Dietary Vitamin B6 Intake Associated with a Decreased Risk of Cardiovascular Disease: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. General Characteristics and Anthropometric Measurements
2.3. Dietary Assessment
2.4. Ascertainment of CVD
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 10 January 2019).
- World Health Organization. Global Status Report on Noncommunicable Diseases 2014. Available online: https://www.who.int/nmh/publications/ncd-status-report-2014/en/ (accessed on 7 January 2019).
- Korean Statistical Information Service. Deaths and Death Rates by Cause by Sex and Age(Five-Year Age). Available online: http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B34E01&conn_path=I2 (accessed on 5 January 2019).
- Benziger, C.P.; Roth, G.A.; Moran, A.E. The Global Burden of Disease Study and the Preventable Burden of NCD. Glob. Heart 2016, 11, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.Y.; Meng, X.; Li, Y.; Zhao, C.N.; Liu, Q.; Li, H.B. Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms. Nutrients 2017, 9, 857. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: A systematic review and dose-response meta-analysis of prospective studies. Am. J. Clin. Nutr. 2018, 108, 1069–1091. [Google Scholar] [CrossRef] [PubMed]
- Friso, S.; Lotto, V.; Corrocher, R.; Choi, S.W. Vitamin B6 and cardiovascular disease. Subcell. Biochem. 2012, 56, 265–290. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015, 14, 6. [Google Scholar] [CrossRef]
- Page, J.H.; Ma, J.; Chiuve, S.E.; Stampfer, M.J.; Selhub, J.; Manson, J.E.; Rimm, E.B. Plasma vitamin B(6) and risk of myocardial infarction in women. Circulation 2009, 120, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, J.; Iso, H.; Inoue, M.; Iwasaki, M.; Okada, K.; Kita, Y.; Kokubo, Y.; Okayama, A.; Tsugane, S. Intake of folate, vitamin B6 and vitamin B12 and the risk of CHD: The Japan Public Health Center-Based Prospective Study Cohort, I. J. Am. Coll. Nutr. 2008, 27, 127–136. [Google Scholar] [CrossRef]
- Marniemi, J.; Alanen, E.; Impivaara, O.; Seppanen, R.; Hakala, P.; Rajala, T.; Ronnemaa, T. Dietary and serum vitamins and minerals as predictors of myocardial infarction and stroke in elderly subjects. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 188–197. [Google Scholar] [CrossRef]
- Choe, H.; Hwang, J.Y.; Yun, J.A.; Kim, J.M.; Song, T.J.; Chang, N.; Kim, Y.J.; Kim, Y. Intake of antioxidants and B vitamins is inversely associated with ischemic stroke and cerebral atherosclerosis. Nutr. Res. Pract. 2016, 10, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Park, Y. Intakes of vegetables and related nutrients such as vitamin B complex, potassium, and calcium, are negatively correlated with risk of stroke in Korea. Nutr. Res. Pract. 2010, 4, 303–310. [Google Scholar] [CrossRef]
- Thompson, F.E.; Subar, A.F. Dietary Assessment Methodology. In Nutrition in the Prevention and Treatment of Disease, 4th ed.; Coulston, A.M., Boushey, C.J., Ferruzzi, M.G., Delahanty, L.M., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 5–48. [Google Scholar]
- Hennekens, C.H.; Buring, J.E.; Mayrent, S.L.; Doll, R. Epidemiology in Medicine; Little, Brown and Company: Boston, MA, USA, 1987; pp. 30–53. [Google Scholar]
- Kim, Y.; Han, B.-G.; KoGES Group. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef] [PubMed]
- Willett, W. Nutritional Epidemiology, 3rd ed; Oxford University Press: New York, NY, USA, 2012; pp. 274–307. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Leon, A.S.; Jacobs, D.R., Jr.; Montoye, H.J.; Sallis, J.F.; Paffenbarger, R.S., Jr. Compendium of physical activities: Classification of energy costs of human physical activities. Med. Sci. Sports Exerc. 1993, 25, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Rural Development Administration Korea. Food Composition Table, 5th ed.; Rural Development Administration Korea: Suwon, Korea, 1996; pp. 40–457.
