Longitudinal Changes in Resting Metabolic Rates with Aging Are Accelerated by Diseases
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Chronic Diseases
2.3. Resting Metabolic Rate
2.4. Body Composition
2.5. Statistical Analyses
3. Results
3.1. Cross-Sectional Analyses
3.2. Longitudinal Analyses
4. Discussion
4.1. Principal Findings
4.2. Cross-Sectional Associations Between Disease Status and RMR
4.3. Disease Status and Longitudinal Changes in RMR
4.4. Limitations and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ravussin, E.; Burnand, B.; Schutz, Y.; Jéquier, E. Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese, and control subjects. Am. J. Clin. Nutr. 1982, 35, 566–573. [Google Scholar] [CrossRef] [PubMed]
- McMurray, R.G.; Soares, J.; Caspersen, C.J.; McCurdy, T. Examining variations of resting metabolic rate of adults. Med. Sci. Sports Exerc. 2014, 46, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.-L.; Schrack, J.A.; Shardell, M.D.; Levine, M.; Moore, A.Z.; An, Y.; Elango, P.; Karikkineth, A.; Tanaka, T.; De Cabo, R.; et al. A roadmap to build a phenotypic metric of ageing: Insights from the Baltimore Longitudinal Study of Aging. J. Intern. Med. 2020, 287, 373–394. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.J. Mechanisms of changes in basal metabolism during ageing. Eur. J. Clin. Nutr. 2000, 54, S77–S91. [Google Scholar] [CrossRef] [PubMed]
- Tzankoff, S.P.; Norris, A.H. Effect of muscle mass decrease on age-related BMR changes. J. Appl. Physiol. 1977, 43, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Hrmann, P.M.L.; Herbert, B.M.; User-Berthold, M.N. Effects of fat mass and body fat distribution on resting metabolic rate in the elderly. Metabolism 2001, 50, 972–975. [Google Scholar] [CrossRef]
- Schrack, J.A.; Knuth, N.D.; Simonsick, E.M.; Ferrucci, L. “IDEAL” aging is associated with lower resting metabolic rate: The Baltimore Longitudinal Study of Aging. J. Am. Geriatr. Soc. 2014, 62, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, E.; An, Y.; Schrack, J.A.; Gonzalez-Freire, M.; Zoli, M.; Simonsick, E.M.; Guralnik, J.M.; Boyd, C.M.; Studenski, S.A.; Ferrucci, L. Energy metabolism and the burden of multimorbidity in older adults: Results from the Baltimore Longitudinal Study of Aging. J. Gerontol. Ser. A: Boil. Sci. Med Sci. 2014, 70, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Nagel, A.; Jungert, A.; Spinneker, A.; Neuhäuser-Berthold, M. The impact of multimorbidity on resting metabolic rate in community-dwelling women over a ten-year period: A cross-sectional and longitudinal study. J. Nutr. Heal. Aging 2016, 21, 781–786. [Google Scholar] [CrossRef]
- Ruggiero, C.; Metter, E.J.; Melenovsky, V.; Cherubini, A.; Najjar, S.S.; Ble, A.; Senin, U.; Longo, D.L.; Ferrucci, L. High basal metabolic rate is a risk factor for mortality: The Baltimore Longitudinal Study of Aging. J. Gerontol. Ser. A Boil. Sci. Med Sci. 2008, 63, 698–706. [Google Scholar] [CrossRef]
