How to Prevent Loss of Muscle Mass and Strength among Older People in Neuro-Rehabilitation?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Unimodal Interventions
3.2. Multimodal Interventions
3.3. Cohort Studies
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Feigin, V.L. Anthology of stroke epidemiology in the 20th and 21st centuries: Assessing the past, the present, and envisioning the future. Int. J. Stroke 2019. [Google Scholar] [CrossRef]
- Hall, M.J.; Levant, S.; DeFrances, C.J. Hospitalization for stroke in U.S. Hospitals, 1989–2009. Diabetes 2012, 18, 23. [Google Scholar]
- Saposnik, G.; Cote, R.; Phillips, S.; Gubitz, G.; Bayer, N.; Minuk, J.; Black, S.; Stroke Outcome Research Canada Working Group. Stroke outcome in those over 80: A multicenter cohort study across canada. Stroke 2008, 39, 2310–2317. [Google Scholar] [CrossRef] [PubMed]
- Sze, K.H.; Wong, E.; Or, K.H.; Lum, C.M.; Woo, J. Factors predicting stroke disability at discharge: A study of 793 chinese. Arch. Phys. Med. Rehabil. 2000, 81, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Macciocchi, S.N.; Diamond, P.T.; Alves, W.M.; Mertz, T. Ischemic stroke: Relation of age, lesion location, and initial neurologic deficit to functional outcome. Arch. Phys. Med. Rehabil. 1998, 79, 1255–1257. [Google Scholar] [CrossRef]
- Fischer, U.; Arnold, M.; Nedeltchev, K.; Schoenenberger, R.A.; Kappeler, L.; Hollinger, P.; Schroth, G.; Ballinari, P.; Mattle, H.P. Impact of comorbidity on ischemic stroke outcome. Acta Neurol. Scand. 2006, 113, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.P.; Wong, A.A.; Schluter, P.J.; Henderson, R.D.; O’Sullivan, J.D.; Read, S.J. Impact of premorbid undernutrition on outcome in stroke patients. Stroke 2004, 35, 1930–1934. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the european working group on sarcopenia in older people. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.M.; et al. Diagnostic criteria for malnutrition—An espen consensus statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Zaaria, M.; Pasleau, F.; Reginster, J.Y.; Bruyere, O. Health outcomes of sarcopenia: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0169548. [Google Scholar] [CrossRef]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef]
- Kortebein, P.; Ferrando, A.; Lombeida, J.; Wolfe, R.; Evans, W.J. Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA 2007, 297, 1772–1774. [Google Scholar] [CrossRef]
- Gariballa, S.E.; Parker, S.G.; Taub, N.; Castleden, M. Nutritional status of hospitalized acute stroke patients. Br. J. Nutr. 1998, 79, 481–487. [Google Scholar] [CrossRef]
- Foley, N.C.; Martin, R.E.; Salter, K.L.; Teasell, R.W. A review of the relationship between dysphagia and malnutrition following stroke. J. Rehabil. Med. 2009, 41, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Hachisuka, K.; Umezu, Y.; Ogata, H. Disuse muscle atrophy of lower limbs in hemiplegic patients. Arch. Phys. Med. Rehabil. 1997, 78, 13–18. [Google Scholar] [CrossRef]
- De Deyne, P.G.; Hafer-Macko, C.E.; Ivey, F.M.; Ryan, A.S.; Macko, R.F. Muscle molecular phenotype after stroke is associated with gait speed. Muscle Nerve 2004, 30, 209–215. [Google Scholar] [CrossRef]
- Scelsi, R.; Lotta, S.; Lommi, G.; Poggi, P.; Marchetti, C. Hemiplegic atrophy. Morphological findings in the anterior tibial muscle of patients with cerebral vascular accidents. Acta Neuropathol. 1984, 62, 324–331. [Google Scholar] [CrossRef]
- Ryan, A.S.; Dobrovolny, C.L.; Smith, G.V.; Silver, K.H.; Macko, R.F. Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients. Arch. Phys. Med. Rehabil. 2002, 83, 1703–1707. [Google Scholar] [CrossRef]
- Carin-Levy, G.; Greig, C.; Young, A.; Lewis, S.; Hannan, J.; Mead, G. Longitudinal changes in muscle strength and mass after acute stroke. Cerebrovasc. Dis. 2006, 21, 201–207. [Google Scholar] [CrossRef]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ 2015, 350, g7647. [Google Scholar] [CrossRef]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Iwamoto, J.; Kanoko, T.; Satoh, K. Low-dose vitamin d prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial. Cerebrovasc. Dis. 2005, 20, 187–192. [Google Scholar] [CrossRef]
- Retraction statement. Paper ‘low-dose vitamin d prevents muscular atrophy and reduces falls and hip fractures in women after stroke: A randomized controlled trial’ by sato et al. Cerebrovasc dis 2005;20:187-192. Cerebrovasc. Dis. 2017, 44, 240. [CrossRef] [PubMed]
