. Pharm. Clin. Res. 2016, 8, 254–259. [Google Scholar]
- Vieyra-Reyes, P.; Millan-Aldaco, D.; Palomero-Rivero, M.; Jimenez-Garces, C.; Hernandez-Gonzalez, M. An iron-deficient diet during development induces oxidative stress in relation to age and gender in wistar rats. J. Physiol. Biochem. 2017, 73, 99–110. [Google Scholar] [CrossRef]
- Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Dogliotti, E.; Edler, L.; Knutsen, H.K.; Lundebye, A.; Metzler, M.; Nebbia, C.S.; Rietjens, I.; et al. Scientific opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J. 2014, 12, 1–261. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific opinion on dietary reference values for chromium. EFSA J. 2014, 12, 3759. [Google Scholar] [CrossRef] [Green Version]
- McIver, D.J.; Grizales, A.M.; Brownstein, J.S.; Goldfine, A.B. Risk of type 2 diabetes is lower in US adults taking chromium-containing supplements. J. Nutr. 2015, 145, 2675–2682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clodfelder, B.J.; Chang, C.; Vincent, J.B. Absorption of the biomimetic chromium cation triaqua-Μ3-oxo- μ-hexapropionatotrichromium(III) in rats. Biol. Trace Elem. Res. 2004, 98, 159–169. [Google Scholar] [CrossRef]
- Staniek, H.; Kostrzewska-Poczekaj, M.; Arndt, M.; Szyfter, K.; Krejpcio, Z. Genotoxicity assessment of chromium(III) propionate complex in the rat model using the comet assay. Food Chem. Toxicol. 2010, 48, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Staniek, H.; Krejpcio, Z.; Iwanik, K. Evaluation of the acute oral toxicity class of tricentric chromium(III) propionate complex in rat. Food Chem. Toxicol. 2010, 48, 859–864. [Google Scholar] [CrossRef]
- Staniek, H.; Krejpcio, Z. The effects of supplementary Cr3 (chromium(III) propionate complex) on the mineral status in healthy female rats. Biol. Trace Elem. Res. 2017, 180, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.B.; Love, S. The binding and transport of alternative metals by transferrin. Biochim. Biophys. Acta 2012, 1820, 362–378. [Google Scholar] [CrossRef]
- Earnshaw, A.; Figgis, B.; Lewis, J. Chemistry of polynuclear compounds. Part VI. Magnetic properties of trimeric chromium and iron carboxylates. J. Chem. Sociecty A Inorganic Phys. Theor. 1966, 1656–1663. [Google Scholar] [CrossRef]
- Reeves, P.G. Symposium: Animal diets for nutritional and toxicologicalrresearch. Exp. Biol. 1997, 127, 838–841. [Google Scholar] [CrossRef]
- Sacks, D.B.; Arnold, M.; Bakris, G.L.; Bruns, D.E.; Horvath, A.R.; Kirkman, M.S.; Lernmark, A.; Metzger, B.E.; Nathan, D.M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care 2011, 34, e61–e99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bairaktari, E.T.; Seferiadis, K.I.; Elisaf, M.S. Evaluation of methods for the measurement of low-density lipoprotein cholesterol. J. Cardiovasc. Pharmacol. Ther. 2005, 10, 45–54. [Google Scholar] [CrossRef]
- Shephard, M.D.S.; Whiting, M.J. Falsely low estimation of triglycerides in lipemic plasma by the enzymatic triglyceride method with modified trinder’s chromogen. Clin. Chem. 1990, 36, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L. Clinical Laboratory Diagnosis. Use and Assessment of Clinical Laboratory Results; TH Books Verlagsgesllschaft: Frankfurt, Germany, 1998. [Google Scholar]