- Van Buuren, S.; Brand, J.P.; Groothuis-Oudshoorn, C.G.; Rubin, D.B. Fully conditional specification in multivariate imputation. J. Stat. Comput. Simul. 2006, 76, 1049–1064. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.G.; Shu, X.O.; Li, H.L.; Gao, J.; Han, L.H.; Wang, J.; Fang, J.; Gao, Y.T.; Zheng, W.; Xiang, Y.B. Prospective cohort studies of dietary vitamin B6 intake and risk of cause-specific mortality. Clin. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Iso, H.; Date, C.; Kikuchi, S.; Tamakoshi, A. Dietary folate and vitamin b6 and B12 intake in relation to mortality from cardiovascular diseases: Japan collaborative cohort study. Stroke 2010, 41, 1285–1289. [Google Scholar] [CrossRef]
- He, K.; Merchant, A.; Rimm, E.B.; Rosner, B.A.; Stampfer, M.J.; Willett, W.C.; Ascherio, A. Folate, vitamin B6, and B12 intakes in relation to risk of stroke among men. Stroke 2004, 35, 169–174. [Google Scholar] [CrossRef]
- di Salvo, M.L.; Contestabile, R.; Safo, M.K. Vitamin B(6) salvage enzymes: Mechanism, structure and regulation. Biochim. Biophys. Acta 2011, 1814, 1597–1608. [Google Scholar] [CrossRef]
- Schalinske, K.L.; Smazal, A.L. Homocysteine imbalance: A pathological metabolic marker. Adv. Nutr. 2012, 3, 755–762. [Google Scholar] [CrossRef]
- Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul. Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Skovierova, H.; Vidomanova, E.; Mahmood, S.; Sopkova, J.; Drgova, A.; Cervenova, T.; Halasova, E.; Lehotsky, J. The Molecular and Cellular Effect of Homocysteine Metabolism Imbalance on Human Health. Int. J. Mol. Sci. 2016, 17, 1733. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.K.; Kan, M.Y. Homocysteine-Induced Endothelial Dysfunction. Ann. Nutr. Metab. 2015, 67, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.Y.; Man, C.F.; Xu, J.; Fan, Y. Elevated homocysteine levels and risk of cardiovascular and all-cause mortality: A meta-analysis of prospective studies. J. Zhejiang Univ. Sci. B 2015, 16, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Jain, S.K. Effect of vitamin B6 on oxygen radicals, mitochondrial membrane potential, and lipid peroxidation in H2O2-treated U937 monocytes. Free Radic. Biol. Med. 2004, 36, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Friso, S.; Girelli, D.; Martinelli, N.; Olivieri, O.; Lotto, V.; Bozzini, C.; Pizzolo, F.; Faccini, G.; Beltrame, F.; Corrocher, R. Low plasma vitamin B-6 concentrations and modulation of coronary artery disease risk. Am. J. Clin. Nutr. 2004, 79, 992–998. [Google Scholar] [CrossRef]
- Friso, S.; Jacques, P.F.; Wilson, P.W.; Rosenberg, I.H.; Selhub, J. Low circulating vitamin B(6) is associated with elevation of the inflammation marker C-reactive protein independently of plasma homocysteine levels. Circulation 2001, 103, 2788–2791. [Google Scholar] [CrossRef]
- Chiang, E.P.; Bagley, P.J.; Roubenoff, R.; Nadeau, M.; Selhub, J. Plasma pyridoxal 5’-phosphate concentration is correlated with functional vitamin B-6 indices in patients with rheumatoid arthritis and marginal vitamin B-6 status. J. Nutr. 2003, 133, 1056–1059. [Google Scholar] [CrossRef]
- Joseph, J.; Loscalzo, J. Methoxistasis: Integrating the roles of homocysteine and folic acid in cardiovascular pathobiology. Nutrients 2013, 5, 3235–3256. [Google Scholar] [CrossRef]
