Association of Serum Fatty Acids at Admission with the Age of Onset of Intracerebral Hemorrhage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Serum Lipids and Fatty Acids
2.2. Evaluation
2.3. Ethical Approval
2.4. Consent to Participate
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Talayero, B.G.; Sacks, F.M. The role of triglycerides in atherosclerosis. Curr. Cardiol. Rep. 2011, 13, 544–552. [Google Scholar] [CrossRef] [Green Version]
- Von Lossonczy, T.O.; Ruiter, A.; Bronsgeest-Schoute, H.C.; van Gent, C.M.; Hermus, R.J. The effect of a fish diet on serum lipids in healthy human subjects. Am. J. Clin. Nutr. 1978, 31, 1340–1346. [Google Scholar] [CrossRef]
- Benfante, R.; Reed, D. Is elevated serum cholesterol level a risk factor for coronary heart disease in the elderly? JAMA 1990, 263, 393–396. [Google Scholar] [CrossRef]
- Sturgeon, J.D.; Folsom, A.R.; Longstreth, W.T., Jr.; Shahar, E.; Rosamond, W.D.; Cushman, M. Risk factors for intracerebral hemorrhage in a pooled prospective study. Stroke 2007, 38, 2718–2725. [Google Scholar] [CrossRef]
- Iso, H.; Rexrode, K.M.; Stampfer, M.J.; Manson, J.E.; Colditz, G.A.; Speizer, F.E.; Hennekens, C.H.; Willett, W.C. Intake of fish and omega-3 fatty acids and risk of stroke in women. JAMA 2001, 285, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Iso, H.; Kobayashi, M.; Ishihara, J.; Sasaki, S.; Okada, K.; Kita, Y.; Kokubo, Y.; Tsugane, S.; Group, J.S. Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese: The Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation 2006, 113, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Yoshioka, K.; Tanno, Y.; Kasakura, S. Association of serum fatty acids at admission with the age of onset of acute ischemic stroke. Nutrients 2020, 12, 2411. [Google Scholar] [CrossRef]
- Yamagishi, K.; Iso, H.; Kokubo, Y.; Saito, I.; Yatsuya, H.; Ishihara, J.; Inoue, M.; Tsugane, S.; Group, J.S. Dietary intake of saturated fatty acids and incident stroke and coronary heart disease in Japanese communities: The JPHC Study. Eur. Heart J. 2013, 34, 1225–1232. [Google Scholar] [CrossRef] [Green Version]
- Muto, M.; Ezaki, O. High dietary saturated fat is associated with a low risk of intracerebral hemorrhage and ischemic stroke in Japanese but not in non-Japanese: A review and meta-analysis of prospective cohort studies. J. Atheroscler. Thromb. 2018, 25, 375–392. [Google Scholar] [CrossRef] [Green Version]
- Larsson, S.C.; Virtamo, J.; Wolk, A. Dietary fats and dietary cholesterol and risk of stroke in women. Atherosclerosis 2012, 221, 282–286. [Google Scholar] [CrossRef]
- Takita, T.; Nakamura, K.; Kimira, M.; Yamada, N.; Kobayashi, Y.; Innami, S. Serum fatty acid compositions and lipid concentrations and their correlations. J. Clin. Biochem. Nutr. 1996, 20, 149–159. [Google Scholar] [CrossRef]