- Schumann, G.; Klauke, R. New IFCC reference procedures for the determination of catalytic activity concentrations of five enzymes in serum: Preliminary upper reference limits obtained in hospitalized subjects. Clin. Chim. Acta 2003, 327, 69–79. [Google Scholar] [CrossRef]
- Burtis, C.A.; Ashwood, E.R. Tietz Textbook of Clinical Chemistry, 3rd ed.; Saunders: Philadelphia, PA, USA, 1999. [Google Scholar]
- Horáková, D.; Štěpánek, L.; Janout, V.; Janoutová, J.; Pastucha, D.; Kollárová, H.; Petráková, A.; Štěpánek, L.; Husár, R.; Martiník, K. Optimal homeostasis model assessment of insulin resistance (HOMA-IR) cut-offs: A cross-sectional study in the Czech population. Medicina 2019, 55, 158. [Google Scholar] [CrossRef] [Green Version]
- Pisprasert, V.; Ingram, K.H.; Lopez-Davila, M.F.; Munoz, A.J.; Garvey, W.T. Limitations in the use of indices using glucose and insulin levels to predict insulin sensitivity: Impact of race and gender and superiority of the indices derived from oral glucose tolerance test in African Americans. Diabetes Care 2013, 36, 845–853. [Google Scholar] [CrossRef] [Green Version]
- Cacho, J.; Sevillano, J.; De Castro, J.; Herrera, E.; Ramos, M.P. Validation of simple indexes to assess insulin sensitivity during pregnancy in wistar and sprague-dawley rats. Am. J. Physiol. Endocrinol. Metab. 2008, 295, 1269–1276. [Google Scholar] [CrossRef]
- Simcox, J.A.; McClain, D.A. Iron and diabetes risk. Cell Metab. 2013, 17, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, T. Rola transferyny w przeciwdziałaniu stresowi oksydacyjnemu indukowanemu wolnym żelzaem w organizmie i jej potencjalne związki z rozwojem nowotworów. Kosmos. Probl. Nauk Biol. 2013, 62, 501–505. [Google Scholar]
- Park, E.; Glei, M.; Knöbel, Y.; Pool-Zobel, B.L. Blood mononucleocytes are sensitive to the DNA damaging effects of iron overload-in vitro and ex vivo results with human and rat cells. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2007, 619, 59–67. [Google Scholar] [CrossRef]
- Chitturi, R.; Baddam, V.R.; Prasad, L.; Prashanth, L.; Kattapagari, K. A review on role of essential trace elements in health and disease. J. Dr. NTR Univ. Heal. Sci. 2015, 4, 75. [Google Scholar] [CrossRef]
- Márquez-Ibarra, A.; Huerta, M.; Villalpando-Hernández, S.; Ríos-Silva, M.; Díz-Reval, M.I.; Cruzblanca, H.; Mancilla, E.; Trujillo, X. The effects of dietary iron and capsaicin on hemoglobin, blood glucose, insulin tolerance, cholesterol, and triglycerides, in healthy and diabetic wistar rats. PLoS ONE 2016, 11, e0152625. [Google Scholar] [CrossRef] [PubMed]
- Cooksey, R.C.; Jouihan, H.A.; Ajioka, R.S.; Hazel, M.W.; Jones, D.L.; Kushner, J.P.; McClain, D.A. Oxidative stress, β-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology 2004, 145, 5305–5312. [Google Scholar] [CrossRef] [PubMed]