- Ye, X.; Maras, J.E.; Bakun, P.J.; Tucker, K.L. Dietary intake of vitamin B-6, plasma pyridoxal 5’-phosphate, and homocysteine in Puerto Rican adults. J. Am. Diet. Assoc. 2010, 110, 1660–1668. [Google Scholar] [CrossRef]
- Larsson, S.C.; Mannisto, S.; Virtanen, M.J.; Kontto, J.; Albanes, D.; Virtamo, J. Folate, vitamin B6, vitamin B12, and methionine intakes and risk of stroke subtypes in male smokers. Am. J. Epidemiol. 2008, 167, 954–961. [Google Scholar] [CrossRef] [PubMed]
- de Bree, A.; Verschuren, W.M.; Blom, H.J.; Nadeau, M.; Trijbels, F.J.; Kromhout, D. Coronary heart disease mortality, plasma homocysteine, and B-vitamins: A prospective study. Atherosclerosis 2003, 166, 369–377. [Google Scholar] [CrossRef]
- Folsom, A.R.; Nieto, F.J.; McGovern, P.G.; Tsai, M.Y.; Malinow, M.R.; Eckfeldt, J.H.; Hess, D.L.; Davis, C.E. Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins: The Atherosclerosis Risk in Communities (ARIC) study. Circulation 1998, 98, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Zargar, M.S. Intake of vitamin B6, folate, and vitamin B12 and risk of coronary heart disease: A systematic review and dose-response meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dierkes, J.; Jeckel, A.; Ambrosch, A.; Westphal, S.; Luley, C.; Boeing, H. Factors explaining the difference of total homocysteine between men and women in the European Investigation Into Cancer and Nutrition Potsdam study. Metabolism 2001, 50, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Shroff, M.R.; Beydoun, H.A.; Zonderman, A.B. Serum folate, vitamin B-12, and homocysteine and their association with depressive symptoms among U.S. adults. Psychosom. Med. 2010, 72, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, M.K.; Kim, J.U.; Ha, H.Y.; Choi, B.Y. Major determinants of serum homocysteine concentrations in a Korean population. J. Korean. Med. Sci. 2010, 25, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, K.R.; DeGroot, K.; Myers, A.K.; Kim, Y.D. Estrogen and homocysteine. Cardiovasc. Res. 2002, 53, 577–588. [Google Scholar] [CrossRef] [Green Version]
- Bechlioulis, A.; Naka, K.K.; Calis, K.A.; Makrigiannakis, A.; Michalis, L.; Kalantaridou, S.N. Cardiovascular effects of endogenous estrogen and hormone therapy. Curr. Vasc. Pharmacol. 2010, 8, 249–258. [Google Scholar] [CrossRef]
Men | Women | |||||
---|---|---|---|---|---|---|
Vitamin B6 Intake (Quintile) | Vitamin B6 Intake (Quintile) | |||||
Q1 | Q3 | Q5 | Q1 | Q3 | Q5 | |
n | 878 | 878 | 878 | 950 | 950 | 950 |
Range (median), mg/day | 1.01–1.83 (1.70) | 2.01–2.16 (2.08) | 2.40–6.21 (2.62) | 0.88–1.73 (1.58) | 1.93–2.08 (2.00) | 2.30–5.22 (2.49) |
Age (years) | 54.12 ± 0.29 | 51.26 ± 0.29 | 49.86 ± 0.29 | 55.08 ± 0.29 | 52.54 ± 0.29 | 50.23 ± 0.29 |
Residential area | ||||||
Ansung | 596 (67.88) | 320 (36.45) | 329 (37.47) | 642 (67.58) | 419 (44.11) | 495 (52.11) |
Ansan | 282 (32.12) | 558 (63.55) | 549 (62.53) | 308 (32.42) | 531 (55.89) | 455 (47.89) |
Educational levels | ||||||
Elementary school graduation or lower | 248 (28.38) | 142 (16.21) | 130 (14.87) | 549 (58.59) | 416 (44.11) | 316 (33.40) |
Middle school graduation | 210 (24.03) | 188 (21.46) | 179 (20.48) | 188 (20.06) | 213 (22.59) | 256 (27.06) |
High school graduation | 285 (32.61) | 346 (39.50) | 346 (39.59) | 164 (17.50) | 249 (26.41) | 287 (30.34) |
College graduation or higher | 131 (14.99) | 200 (22.83) | 219 (25.06) | 36 (3.84) | 65 (6.89) | 87 (9.20) |