- Schwertner, H.; Mosser, E. Comparison of lipid fatty acids on a concentration basis vs. weight percentage basis in patients with and without coronary artery disease or diabetes. Clin. Chem. 1993, 39, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Yoshioka, K. Features of serum fatty acids in acute ischaemic stroke patients aged 50 years or older. BMC Cardiovasc. Disord. 2020, 20, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Abdelmagid, S.A.; Clarke, S.E.; Nielsen, D.E.; Badawi, A.; El-Sohemy, A.; Mutch, D.M.; Ma, D.W. Comprehensive profiling of plasma fatty acid concentrations in young healthy Canadian adults. PLoS ONE 2015, 10, e0116195. [Google Scholar] [CrossRef] [Green Version]
- Dyerberg, J.; Bang, H.O. A hypothesis on the development of acute myocardial infarction in Greenlanders. J. Clin. Lab. Investig. Suppl. 1982, 161, 7–13. [Google Scholar] [CrossRef]
- Kromhout, D.; Bosschieter, E.B.; de Lezenne Coulander, C. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N. Engl. J. Med. 1985, 312, 1205–1209. [Google Scholar] [CrossRef]
- Tanaka, K.; Ishikawa, Y.; Yokoyama, M.; Origasa, H.; Matsuzaki, M.; Saito, Y.; Matsuzawa, Y.; Sasaki, J.; Oikawa, S.; Hishida, H.; et al. Reduction in the recurrence of stroke by eicosapentaenoic acid for hypercholesterolemic patients: Subanalysis of the JELIS trial. Stroke 2008, 39, 2052–2058. [Google Scholar] [CrossRef] [Green Version]
- Miyagawa, N.; Miura, K.; Okuda, N.; Kadowaki, T.; Takashima, N.; Nagasawa, S.Y.; Nakamura, Y.; Matsumura, Y.; Hozawa, A.; Fujiyoshi, A.; et al. Long-chain n-3 polyunsaturated fatty acids intake and cardiovascular disease mortality risk in Japanese: A 24-year follow-up of NIPPON DATA80. Atherosclerosis 2014, 232, 384–389. [Google Scholar] [CrossRef]
- Morise, A.; Sérougne, C.; Gripois, D.; Blouquit, M.-F.; Lutton, C.; Hermier, D. Effects of dietary alpha linolenic acid on cholesterol metabolism in male and female hamsters of the LPN strain. J. Nutr. Biochem. 2004, 15, 51–61. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef] [PubMed]
n = 141 | |
---|---|
Age (mean ± SD) (min, max) years | 67.4 ± 14.4 (min: 22, max: 95) |
Male sex (n, %) | 87 (61.7%) |
Height (mean ± SD) cm | 162.0 ± 8.8 |
Body Weight (MD, IQR) kg | 61 (54–70) |
BMI (MD, IQR) kg/m2 | 23.6 (21.0–25.7) |
Statin users (n, %) | 24 (17%) |
Glucose and lipids | |
Glucose (MD, IQR) mmol/L | 6.88 (5.90–8.55) |
Hemoglobin A1c (MD, IQR) % (NGSP) | 5.8 (5.5–6.3) |
Total cholesterol (MD, IQR) mmol/L | 5.25 (4.69–5.97) |
Low-density lipoprotein cholesterol (MD, IQR) mmol/L | 2.97 (2.29–3.57) |
High-density lipoprotein cholesterol (MD, IQR) mmol/L | 1.56 (1.23 2013 1.88) |
Triglycerides (MD, IQR) mmol/L | 1.18 (0.75–1.92) |
Saturated fatty acids | |
Lauric acid (LaA) (MD, IQR) μmol/L | 5.49 (2.99–10.73) |
Myristic acid (MyA) (MD, IQR) μmol/L | 80.59 (56.72–120.67) |
Palmitic acid (PA) (MD, IQR) μmol/L | 2574 (2169–3215) |
Stearic acid (StA) (MD, IQR) μmol/L | 677.6 (566.9–827.6) |
LaA (MD, IQR) wt% | 0 (0–0.1) |
MyA (MD, IQR) wt% | 0.6 (0.5–0.9) |
PA (MD, IQR) wt% | 23.4 (22.4–24.4) |
StA (MD, IQR) wt% | 6.8 (6.2–7.4) |
n-9 MUFA | |
Oleic acid (OlA) (MD, IQR) μmol/L | 2140 (1662–2724) |
OlA (MD, IQR) wt% | 21.3 (19.3–23.6) |
n-6 PUFAs | |
Linoleic acid (LiA) (MD, IQR) μmol/L | 2.696 (2.248–3.134) |
Dihomo-gamma-linolenic acid (DGLA) (MD, IQR) μmol/L | 101.7 (74.5–137.1) |