- Edgerton, D.S.; Kraft, G.; Smith, M.; Farmer, B.; Williams, P.E.; Coate, K.C.; Printz, R.L.; O’Brien, R.M.; Cherrington, A.D. Insulin’s direct hepatic effect explains the inhibition of glucose production caused by insulin secretion. JCI Insight 2017, 2, e91863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulaksiz, H.; Fein, E.; Redecker, P.; Stremmel, W.; Adler, G.; Cetin, Y. Pancreatic β-cells express hepcidin, an iron-uptake regulatory peptide. J. Endocrinol. 2008, 197, 241–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivasankari, J.; Thiruchelvan, V. Serum ferritin: An early marker of insulin resistance in metabolic syndrome. Int. J. Sci. Study 2017, 5, 59–64. [Google Scholar] [CrossRef]
- Choi, J.S.; Koh, I.U.; Lee, H.J.; Kim, W.H.; Song, J. Effects of excess dietary iron and fat on glucose and lipid metabolism. J. Nutr. Biochem. 2013, 24, 1634–1644. [Google Scholar] [CrossRef]
- Noetzli, L.J.; Mittelman, S.D.; Watanabe, R.M.; Coates, T.D.; Wood, J.C. Pancreatic iron and glucose dysregulation in thalassemia major. Am. J. Hematol. 2012, 87, 155–160. [Google Scholar] [CrossRef]
- Staniek, H.; Wójciak, R.W. The combined effects of iron excess in the diet and chromium(III) supplementation on the iron and chromium status in female rats. Biol. Trace Elem. Res. 2018, 184, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.; Silva, M.E.; de Paula, H.; Carneiro, C.M.; Pedrosa, M.L. Iron overload alters glucose homeostasis, causes liver steatosis, and increases serum triacylglycerols in rats. Nutr. Res. 2008, 28, 391–398. [Google Scholar] [CrossRef]
- Prasad, A. Role of chromium compounds in diabetes. Indian J. Pharm. Pharmacol. 2016, 3, 17. [Google Scholar] [CrossRef]
- Swaroop, A.; Bagchi, M.; Preuss, H.G.; Zafra-Stone, S.; Ahmad, T.; Bagchi, D. Benefits of Chromium(III) Complexes in Animal and Human Health, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Vincent, J.B. Effects of chromium supplementation on body composition, human and animal health, and insulin and glucose metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Sadri, H.; Larki, N.N.; Kolahian, S. Hypoglycemic and hypolipidemic effects of leucine, zinc, and chromium, alone and in combination, in rats with type 2 diabetes. Biol. Trace Elem. Res. 2017, 180, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Pala, R.; Sari, M.A.; Erten, F.; Er, B.; Tuzcu, M.; Orhan, C.; Deeh, P.B.D.; Sahin, N.; Cinar, V.; Komorowski, J.R.; et al. The effects of chromium picolinate on glucose and lipid metabolism in running rats. J. Trace Elem. Med. Biol. 2020, 58, 126434. [Google Scholar] [CrossRef] [PubMed]
- Turgut, M.; Cinar, V.; Pala, R.; Tuzcu, M.; Orhan, C.; Telceken, H.; Sahin, N.; Deeh, P.B.D.; Komorowski, J.R.; Sahin, K. Biotin and chromium histidinate improve glucose metabolism and proteins expression Levels of IRS-1, PPAR-γ, and NF-ΚB in exercise-trained rats. J. Int. Soc. Sports Nutr. 2018, 15. [Google Scholar] [CrossRef]
- Jovanović, L.; Pantelić, M.; Prodanović, R.; Vujanac, I.; Đurić, M.; Tepavčević, S.; Vranješ-Đurić, S.; Korićanac, G.; Kirovski, D. Effect of peroral administration of chromium on insulin signaling pathway in skeletal muscle tissue of holstein calves. Biol. Trace Elem. Res. 2017, 180, 223–232. [Google Scholar] [CrossRef]