- Jumpertz, R.; Hanson, R.; Sievers, M.L.; Bennett, P.H.; Nelson, R.G.; Krakoff, J. Higher energy expenditure in humans predicts natural mortality. J. Clin. Endocrinol. Metab. 2011, 96, E972–E976. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Schrack, J.A.; Knuth, N.D.; Simonsick, E.M. Aging and the energetic cost of life. J. Am. Geriatr. Soc. 2012, 60, 1768–1769. [Google Scholar] [CrossRef] [PubMed]
- Stone, B.J.L.; Norris, B.A.H. Activities and attitudes of participants in the Baltimore Longitudinal Study. J. Gerontol. 1966, 21, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Brach, J.S.; Simonsick, E.M.; Kritchevsky, S.; Yaffe, K.; Newman, A.B. The association between physical function and lifestyle activity and exercise in the health, aging and body composition study. J. Am. Geriatr. Soc. 2004, 52, 502–509. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.M.; Fried, L.; Simonsick, E.; Ling, S.; Guralnik, J.M. Asymptomatic peripheral arterial disease is independently associated with impaired lower extremity functioning: The women’s health and aging study. Circulation 2000, 101, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Radloff, L.S. The CES-D scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Stevens, L.A.; Coresh, J.; Greene, T.; Levey, A.S. Assessing kidney function-measured and estimated glomerular filtration rate. N. Engl. J. Med. 2006, 354, 2473–2483. [Google Scholar] [CrossRef]
- Rumpler, W.V.; Seale, J.L.; Conway, J.M.; Moe, P.W. Repeatability of 24-h energy expenditure measurements in humans by indirect calorimetry. Am. J. Clin. Nutr. 1990, 51, 147–152. [Google Scholar] [CrossRef]
- Schrack, J.A.; Simonsick, E.M.; Ferrucci, L. Comparison of the Cosmed K4b2 portable metabolic system in measuring steady-state walking energy expenditure. PLoS ONE 2010, 5, e9292. [Google Scholar] [CrossRef]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Exercise Physiology: Energy, Nutrition, and Human Performance; LWW; Lea & Febiger: Philadelphia, PA, USA, 1991. [Google Scholar]
- Compher, C.; Frankenfield, D.; Keim, N.; Roth-Yousey, L. Best practice methods to apply to measurement of resting metabolic rate in adults: A systematic review. J. Am. Diet. Assoc. 2006, 106, 881–903. [Google Scholar] [CrossRef] [PubMed]
- Van Loan, M.D.; Mayclin, P.L. Body composition assessment: Dual-energy X-ray absorptiometry (DEXA) compared to reference methods. Eur. J. Clin. Nutr. 1992, 46, 125–130. [Google Scholar] [PubMed]
- Pritchard, J.E.; Nowson, C.A.; Strauss, B.J.; Carlson, J.S.; Kaymakci, B.; Wark, J.D. Evaluation of dual energy X-ray absorptiometry as a method of measurement of body fat. Eur. J. Clin. Nutr. 1993, 47, 216–228. [Google Scholar]
- Oberdier, M.T.; Morrell, C.H.; Lakatta, E.G.; Ferrucci, L.; Al Ghatrif, M. Subclinical longitudinal change in ankle-brachial index with aging in a community-dwelling population is associated with central arterial stiffening. J. Am. Hear. Assoc. 2019, 8, e011650. [Google Scholar] [CrossRef] [PubMed]
- Elia, M. Organ and tissue contribution to metabolic rate. Energy Metab. Tissue Determ. Cell. Corollaries 1992, 61–80. [Google Scholar]