Arachidonic acid (AA) (MD, IQR) μmol/L | 527.8 (447.4–652.1) |
LiA (MD, IQR) wt% | 26.5 (24.0–28.5) |
DGLA (MD, IQR) wt% | 1 (0.8–1.3) |
AA (MD, IQR) wt% | 5.6 (4.9–6.5) |
n-3 PUFAs | |
Alpha-linolenic acid (AlA) (MD, IQR) μmol/L | 69.3 (52.8–105.7) |
Eicosapentaenoic acid (EPA) (MD, IQR) μmol/L | 176.8 (106.6–255.7) |
Docosahexaenoic acid (DHA) (MD, IQR) μmol/L | 361.2 (272.2–467.2) |
AlA (MD, IQR) wt% | 0.7 (0.6–0.9) |
EPA (MD, IQR) wt% | 2.0 (1.2–2.7) |
DHA (MD, IQR) wt% | 4.4 (3.3–5.3) |
EPA/AA ratio (MD, IQR) | 0.32 (0.19–0.47) |
n-6/n-3 ratio (MD, IQR) | 4.67 (3.60–6.54) |
rs | Age | LaA | MyA | PA | StA | OlA | LiA | DGLA | AA | AlA | EPA | DHA |
T-CHO | −0.17 | 0.13 | 0.26 | 0.45 | 0.46 | 0.32 | 0.51 | 0.41 | 0.46 | 0.34 | 0.20 | 0.38 |
TG | −0.31 | 0.44 | 0.62 | 0.70 | 0.55 | 0.71 | 0.48 | 0.59 | 0.49 | 0.57 | 0.09 | 0.27 |
rs | LaA% | MyA% | PA% | StA% | OlA% | LiA% | DGLA% | AA% | AlA% | EPA% | DHA% | |
T-CHO | −0.03 | −0.01 | −0.16 | 0.05 | −0.09 | 0.11 | 0.17 | −0.06 | 0.14 | 0.01 | 0.06 | |
TG | 0.19 | 0.39 | 0.15 | −0.15 | 0.54 | −0.34 | 0.19 | −0.29 | 0.35 | −0.19 | −0.22 |
rs | Age | LaA | MyA | PA | StA | OlA | LiA | DGLA | AA | AlA | EPA | DHA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | −0.38 | −0.27 | −0.36 | −0.40 | −0.36 | −0.38 | −0.48 | −0.27 | −0.20 | 0.27 | 0.11 | |
LaA | −0.38 | 0.81 | 0.59 | 0.64 | 0.55 | 0.48 | 0.56 | 0.34 | 0.49 | −0.06 | 0.02 | |
MyA | −0.27 | 0.81 | 0.81 | 0.75 | 0.74 | 0.58 | 0.65 | 0.49 | 0.69 | 0.13 | 0.28 | |
PA | −0.36 | 0.59 | 0.81 | 0.82 | 0.93 | 0.75 | 0.68 | 0.68 | 0.72 | 0.19 | 0.44 | |
StA | −0.40 | 0.64 | 0.75 | 0.82 | 0.78 | 0.77 | 0.67 | 0.63 | 0.67 | 0.19 | 0.40 | |
OlA | −0.36 | 0.55 | 0.74 | 0.93 | 0.78 | 0.74 | 0.66 | 0.61 | 0.72 | −0.05 | 0.33 | |
LiA | −0.38 | 0.48 | 0.58 | 0.75 | 0.77 | 0.74 | 0.55 | 0.50 | 0.76 | −0.03 | 0.26 | |
DGLA | −0.48 | 0.56 | 0.65 | 0.68 | 0.67 | 0.66 | 0.55 | 0.50 | 0.41 | −0.20 | 0.02 | |
AA | −0.27 | 0.34 | 0.49 | 0.68 | 0.63 | 0.61 | 0.50 | 0.50 | 0.36 | 0.19 | 0.38 | |
AlA | −0.20 | 0.49 | 0.69 | 0.72 | 0.67 | 0.72 | 0.76 | 0.41 | 0.36 | 0.23 | 0.41 | |
EPA | 0.27 | −0.06 | 0.13 | 0.19 | 0.19 | −0.05 | −0.03 | −0.20 | 0.19 | 0.23 | 0.78 | |
DHA | 0.11 | 0.02 | 0.28 | 0.44 | 0.40 | 0.33 | 0.26 | 0.02 | 0.38 | 0.41 | 0.78 | |
Correlation Coefficients between the Age at Onset of ICH and FA Percentages | ||||||||||||
rs | Age | LaA% | MyA% | PA% | StA% | OlA% | LiA% | DGLA% | AA% | AlA% | EPA% | DHA% |
Age | −0.25 | −0.14 | −0.04 | −0.08 | −0.25 | 0.09 | −0.27 | 0.10 | −0.02 | 0.42 | 0.40 | |
LaA% | −0.25 | 0.65 | 0.12 | 0.34 | 0.13 | −0.11 | 0.16 | −0.17 | 0.13 | −0.15 | −0.30 | |
MyA% | −0.14 | 0.65 | 0.27 | 0.22 | 0.22 | −0.34 | 0.25 | −0.22 | −0.29 | −0.10 | −0.23 | |
PA% | −0.04 | 0.12 | 0.27 | −0.23 | 0.23 | −0.60 | 0.06 | 0.01 | −0.27 | 0.01 | −0.01 | |
StA% | −0.08 | 0.34 | 0.22 | −0.23 | −0.31 | 0.08 | 0.29 | 0.06 | −0.10 | 0.04 | 0.00 | |
OlA% | −0.25 | 0.13 | 0.22 | 0.23 | −0.31 | −0.37 | 0.07 | −0.30 | 0.18 | −0.48 | −0.46 | |
LiA% | 0.09 | −0.11 | −0.34 | −0.60 | 0.08 | −0.37 | 0.00 | −0.10 | 0.15 | −0.26 | −0.24 | |