- Yang, X.; Palanichamy, K.; Ontko, A.C.; Rao, M.N.A.; Fang, C.X.; Ren, J.; Sreejayan, N. A newly synthetic chromium complex—Chromium(phenylalanine)3 improves insulin responsiveness and reduces whole body glucose tolerance. FEBS Lett. 2005, 579, 1458–1464. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Li, Q.; Wang, W.; Chen, Y.; Zhang, W.; Zhao, T.; Mao, G.; Wu, X.; Yang, L. Influence of chronic Toxicity, Lipid Metabolism, Learning and Memory Ability, and Related Enzyme in Sprague-Dawley Rats by long-term chromium malate supplementation. Biol. Trace Elem. Res. 2019, 187, 243–257. [Google Scholar] [CrossRef]
- Seif, A.A. Chromium picolinate inhibits cholesterol-induced stimulation of platelet aggregation in hypercholesterolemic rats. Ir. J. Med. Sci. 2015, 184, 291–296. [Google Scholar] [CrossRef]
- Sahin, N.; Sahin, K.; Erkal, N. The effect of chromium added into basal diet on serum total protein, urea, triglyceride, cholesterol, and serum and tissue chromium, zinc, copper levels in rabbits. Turkish J. Vet. Anim. Sci. 1999, 23, 109–113. [Google Scholar]
- Zhang, Q.; Sun, X.; Xiao, X.; Zheng, J.; Li, M.; Yu, M.; Ping, F.; Wang, Z.; Qi, C.; Wang, T.; et al. The effect of maternal chromium status on lipid metabolism in female elderly mice offspring and involved molecular mechanism. Biosci. Rep. 2017, 37. [Google Scholar] [CrossRef] [PubMed]
- Staniek, H.; Krejpcio, Z.; Wieczorek, D. The effects of high dietary doses of chromium(III) complex with propionic acid on nutritional and selected blood indices in healthy female rats. Biol. Trace Elem. Res. 2016, 171, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Król, E.; Krejpcio, Z. Evaluation of anti-diabetic potential of chromium(III) propionate complex in high-fat diet fed and STZ injected rats. Food Chem. Toxicol. 2011, 49, 3217–3223. [Google Scholar] [CrossRef] [PubMed]
- Doddigarla, Z.; Ahmad, J.; Parwez, I. Effect of chromium picolinate and melatonin either in single or in a combination in high carbohydrate diet-fed male wistar rats. BioFactors 2016, 42, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.L.; Shi, F.F.; Li, L.; Xu, J.X.; Chen, M.; Wu, L.; Hong, J.L.; Qian, M.; Bai, W.D.; Liu, B.; et al. Preparation of a novel grifola frondosa polysaccharide-chromium (III) complex and its hypoglycemic and hypolipidemic activities in high fat diet and streptozotocin-induced diabetic mice. Int. J. Biol. Macromol. 2019, 131, 81–88. [Google Scholar] [CrossRef]
- Tang, H.; Xiao, Q.; Xu, H.; Zhang, Y. Hypoglycemic activity and acute oral toxicity of chromium methionine complexes in mice. J. Trace Elem. Med. Biol. 2015, 29, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wu, X.; Zou, Y.; Zhao, T.; Zhang, M.; Feng, W.; Yang, L. Comparing anti-hyperglycemic activity and acute oral toxicity of three different trivalent chromium complexes in mice. Food Chem. Toxicol. 2012, 50, 1623–1631. [Google Scholar] [CrossRef]
Ingredients | Unit | Content of Ingredients in Diets | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C1 | C50 | C500 | D1 | D50 | D500 | E1 | E50 | E500 | ||