- Armellini, F.; Zamboni, M.; Mino, A.; Bissoli, L.; Micciolo, R.; Bosello, O. Postabsorptive resting metabolic rate and thermic effect of food in relation to body composition and adipose tissue distribution. Metabolism 2000, 49, 6–10. [Google Scholar] [CrossRef]
- Zurlo, F.; Larson, K.; Bogardus, C.; Ravussin, E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J. Clin. Investig. 1990, 86, 1423–1427. [Google Scholar] [CrossRef]
- Roubenoff, R. Inflammatory and hormonal mediators of cachexia. J. Nutr. 1997, 127, 1014S–1016S. [Google Scholar] [CrossRef]
- Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11, 85–95. [Google Scholar] [CrossRef]
- Coussens, L. Session 2: Inflammation and cancer. Toxicol. Pathol. 2004, 32, 732. [Google Scholar] [CrossRef]
- Bogardus, C.; Taskinen, M.-R.; Zawadzki, J.; Lillioja, S.; Mott, D.; Howard, B.V. Increased resting metabolic rates in obese subjects with non-insulin-dependent diabetes mellitus and the effect of sulfonylurea therapy. Diabetes 1986, 35, 1–5. [Google Scholar] [CrossRef]
- Nair, K.; Webster, J.; Garrow, J.S. Effect of impaired glucose tolerance and type II diabetes on resting metabolic rate and thermic response to a glucose meal in obese women. Metabolism 1986, 35, 640–644. [Google Scholar] [CrossRef]
- Rigalleau, V.; Lasseur, C.; Pécheur, S.; Chauveau, P.; Combe, C.; Perlemoine, C.; Baillet, L.; Gin, H. Resting energy expenditure in uremic, diabetic, and uremic diabetic subjects. J. Diabetes Complicat. 2004, 18, 237–241. [Google Scholar] [CrossRef]
- Dandona, P.; Aljada, A.; Chaudhuri, A.; Mohanty, P.; Garg, R. Metabolic syndrome: A comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 2005, 111, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- Eizirik, D.L.; Colli, M.L.; Ortis, F. The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat. Rev. Endocrinol. 2009, 5, 219–226. [Google Scholar] [CrossRef]
- De Lange, T. Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev. 2005, 19, 2100–2110. [Google Scholar] [CrossRef]
- Abbate, L.M.; Stevens, J.; Schwartz, T.A.; Renner, J.B.; Helmick, C.G.; Jordan, J.M. Anthropometric measures, body composition, body fat distribution, and knee osteoarthritis in women *. Obesity 2006, 14, 1274–1281. [Google Scholar] [CrossRef]
- Rodier, F.; Campisi, J. Four faces of cellular senescence. J. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef]
- Childs, B.G.; Baker, D.J.; Wijshake, T.; Conover, C.A.; Campisi, J.; Van Deursen, J.M. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016, 354, 472–477. [Google Scholar] [CrossRef]
- Bar-Shai, A.; Sagiv, A.; Alon, R.; Krizhanovski, V. The role of Clara cell senescence in the pathogenesis of COPD. Eur. Respir. J. 2014, 44, 3245. [Google Scholar]
- Le Maitre, C.L.; Freemont, A.J.; Hoyland, J.A. Accelerated cellular senescence in degenerate intervertebral discs: A possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res. Ther. 2007, 9, R45. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.; Crowe, E.P.; Bitto, A.; Moh, M.; Katsetos, C.D.; Garcia, F.U.; Johnson, F.B.; Trojanowski, J.Q.; Sell, C.; Torres, C. Astrocyte senescence as a component of Alzheimer & rsquo;s disease. PLoS ONE 2012, 7, e45069. [Google Scholar] [CrossRef]