DGLA% | −0.27 | 0.16 | 0.25 | 0.06 | 0.29 | 0.07 | 0.00 | 0.12 | −0.16 | −0.42 | −0.39 | |
AA% | 0.10 | −0.17 | −0.22 | 0.01 | 0.06 | −0.30 | −0.10 | −0.12 | −0.52 | 0.15 | 0.18 | |
AlA% | −0.02 | 0.13 | −0.29 | −0.27 | −0.10 | 0.18 | 0.15 | −0.16 | −0.52 | −0.01 | −0.04 | |
EPA% | 0.42 | −0.15 | −0.10 | 0.01 | 0.04 | −0.48 | −0.26 | −0.42 | 0.15 | −0.01 | 0.83 | |
DHA% | 0.40 | −0.30 | −0.23 | −0.01 | 0.00 | −0.46 | −0.24 | −0.39 | 0.18 | −0.04 | 0.83 | |
Correlation coefficients between the four significant variables | ||||||||||||
rs | DGLA | EPA | DGLA% | EPA% | ||||||||
DGLA | −0.20 | 0.73 | −0.20 | |||||||||
EPA | −0.20 | −0.42 | 0.91 | |||||||||
DGLA% | 0.73 | −0.42 | −0.42 | |||||||||
EPA% | −0.20 | 0.91 | −0.42 |
Significant FA Concentrations as Explanatory Variables | t-Value | p | Adjusted R2 | Durbin–Watson Ratio |
0.254 | 1.82 | |||
Lauric acid (LaA) | −0.30 | ns | ||
Linoleic acid (LiA) | −1.84 | ns | ||
Dihomo-gamma-linolenic acid (DGLA) | −3.43 | <0.001 | ||
Arachidonic acid (AA) | −0.48 | ns | ||
Eicosapentaenoic acid (EPA) | 2.02 | <0.05 | ||
Significant FA Percentages as Explanatory Variables | t-Value | p | Adjusted R2 | Durbin–Watson Ratio |
0.190 | 1.88 | |||
LaA wt% | −1.40 | ns | ||
Oleic acid wt% | −1.38 | ns | ||
DGLA wt% | −2.07 | <0.05 | ||
AA wt% | 0.80 | ns | ||
EPA wt% | 2.12 | <0.05 | ||
DGLA and EPA wt% as Explanatory Variables | t-Value | p | Adjusted R2 | Durbin–Watson Ratio |
0.238 | 1.85 | |||
DGLA | −4.40 | <0.0001 | ||
EPA% | 2.30 | <0.05 |
N | Sens (%) | Spec (%) | PPV (%) | Odds Ratio | p | AUC | AICc | BIC | |
---|---|---|---|---|---|---|---|---|---|
Age <50 years as an OV | |||||||||
EPA wt% (≤1.3 vs. >1.3) % | 141 | 83.3 | 74.0 | 31.9 | 0.28 (0.12–0.56) | <0.0001 | 0.812 | 95 | 101 |
Age <65 years as an OV | |||||||||
DGLA (≥108.6 vs. <108.6) µmol/L | 141 | 66.1 | 74.1 | 62.7 | 1.02 (1.01–1.03) | <0.0001 | 0.718 | 173 | 179 |
EPA wt% (≤1.7 vs. >1.7) % | 141 | 67.9 | 71.8 | 61.3 | 0.46 (0.30–0.66) | <0.0001 | 0.736 | 171 | 177 |
Age < 80 years as an OV | |||||||||
DGLA (≥86.7 vs. <86.7) µmol/L | 141 | 77.6 | 76.5 | 91.2 | 1.03 (1.02–1.05) | <0.0001 | 0.793 | 130 | 136 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, T.; Yoshioka, K.; Tanno, Y.; Kasakura, S. Association of Serum Fatty Acids at Admission with the Age of Onset of Intracerebral Hemorrhage. Nutrients 2020, 12, 2903. https://doi.org/10.3390/nu12102903
Mori T, Yoshioka K, Tanno Y, Kasakura S. Association of Serum Fatty Acids at Admission with the Age of Onset of Intracerebral Hemorrhage. Nutrients. 2020; 12(10):2903. https://doi.org/10.3390/nu12102903
Chicago/Turabian StyleMori, Takahisa, Kazuhiro Yoshioka, Yuhei Tanno, and Shigen Kasakura. 2020. "Association of Serum Fatty Acids at Admission with the Age of Onset of Intracerebral Hemorrhage" Nutrients 12, no. 10: 2903. https://doi.org/10.3390/nu12102903
APA StyleMori, T., Yoshioka, K., Tanno, Y., & Kasakura, S. (2020). Association of Serum Fatty Acids at Admission with the Age of Onset of Intracerebral Hemorrhage. Nutrients, 12(10), 2903. https://doi.org/10.3390/nu12102903