Energy | MJ 100/g | 1.82 ± 0.00 | 1.83 ± 0.03 | 1.89 ± 0.06 | 1.92 ± 0.05 | 1.80 ± 0.04 | 1.87 ± 0.03 | 1.88 ± 0.04 | 1.82 ± 0.03 | 1.81 ± 0.02 |
Fat | % | 7.46 ± 0.05 | 7.22 ± 0.08 | 7.26 ± 0.31 | 7.36 ± 0.24 | 6.62 ± 0.29 | 7.19 ± 0.10 | 7.31 ± 0.10 | 7.11 ± 0.06 | 6.83 ± 0.05 |
Protein | % | 17.12 ± 0.10 | 17.17 ± 0.14 | 17.27 ± 0.24 | 17.64 ± 0.35 | 17.90 ± 0.13 | 17.22 ± 0.16 | 17.42 ± 0.30 | 17.01 ± 0.12 | 17.72 ± 0.39 |
Carbohydrates | % | 63.46 | 63.67 | 63.45 | 63.55 | 64.12 | 63.78 | 64.05 | 63.11 | 64.77 |
Dry Mass | % | 90.47 ± 0.05 | 90.54 ± 0.22 | 90.26 ± 0.08 | 90.14 ± 0.26 | 89.40 ± 0.03 | 89.70 ± 0.14 | 89.99 ± 0.36 | 89.67 ± 0.54 | 89.90 ± 0.23 |
Ash | % | 2.47 ± 0.04 | 2.48 ± 0.11 | 2.32 ± 0.50 | 2.45 ± 0.08 | 2.77 ± 0.05 | 2.63 ± 0.12 | 2.36 ± 0.21 | 2.67 ± 0.08 | 2.58 ± 0.08 |
Ca | g/kg | 4.96 ± 0.13 | 5.16 ± 0.13 | 5.02 ± 0.11 | 5.00 ± 0.19 | 5.10 ± 0.11 | 5.02 ± 0.37 | 5.17 ± 0.02 | 5.09 ± 0.11 | 4.94 ± 0.17 |
Mg | mg/kg | 441.42 ± 8.99 | 473.12 ± 1.44 | 511.73 ± 17.55 | 478.69 ± 15.46 | 473.73 ± 56.11 | 529.95 ± 13.13 | 503.86 ± 23.80 | 501.62 ± 19.90 | 529.98 ± 15.50 |
Fe | mg/kg | 58.05 ± 0.70 | 57.09 ± 2.83 | 59.13 ± 1.98 | 3.43 ± 0.38 | 3.30 ± 1.08 | 3.03 ± 0.59 | 218.12 ± 7.53 | 207.55 ± 21.49 | 229.78 ± 13.04 |
Cr | mg/kg | 1.24 ± 0.23 | 50.04 ± 6.48 | 425.14 ± 10.28 | 1.69 ± 0.12 | 48.89 ± 2.00 | 459.14 ± 24.42 | 1.95 ± 0.61 | 49.42 ± 5.40 | 431.59 ± 14.82 |
Zn | mg/kg | 52.51 ± 1.60 | 50.71 ± 1.90 | 52.41 ± 2.02 | 49.26 ± 9.70 | 45.90 ± 7.51 | 44.41 ± 5.66 | 44.80 ± 4.21 | 40.86 ± 0.49 | 43.13 ± 3.00 |
Cu | mg/kg | 5.45 ± 0.94 | 4.43 ± 0.15 | 5.93 ± 0.79 | 5.11 ± 0.88 | 5.53 ± 0.90 | 5.51 ± 0.60 | 5.82 ± 0.71 | 6.28 ± 0.20 | 6.62 ± 1.02 |
Factor | Groups | N (54) | Level of Factor |
---|---|---|---|
Factor A Fe Level in Diet | D | 18 | A1—10% recommended Fe level in the diet for rodents (5 mg/kg) (Fe—deficiency) |
C | 18 | A2—recommended Fe level in the diet for rodents (45 mg/kg) (Fe—control) | |
H | 18 | A3—400% recommended Fe level in the diet for rodents (180 mg/kg) (Fe—oversupply) | |
Factor B Cr(III) Level in Diet | 1 | 18 | B1—recommended Cr(III) level in the diet for rodents (1 mg/kg) (Cr—control dose) |
50 | 18 | B2—I supplemental dose of Cr(III) (50 mg/kg) (Cr—medium dose) | |
500 | 18 | B3—II supplemental dose of Cr(III) (500 mg/kg) (Cr—high dose) | |
Combinations Factors | N (54) | ||
A1B1 | D1 | 6 | Fe 5 mg/kg, Cr 1 mg/kg |
A1B2 | D50 | 6 | Fe 5 mg/kg, Cr 50 mg/kg |
A1B3 | D 500 | 6 | Fe 5 mg/kg, Cr 500 mg/kg |
A2B1 | C1 (control) | 6 | Fe 45 mg/kg, Cr 1 mg/kg |
A2B2 | C50 | 6 | Fe 45 mg/kg, Cr 50 mg/kg |
A2B3 | C500 | 6 | Fe 45 mg/kg, Cr 500 mg/kg |
A3B1 | H1 | 6 | Fe 180 mg/kg, Cr 1 mg/kg |
A3B2 | H50 | 6 | Fe 180 mg/kg, Cr 50 mg/kg |
A3B3 | H500 | 6 | Fe 180 mg/kg, Cr 500 mg/kg |
Factors | Factor A Level (mg/kg) | Factor B Level (mg/kg) | N | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | Glucose Concentration (mg/dL) (mMol/L) | p | Insulin (ng/mL) (mU/L) | p | HOMA-IR Index | p | Quicki (Quantitative Insulin Sensitivity Check Index) | p | ||||
Main Effects (Mean ± SD) | ||||||||||||