- Du, J.; Klein, J.D.; Hassounah, F.; Zhang, J.; Zhang, C.; Wang, X. Aging increases CCN1 expression leading to muscle senescence. Am. J. Physiol. Physiol. 2013, 306, C28–C36. [Google Scholar] [CrossRef] [PubMed]
- Zampino, M.; Ferrucci, L.; Semba, R.D. Biomarkers in the path from cellular senescence to frailty. Exp. Gerontol. 2019, 129, 110750. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Ponikowski, P.; Varney, S.; Chua, T.P.; Clark, A.L.; Webb-Peploe, K.M.; Harrington, D.; Kox, W.J.; Poole-Wilson, P.A.; Coats, A.J.S. Wasting as independent risk factor for mortality in chronic heart failure. Lancet 1997, 349, 1050–1053. [Google Scholar] [CrossRef]
- Von Haehling, S.; Doehner, W.; Anker, S.D. Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc. Res. 2007, 73, 298–309. [Google Scholar] [CrossRef]
- Berry, C. Catabolism in chronic heart failure. Eur. Hear. J. 2000, 21, 521–532. [Google Scholar] [CrossRef]
- Gea, J.; Agusti, A.; Roca, J. Pathophysiology of muscle dysfunction in COPD. J. Appl. Physiol. 2013, 114, 1222–1234. [Google Scholar] [CrossRef]
- Tisdale, M.J. Mechanisms of cancer cachexia. Physiol. Rev. 2009, 89, 381–410. [Google Scholar] [CrossRef]
- Park, S.W.; Goodpaster, B.H.; Strotmeyer, E.S.; De Rekeneire, N.; Harris, T.B.; Schwartz, A.V.; Tylavsky, F.A.; Newman, A.B. Decreased muscle strength and quality in older adults with type 2 diabetes: The health, aging, and body composition study. Diabetes 2006, 55, 1813–1818. [Google Scholar] [CrossRef]
- Kannus, R.; Jòzsa, L.; Renström, R.; Järvtoen, M.; Kvist, M.; Lento, M.; Oja, P.; Vuorl, I. The effects of training, immobilization and remobilization on musculoskeletal tissue: 1. Training and immobilization. Scand. J. Med. Sci. Sports 1992, 2, 100–118. [Google Scholar] [CrossRef]
- Adelnia, F.; Urbanek, J.; Osawa, Y.; Shardell, M.; Bs, N.A.B.; Fishbein, K.W.; Spencer, R.G.; Simonsick, E.M.; Schrack, J.A.; Ferrucci, L. Moderate-to-vigorous physical activity is associated with higher muscle oxidative capacity in older adults. J. Am. Geriatr. Soc. 2019, 67, 1695–1699. [Google Scholar] [CrossRef] [PubMed]
- Zampino, M.; Semba, R.D.; Adelnia, F.; Spencer, R.G.; Fishbein, K.W.; Schrack, J.A.; Simonsick, E.M.; Ferrucci, L. Greater skeletal muscle oxidative capacity is associated with higher resting metabolic rate: Results from the Baltimore Longitudinal Study of Aging. J. Gerontol. Ser. A: Boil. Sci. Med. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Goldring, M.B.; Otero, M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 2011, 23, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Alley, D.E.; Metter, E.J.; Griswold, M.E.; Harris, T.B.; Simonsick, E.M.; Longo, D.L.; Ferrucci, L. Changes in weight at the end of life: Characterizing weight loss by time to death in a cohort study of older men. Am. J. Epidemiology 2010, 172, 558–565. [Google Scholar] [CrossRef]