Monthly household income (KRW) | ||||||
<1,000,000 | 353 (40.67) | 187 (21.37) | 169 (19.34) | 520 (55.56) | 386 (41.15) | 301 (32.44) |
1,000,000-<2,000,000 | 269 (30.99) | 287 (32.80) | 267 (30.55) | 217 (23.18) | 256 (27.29) | 288 (31.03) |
2,000,000-<4,000,000 | 201 (23.16) | 302 (34.51) | 332 (37.99) | 174 (18.59) | 237 (25.27) | 272 (29.31) |
≥4,000,000 | 45 (5.18) | 99 (11.31) | 106 (12.13) | 25 (2.67) | 59 (6.29) | 67 (7.22) |
Body mass index (kg/m2) | 23.66 ± 0.10 | 24.29 ± 0.10 | 24.79 ± 0.10 | 24.68 ± 0.11 | 25.01 ± 0.11 | 25.00 ± 0.11 |
Physical activity levels a | 25.38 ± 0.58 | 19.31 ± 0.58 | 20.31 ± 0.58 | 22.54 ± 0.53 | 19.71 ± 0.53 | 20.23 ± 0.53 |
Alcohol drinkers | 620 (70.78) | 644 (73.52) | 626 (71.54) | 207 (21.86) | 241 (25.56) | 260 (27.57) |
Current smokers | 452 (51.60) | 428 (48.80) | 438 (50.06) | 34 (3.62) | 23 (2.45) | 39 (4.19) |
Dietary supplement users | 119 (13.55) | 130 (14.81) | 149 (16.97) | 162 (17.05) | 236 (24.84) | 258 (27.16) |
Nutrient factors b | ||||||
Factor 1 | −0.61 ± 0.03 | −0.10 ± 0.03 | 0.24 ± 0.03 | −0.28 ± 0.03 | −0.12 ± 0.03 | 0.73 ± 0.03 |
Factor 2 | −0.20 ± 0.03 | 0.29 ± 0.03 | 0.48 ± 0.03 | −0.57 ± 0.03 | −0.20 ± 0.03 | 0.17 ± 0.03 |
Factor 3 | −0.22 ± 0.03 | −0.14 ± 0.03 | −0.22 ± 0.03 | 0.12 ± 0.03 | 0.16 ± 0.03 | 0.22 ± 0.03 |
Vitamin B6 Intake (Quintile) | p for Trend | |||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | ||
Men | ||||||
n | 878 | 879 | 878 | 879 | 878 | |
Case | 72 | 53 | 52 | 65 | 36 | |
Person year | 7016 | 6002 | 5876 | 6305 | 7340 | |
Range (median), mg/day | 1.01–1.83 (1.70) | 1.84–2.00 (1.93) | 2.01–2.16 (2.08) | 2.17–2.39 (2.26) | 2.40–6.22 (2.61) | |
Model 1 | 1 | 0.88 (0.62, 1.25) | 0.88 (0.62, 1.26) | 1.02 (0.73, 1.43) | 0.48 (0.32, 0.71) | 0.001 |
Model 2 | 1 | 1.04 (0.73, 1.49) | 1.11 (0.77, 1.59) | 1.42 (1.01, 2.00) | 0.68 (0.45, 1.02) | 0.3 |
Model 3 | 1 | 0.96 (0.67, 1.39) | 0.98 (0.68, 1.43) | 1.27 (0.88, 1.82) | 0.56 (0.36, 0.86) | 0.048 |
Model 4 | 1 | 0.90 (0.62, 1.32) | 0.89 (0.60, 1.33) | 1.10 (0.72, 1.67) | 0.44 (0.25, 0.78) | 0.02 |
Women | ||||||
n | 950 | 950 | 950 | 950 | 950 | |
Case | 97 | 53 | 47 | 41 | 46 | |
Person year | 8050 | 6890 | 6410 | 6514 | 7382 | |
Range (median), mg/day | 0.88–1.73 (1.58) | 1.74–1.92 (1.84) | 1.93–2.08 (2.00) | 2.09–2.29 (2.17) | 2.30–7.51 (2.48) | |
Model 1 | 1 | 0.65 (0.46, 0.90) | 0.62 (0.44, 0.88) | 0.53 (0.37, 0.77) | 0.52 (0.37, 0.74) | <0.001 |
Model 2 | 1 | 0.70 (0.50, 0.98) | 0.74 (0.52, 1.05) | 0.74 (0.51, 1.08) | 0.75 (0.53, 1.07) | 0.1 |
Model 3 | 1 | 0.77 (0.54, 1.09) | 0.84 (0.59, 1.22) | 0.86 (0.58, 1.27) | 0.76 (0.51, 1.13) | 0.2 |
Model 4 | 1 | 0.78 (0.55, 1.12) | 0.88 (0.60, 1.30) | 0.93 (0.60, 1.43) | 0.87 (0.53, 1.44) | 0.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, J.; Park, K. Dietary Vitamin B6 Intake Associated with a Decreased Risk of Cardiovascular Disease: A Prospective Cohort Study. Nutrients 2019, 11, 1484. https://doi.org/10.3390/nu11071484
Jeon J, Park K. Dietary Vitamin B6 Intake Associated with a Decreased Risk of Cardiovascular Disease: A Prospective Cohort Study. Nutrients. 2019; 11(7):1484. https://doi.org/10.3390/nu11071484
Chicago/Turabian StyleJeon, Jimin, and Kyong Park. 2019. "Dietary Vitamin B6 Intake Associated with a Decreased Risk of Cardiovascular Disease: A Prospective Cohort Study" Nutrients 11, no. 7: 1484. https://doi.org/10.3390/nu11071484