Fe-deficiency | 5 | D | 18 | 147.78 ± 29.75 a (8.203 ± 1.652) | p < 0.05 | 1.274 ± 0.837 b (31.625 ± 20.777) | p < 0.001 | 11.72 ± 8.97 b | p < 0.001 | 0.280 ± 0.020 a | p < 0.001 | |
Fe-control | 45 | C | 18 | 176.89 ± 44.80 b (9.819 ± 2.487) | 0.611 ± 0.109 a (15.167 ± 2.715) | 6.79 ± 2.68 a,b | 0.294 ± 0.015 b | |||||
Fe-oversupply | 180 | H | 18 | 143.11 ± 37.93 a (7.944 ± 2.105) | 0.464 ± 0.048 a (11.531 ± 1.203) | 4.06 ± 1.10 a | 0.312 ± 0.010 c | |||||
Cr-control dose | 1 | 1 | 18 | 156.28 ± 45.21 (8.675 ± 2.510) | NS | 1.108 ± 0.942 b (27.512 ± 23.379) | p < 0.001 | 10.53 ± 9.69 b | p < 0.001 | 0.289 ± 0.027 a | p < 0.05 | |
Cr-medium dose | 50 | 50 | 18 | 154.11 ± 39.49 (8.554 ± 2.192) | 0.639 ± 0.175 a (15.853 ± 4.357) | 6.07 ± 2.28 a,b | 0.298 ± 0.015 a,b | |||||
Cr-high dose | 500 | 500 | 18 | 157.39 ± 37.83 (8.736 ± 2.100) | 0.602 ± 0.150 a (14.957 ± 3.716) | 5.97 ± 2.73 a | 0.299 ± 0.015 b | |||||
Factor Combinations | Interaction Effects (Mean ± SD) | |||||||||||
Fe-deficiency | 5 | 1 | D1 | 6 | 148.00 ± 37.27 (8.215 ± 2.069) | NS | 2.292 ± 0.688 b (56.903 ± 17.074) | p < 0.001 | 21.30 ± 10.09 b | p < 0.001 | 0.257 ± 0.013 a | p < 0.001 |
5 | 50 | D50 | 6 | 156.00 ± 32.65 (8.659 ± 1.812) | 0.815 ± 0.159 a (20.239 ± 3.935) | 7.70 ± 1.68 a | 0.287 ± 0.009 b | |||||
5 | 500 | D500 | 6 | 139.33 ± 19.69 (7.734 ± 1.093) | 0.714 ± 0.104 a (17.731 ± 2.593) | 6.17 ± 1.60 a | 0.293 ± 0.013 b,c | |||||
Fe-control | 45 | 1 | C1 | 6 | 158.83 ± 43.65 (8.816 ± 2.423) | 0.575 ± 0.095 a (14.279 ± 2.370) | 5.73 ± 2.17 a | 0.300 ± 0.016 b,c | ||||
45 | 50 | C50 | 6 | 179.50 ± 48.09 (9.964 ± 2.669) | 0.614 ± 0.100 a (15.235 ± 2.480) | 6.77 ± 2.09 a | 0.293±0.013 b,c | |||||
45 | 500 | C500 | 6 | 192.33 ± 43.83 (10.676 ± 2.433) | 0.644 ± 0.137 a (15.988 ± 3.395) | 7.86 ± 3.56 a | 0.289±0.014 b | |||||
Fe-oversupply | 180 | 1 | H1 | 6 | 162.00 ± 59.39 (8.992 ± 3.296) | 0.457 ± 0.044 a (11.355 ± 1.095) | 4.56 ± 1.74 a | 0.309±0.016 b,c | ||||
180 | 50 | H50 | 6 | 126.83 ± 15.90 (7.040 ± 0.883) | 0.487 ± 0.061 a (12.086 ± 1.522) | 3.75 ± 0.39 a | 0.315±0.005 c | |||||
180 | 500 | H500 | 6 | 140.50 ± 18.92 (7.799 ± 1.050) | 0.449 ± 0.037 a (11.152 ± 0.910) | 3.88 ± 0.70 a | 0.314±0.008 c |
Factors | Factor A Level (mg/kg) | Factor B Level (mg/kg) | N | Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | Ghrelin (ng/mL) | p | Leptin (ng/mL) | p | AST (U/L) | p | ALT (U/L) | p | ALP (U/L) | p | ||||
Main Effects (Mean ± SD) | ||||||||||||||
Fe-deficiency | 5 | D | 18 | 0.361 ± 0.098 | NS | 4.406 ± 0.816 | NS | 133.063 ± 45.543 | NS | 21.125 ± 8.724 | NS | 97.294 ± 13.284 b | ||
Fe-control | 45 | C | 18 | 0.459 ± 0.179 | 4.910 ± 1.077 | 173.882 ± 64.405 | 22.000 ± 6.055 | 75.611 ± 11.003 a | p < 0.001 | |||||
Fe-oversupply | 180 | H | 18 | 0.400 ± 0.135 | 4.327 ± 1.010 | 138.333 ± 68.526 | 19.067 ± 9.838 | 70.667 ± 12.054 a | ||||||
Cr-control dose | 1 | 1 | 18 | 0.468 ± 0.146 b | p < 0.05 | 4.649 ± 1.204 | NS | 163.278 ± 63.889 | NS | 24.056 ± 10.619 | NS | 85.667 ± 19.629 b | ||
Cr-medium dose | 50 | 50 | 18 | 0.374 ± 0.155 a | 4.839 ± 0.923 | 133.000 ± 47.129 | 19.924 ± 5.543 | 74.667 ± 13.750 a | p < 0.05 | |||||