- Delgado, J.; Bowman, K.; Ble, A.; Masoli, J.A.H.; Han, Y.; Henley, W.; Welsh, S.; Kuchel, G.A.; Ferrucci, L.; Melzer, D. Blood pressure trajectories in the 20 years before death. JAMA Intern. Med. 2018, 178, 93–99. [Google Scholar] [CrossRef]
- Evans, W.J.; Hellerstein, M.; Orwoll, E.; Cummings, S.; Cawthon, P.M. D3-Creatine dilution and the importance of accuracy in the assessment of skeletal muscle mass. J. Cachex- Sarcopenia Muscle 2019, 10, 14–21. [Google Scholar] [CrossRef]



| Number of Participants | 997 (489 Males + 508 Females) |
|---|---|
| Age (years) | 65.9 ± 12.9 |
| Race, % White | 67.6 |
| % Black | 26.2 |
| % Other | 6.2 |
| Education, % Completed College | 84.2 |
| Current Smoking, % | 2.0 |
| Resting Metabolic Rate (kCal/day) | 1607 ± 429.6 in males, 1268.9 ± 331.9 in females |
| Physical Activity (min/week) | 93.9 ± 137.7 |
| Height (cm) | 168.9 ± 9.3 |
| Body Mass Index (kg/m2) | 27.0 ± 4.6 |
| Fat Body Mass (kg) | 27.0 ± 10.4 |
| Lean Body Mass (kg) | 47.5 ± 10.0 |
| Disease | Prevalence at Baseline (%) | β Value | p Value |
|---|---|---|---|
| Estimate (SD) | |||
| Chronic Heart Failure | 1 | 175.1 (110.8) | 0.11 |
| Sex | 26.2 (49.6) | 0.6 | |
| Age | −4.9 (1.0) | <0.001 | |
| Lean Mass | 22.2 (2.5) | <0.001 | |
| Fat Mass | 5.2 (1.3) | <0.001 | |
| Myocardial Infarction | 2.6 | 55.9 (68.1) | 0.41 |
| Sex | 47.4 (44.3) | 0.28 | |
| Age | −5.11 (0.9) | <0.001 | |
| Lean Mass | 20.2 (2.2) | <0.001 | |
| Fat Mass | 5.9 (1.1) | <0.001 | |
| Cerebrovascular Accident | 5.1 | −32.1 (50.7) | 0.52 |
| Sex | 44.7 (46.3) | 0.335 | |
| Age | −5.4 (1.0) | <0.001 | |
| Lean Mass | 20.6 (2.3) | <0.001 | |
| Fat Mass | 6.0 (1.2) | <0.001 | |
| Hypertension | 40.2 | 23.3 (2.9) | 0.9 |
| Sex | 48.2 (44.5) | 0.28 | |
| Age | −5.1 (0.9) | <0.001 | |
| Lean Mass | 20.2 (2.2) | <0.001 | |
| Fat Mass | 5.9 (1.2) | <0.001 | |
| Type 2 Diabetes Mellitus | 10.7 | 76.7 (36.0) | 0.04 |
| Sex | 32.7 (44.7) | 0.46 | |
| Age | −5.4 (0.9) | <0.001 | |
| Lean Mass | 20.7 (2.2) | <0.001 | |
| Fat Mass | 5.5 (1.2) | <0.001 | |
| Anemia | 12.1 | −12.8 (33.6) | 0.7 |
| Sex | 49.2 (44.3) | 0.27 | |
| Age | −5.0 (0.9) | <0.001 | |
| Lean Mass | 20.1 (2.2) | <0.001 | |
| Fat Mass | 6.0 (1.2) | <0.001 | |
| Peripheral Artery Disease | 1.8 | −31.9 (82.6) | 0.7 |
| Sex | 46.8 (44.9) | 0.3 | |
| Age | −5.0 (0.9) | <0.001 | |
| Lean Mass | 20.3 (2.3) | <0.001 | |
| Fat Mass | 5.9 (1.2) | <0.001 | |
| Cognitive Impairment | 0.6 | −47.2 (138.2) | 0.73 |
| Sex | 48.3 (46.4) | 0.3 | |
| Age | −5.3 (1.0) | <0.001 | |
| Lean Mass | 20.5 (2.3) | <0.001 | |
| Fat Mass | 6.0 (1.2) | <0.001 | |
| Depression | 4.4 | 26.2 (51.6) | 0.61 |
| Sex | 48.5 (44.3) | 0.27 | |
| Age | −5.0 (0.9) | <0.001 | |
| Lean Mass | 20.2 (2.2) | <0.001 | |
| Fat Mass | 6.0 (1.2) | <0.001 | |
| Parkinson’s Disease | 0.5 | 23.9 (150.6) | 0.87 |
| Sex | 48.2 (44.4) | 0.28 | |
| Age | −5.1 (0.9) | <0.001 | |
| Lean Mass | 20.2 (2.2) | <0.001 | |
| Fat Mass | 6.0 (1.2) | <0.001 | |
| Chronic Kidney Disease | 24.4 | 31.8 (28.6) | 0.71 |
| Sex | 58.2 (45.1) | 0.562 | |
| Age | −5.4 (1.0) | <0.001 | |
| Lean Mass | 20.2 (2.2) | <0.001 | |
| Fat mass | 6.0 (1.1) | <0.001 | |
| Cataract | 22.9 | −9.5 (27.6) | 0.73 |