Cr-high dose | 500 | 500 | 18 | 0.378 ± 0.116 a | 4.168 ± 0.741 | 150.769 ± 74.458 | 17.917 ± 5.869 | 82.412 ± 14.573 a,b | ||||||
Factor Combinations | Interaction Effects (Mean ± SD) | |||||||||||||
Fe-deficiency | 5 | 1 | D1 | 6 | 0.443 ± 0.066 a,b,c | p < 0.01 | 4.185 ± 0.628 | NS | 161.833 ± 57.957 | NS | 26.667 ± 12.061 | NS | 107.000 ± 14.233 | |
5 | 50 | D50 | 6 | 0.311±0.091 a,b | 4.984 ± 0.913 | 119.833 ± 29.607 | 18.333 ± 3.445 | 87.500 ± 10.426 | ||||||
5 | 500 | D500 | 6 | 0.328±0.086 a,b,c | 4.011 ± 0.590 | 109.750 ± 24.116 | 17.000 ± 4.320 | 96.400 ± 2.302 | ||||||
Fe-control | 45 | 1 | C1 | 6 | 0.556±0.190 c | 5.414 ± 1.460 | 156.333 ± 58.157 | 20.833 ± 7.600 | 75.333 ± 13.227 | |||||
45 | 50 | C50 | 6 | 0.502 ± 0.180 a,b,c | 4.575 ± 0.841 | 164.000 ± 47.397 | 24.000 ± 4.183 | 72.500 ± 11.149 | NS | |||||
45 | 500 | C500 | 6 | 0.320 ± 0.058 a,b | 4.741 ± 0.793 | 199.667 ± 82.638 | 21.400 ± 6.348 | 79.000 ± 9.252 | ||||||
Fe-oversupply | 180 | 1 | H1 | 6 | 0.405 ± 0.130 a,b,c | 4.270 ± 1.049 | 171.667 ± 83.617 | 24.667 ± 12.612 | 73.838 ± 6.735 | |||||
180 | 50 | H50 | 6 | 0.310 ± 0.109 a,b | 4.958 ± 1.110 | 120.333 ± 55.428 | 16.333 ± 6.218 | 64.000 ± 8.837 | ||||||
180 | 500 | H500 | 6 | 0.485 ± 0.120 a,b,c | 3.753 ± 0.511 | 107.667 ± 44.658 | 13.333 ± 4.163 | 74.167 ± 17.279 |
Factors | Factor A Level (mg/kg) | Factor B Level (mg/kg) | N | Parameters | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Group | Total Protein (TP) Concentration (g/dL) | p | Creatinine (Crea) Concentration (mg/dL) | p | Urea (BUN) Concentration (mg/dL) | p | ||||
Main Effects (Mean ± SD) | ||||||||||
Fe-deficiency | 5 | D | 18 | 6.383 ± 0.215 | NS | 0.509 ± 0.053 a,b | p < 0.05 | 44.000 ± 9.266 | NS | |
Fe-control | 45 | C | 18 | 6.456 ± 0.273 | 0.537 ± 0.071 b | 40.750 ± 8.745 | ||||
Fe-oversupply | 180 | H | 18 | 6.382 ± 0.227 | 0.486 ± 0.037 a | 38.333 ± 7.104 | ||||
Cr-control dose | 1 | 1 | 18 | 6.361 ± 0.212 | NS | 0.523 ± 0.061 | NS | 43.588 ± 10.087 | NS | |
Cr-medium dose | 50 | 50 | 18 | 6.394 ± 0.277 | 0.509 ± 0.065 | 38.625 ± 7.429 | ||||
Cr-high dose | 500 | 500 | 18 | 6.467 ± 0.222 | 0.501 ± 0.050 | 40.412 ± 7.500 | ||||
Factor Combinations | Interaction Effects (Mean ± SD) | |||||||||
Fe-deficiency | 5 | 1 | D1 | 6 | 6.383 ± 0.183 | NS | 0.532 ± 0.061 | NS | 40.600 ± 12.818 | NS |
5 | 50 | D50 | 6 | 6.333 ± 0.250 | 0.513 ± 0.062 | 44.400 ± 7.829 | ||||
5 | 500 | D500 | 6 | 6.433 ± 0.234 | 0.482 ± 0.021 | 46.500 ± 7.609 | ||||
Fe-control | 45 | 1 | C1 | 6 | 6.317 ± 0.232 | 0.528 ± 0.078 | 45.500 ± 10.895 | |||
45 | 50 | C50 | 6 | 6.500 ± 0.358 | 0.545 ± 0.075 | 37.600 ± 7.127 | ||||
45 | 500 | C500 | 6 | 6.550 ± 0.187 | 0.537 ± 0.071 | 38.200 ± 5.762 | ||||
Fe-oversupply | 180 | 1 | H1 | 6 | 6.383 ± 0.248 | 0.510 ± 0.049 | 44.167 ± 7.859 | |||
180 | 50 | H50 | 6 | 6.340 ± 0.207 | 0.462 ± 0.013 | 34.667 ± 4.761 | ||||
180 | 500 | H500 | 6 | 6.417 ± 0.256 | 0.483 ± 0.023 | 36.167 ± 4.956 |
Factors | Factor A Level (mg/kg) | Factor B Level (mg/kg) | N | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | Triglycerides (TG) Concentration (mg/dL) | p | Total Cholesterol Concentration (mg/dL) | p | LDL Cholesterol (mg/dL) | p | HDL Cholesterol (mg/dL) | p | ||||
Main Effects (Mean ± SD) | ||||||||||||
Fe-deficiency | 5 | D | 18 | 38.375 ± 11.372 | NS | 84.278 ± 11.876 | NS | 44.193 ± 7.771 | NS | 29.205 ± 1.893 b | p < 0.05 | |
Fe-control | 45 | C | 18 | 46.118 ± 10.879 | 81.333 ± 12.049 | 44.858 ± 10.884 | 27.634 ± 2.272 a | |||||
Fe-oversupply | 180 | H | 18 | 43.000 ± 9.507 | 90.833 ± 20.709 | 48.318 ± 11.981 | 29.219 ± 2.683 b | |||||
Cr-control dose | 1 | 1 | 18 | 44.647 ± 11.113 | NS | 87.889 ± 27.357 | NS | 44.737 ± 12.250 | NS | 29.428 ± 2.830 | NS | |
Cr-medium dose | 50 | 50 | 18 | 41.412 ± 11.125 | 80.278 ± 14.776 | 43.155 ± 9.330 | 27.878 ± 2.126 | |||||
Cr-high dose | 500 | 500 | 18 | 41.625 ± 10.682 | 88.278 ± 14.228 | 48.491 ± 8.589 | 28.515 ± 1.950 | |||||
Factors Combinations | Interaction Effects (Mean ± SD) | |||||||||||
Fe-deficiency | 5 | 1 | D1 | 6 | 38.000 ± 7.714 | NS | 90.000 ± 10.526 | NS | 43.613 ± 2.867 | NS | 30.586 ± 1.151 a,b | p < 0.05 |
5 | 50 | D50 | 6 | 36.500 ± 8.939 | 77.000 ± 13.221 | 42.223 ± 10.164 | 28.370 ± 2.210 a,b | |||||
5 | 500 | D500 | 6 | 41.000 ± 17.649 | 85.833 ± 9.390 | 46.550 ± 7.831 | 28.750 ± 1.712 a,b | |||||
Fe-control | 45 | 1 | C1 | 6 | 47.167 ± 13.029 | 80.000 ± 14.873 | 43.348 ± 13.019 | 27.218 ± 3.007 a,b | ||||
45 | 50 | C50 | 6 | 48.800 ± 13.971 | 73.167 ± 3.251 | 36.756 ± 3.855 | 26.488 ± 1.410 a | |||||
45 | 500 | C500 | 6 | 42.833 ± 5.601 | 90.833 ± 8.448 | 53.120 ± 6.883 | 29.197 ± 1.345 a,b | |||||
Fe-oversupply | 180 | 1 | H1 | 6 | 47.667 ± 10.727 | 93.667 ± 23.922 | 47.945 ± 18.446 | 30.920 ± 2.368 b | ||||
180 | 50 | H50 | 6 | 40.167 ± 8.635 | 90.667 ± 18.811 | 52.553 ± 5.148 | 29.348 ± 2.031 a,b | |||||
180 | 500 | H500 | 6 | 40.800 ± 8.585 | 88.167 ± 22.666 | 44.458 ± 10.752 | 27.416 ± 2.644 a,b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staniek, H.Z.; Król, E.; Wójciak, R.W. The Interactive Effect of High Doses of Chromium(III) and Different Iron(III) Levels on the Carbohydrate Status, Lipid Profile, and Selected Biochemical Parameters in Female Wistar Rats. Nutrients 2020, 12, 3070. https://doi.org/10.3390/nu12103070
Staniek HZ, Król E, Wójciak RW. The Interactive Effect of High Doses of Chromium(III) and Different Iron(III) Levels on the Carbohydrate Status, Lipid Profile, and Selected Biochemical Parameters in Female Wistar Rats. Nutrients. 2020; 12(10):3070. https://doi.org/10.3390/nu12103070
Chicago/Turabian StyleStaniek, Halina Zofia, Ewelina Król, and Rafał Wojciech Wójciak. 2020. "The Interactive Effect of High Doses of Chromium(III) and Different Iron(III) Levels on the Carbohydrate Status, Lipid Profile, and Selected Biochemical Parameters in Female Wistar Rats" Nutrients 12, no. 10: 3070. https://doi.org/10.3390/nu12103070
APA StyleStaniek, H. Z., Król, E., & Wójciak, R. W. (2020). The Interactive Effect of High Doses of Chromium(III) and Different Iron(III) Levels on the Carbohydrate Status, Lipid Profile, and Selected Biochemical Parameters in Female Wistar Rats. Nutrients, 12(10), 3070. https://doi.org/10.3390/nu12103070