| Sex | 49.5 (44.3) | 0.26 | |
| Age | −5.0 (1.0) | <0.001 | |
| Lean mass | 20.1 (2.2) | <0.001 | |
| Fat mass | 6.0 (1.2) | <0.001 | |
| Chronic obstructive pulmonary disease | 13.9 | 44.9 (31.4) | 0.15 |
| Sex | |||
| Age | 50.7 (44.3) | 0.25 | |
| Lean mass | −5.1 (0.9) | <0.001 | |
| Fat mass | 20.0 (2.2) | <0.001 | |
| 5.9 (1.2) | <0.001 | ||
| Cancer | 25.9 | 58.5 (25.7) | 0.02 |
| Sex | 44.4 (44.2) | 0.32 | |
| Age | −5.6 (0.9) | <0.001 | |
| Lean mass | 20.2 (2.2) | <0.001 | |
| Fat mass | 6.1 (1.2) | <0.001 | |
| Osteoarthritis | 22.1 | 36.7 (26.6) | 0.17 |
| Sex | 52.4 (44.3) | 0.24 | |
| Age | −5.3 (0.9) | <0.001 | |
| Lean mass | 20.0 (2.2) | <0.001 | |
| Fat mass | 5.8 (1.2) | <0.001 |
| Disease | β Value (SE) | p Value |
|---|---|---|
| Chronic Heart Failure | −8.7 (3.2) | 0.007 |
| Myocardial Infarction | −0.4 (2.1) | 0.85 |
| Cerebrovascular Accident | −0.8 (1.9) | 0.68 |
| Hypertension | −0.5 (1.1) | 0.67 |
| Diabetes Mellitus | −3.3 (0.9) | <0.001 |
| Anemia | 0.9 (1.0) | 0.35 |
| Peripheral Artery Disease | 0.8 (2.1) | 0.72 |
| Cognitive Impairment | −2.1 (2.2) | 0.35 |
| Depression | −1.8 (1.4) | 0.19 |
| Parkinson’s Disease | −0.9 (4.0) | 0.82 |
| Chronic Kidney Disease | −2.2 (1.0) | 0.03 |
| Cataract | 0.1 (0.9) | 0.92 |
| Chronic Obstructive Pulmonary Disease | −2.3 (2.1) | 0.27 |
| Cancer | −1.1 (1.1) | 0.33 |
| Osteoarthritis | 5.4 (2.7) | 0.05 |
| Disease | β Value (SE) | p Value |
|---|---|---|
| Chronic Heart Failure | −5.2 (3.7) | 0.15 |
| Myocardial Infarction | −2.8 (2.3) | 0.22 |
| Cerebrovascular Accident | 2.6 (1.7) | 0.13 |
| Hypertension | −0.3 (0.8) | 0.75 |
| Diabetes Mellitus | 2.8 (6.5) | 0.67 |
| Anemia | 0.5 (1.1) | 0.69 |
| Peripheral Artery Disease | −1.2 (2.8) | 0.67 |
| Cognitive Impairment | 0.8 (4.6) | 0.85 |
| Depression | −1.4 (1.7) | 0.41 |
| Parkinson’s Disease | −3.2 (5.1) | 0.52 |
| Chronic Kidney Disease | −1.7 (1.1) | 0.10 |
| Cataract | 0.9 (1.0) | 0.37 |
| Chronic Obstructive Pulmonary Disease | −2.1 (1.1) | 0.05 |
| Cancer | −2.4 (0.9) | 0.007 |
| Osteoarthritis | −1.4 (0.9) | 0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zampino, M.; AlGhatrif, M.; Kuo, P.-L.; Simonsick, E.M.; Ferrucci, L. Longitudinal Changes in Resting Metabolic Rates with Aging Are Accelerated by Diseases. Nutrients 2020, 12, 3061. https://doi.org/10.3390/nu12103061
Zampino M, AlGhatrif M, Kuo P-L, Simonsick EM, Ferrucci L. Longitudinal Changes in Resting Metabolic Rates with Aging Are Accelerated by Diseases. Nutrients. 2020; 12(10):3061. https://doi.org/10.3390/nu12103061
Chicago/Turabian StyleZampino, Marta, Majd AlGhatrif, Pei-Lun Kuo, Eleanor Marie Simonsick, and Luigi Ferrucci. 2020. "Longitudinal Changes in Resting Metabolic Rates with Aging Are Accelerated by Diseases" Nutrients 12, no. 10: 3061. https://doi.org/10.3390/nu12103061
APA StyleZampino, M., AlGhatrif, M., Kuo, P.-L., Simonsick, E. M., & Ferrucci, L. (2020). Longitudinal Changes in Resting Metabolic Rates with Aging Are Accelerated by Diseases. Nutrients, 12(10), 3061. https://doi.org/10.3390/nu12103061