- Batchelor, F.A.; Hill, K.D.; Mackintosh, S.F.; Said, C.M.; Whitehead, C.H. Effects of a multifactorial falls prevention program for people with stroke returning home after rehabilitation: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2012, 93, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Naritomi, H.; Moriwaki, H.; Metoki, N.; Nishimura, H.; Higashi, Y.; Yamamoto, Y.; Yuasa, H.; Oe, H.; Tanaka, K.; Saito, K.; et al. Effects of edaravone on muscle atrophy and locomotor function in patients with ischemic stroke: A randomized controlled pilot study. Drugs R&D 2010, 10, 155–163. [Google Scholar] [CrossRef]
- Kokura, Y.; Wakabayashi, H.; Nishioka, S.; Maeda, K. Nutritional intake is associated with activities of daily living and complications in older inpatients with stroke. Geriatr. Gerontol. Int. 2018, 18, 1334–1339. [Google Scholar] [CrossRef]
- James, R.; Gines, D.; Menlove, A.; Horn, S.D.; Gassaway, J.; Smout, R.J. Nutrition support (tube feeding) as a rehabilitation intervention. Arch. Phys. Med. Rehabil. 2005, 86, S82–S92. [Google Scholar] [CrossRef]
- Ha, L.; Hauge, T.; Spenning, A.B.; Iversen, P.O. Individual, nutritional support prevents undernutrition, increases muscle strength and improves qol among elderly at nutritional risk hospitalized for acute stroke: A randomized, controlled trial. Clin. Nutr. 2010, 29, 567–573. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Bise, T.; Shimazu, S.; Tanoue, M.; Tomioka, Y.; Araki, M.; Nishino, T.; Kuzuhara, A.; Takatsuki, F. Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia: A randomized controlled trial. Nutrition 2019, 58, 1–6. [Google Scholar] [CrossRef]
- Okamoto, S.; Sonoda, S.; Tanino, G.; Tomida, K.; Okazaki, H.; Kondo, I. Change in thigh muscle cross-sectional area through administration of an anabolic steroid during routine stroke rehabilitation in hemiplegic patients. Am. J. Phys. Med. Rehabil. 2011, 90, 106–111. [Google Scholar] [CrossRef]
- Rabadi, M.H.; Coar, P.L.; Lukin, M.; Lesser, M.; Blass, J.P. Intensive nutritional supplements can improve outcomes in stroke rehabilitation. Neurology 2008, 71, 1856–1861. [Google Scholar] [CrossRef]
- Garbagnati, F.; Cairella, G.; De Martino, A.; Multari, M.; Scognamiglio, U.; Venturiero, V.; Paolucci, S. Is antioxidant and n-3 supplementation able to improve functional status in poststroke patients? Results from the nutristroke trial. Cerebrovasc. Dis. 2009, 27, 375–383. [Google Scholar] [CrossRef]
- He, K.; Song, Y.; Daviglus, M.L.; Liu, K.; Van Horn, L.; Dyer, A.R.; Goldbourt, U.; Greenland, P. Fish consumption and incidence of stroke: A meta-analysis of cohort studies. Stroke 2004, 35, 1538–1542. [Google Scholar] [CrossRef]
- Watanabe, K.; Tanaka, M.; Yuki, S.; Hirai, M.; Yamamoto, Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J. Clin. Biochem. Nutr. 2018, 62, 20–38. [Google Scholar] [CrossRef]
- Lapchak, P.A. A critical assessment of edaravone acute ischemic stroke efficacy trials: Is edaravone an effective neuroprotective therapy? Expert Opin. Pharmacother. 2010, 11, 1753–1763. [Google Scholar] [CrossRef]
- Lauretani, F.; Russo, C.R.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Di Iorio, A.; Corsi, A.M.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L. Age-associated changes in skeletal muscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. 2003, 95, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznaric, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the espen expert group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef]
- Sions, J.M.; Tyrell, C.M.; Knarr, B.A.; Jancosko, A.; Binder-Macleod, S.A. Age- and stroke-related skeletal muscle changes: A review for the geriatric clinician. J. Geriatr. Phys. Ther. 2012, 35, 155–161. [Google Scholar] [CrossRef]
- Verhoeven, S.; Vanschoonbeek, K.; Verdijk, L.B.; Koopman, R.; Wodzig, W.K.; Dendale, P.; van Loon, L.J. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am. J. Clin. Nutr. 2009, 89, 1468–1475. [Google Scholar] [CrossRef] [Green Version]
- Cermak, N.M.; Res, P.T.; de Groot, L.C.; Saris, W.H.; van Loon, L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1454–1464. [Google Scholar] [CrossRef] [PubMed]
- Dennis, M.S.; Lewis, S.C.; Warlow, C.; Collaboration, F.T. Routine oral nutritional supplementation for stroke patients in hospital (food): A multicentre randomised controlled trial. Lancet 2005, 365, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Paciaroni, M.; Mazzotta, G.; Corea, F.; Caso, V.; Venti, M.; Milia, P.; Silvestrelli, G.; Palmerini, F.; Parnetti, L.; Gallai, V. Dysphagia following stroke. Eur. Neurol. 2004, 51, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Tang, H.; Yang, X.; Luo, X.; Wang, X.; Shao, C.; He, J. Fish consumption and stroke risk: A meta-analysis of prospective cohort studies. J. Stroke Cerebrovasc. Dis. 2019, 28, 604–611. [Google Scholar] [CrossRef]
- Paterson, K.E.; Myint, P.K.; Jennings, A.; Bain, L.K.M.; Lentjes, M.A.H.; Khaw, K.T.; Welch, A.A. Mediterranean diet reduces risk of incident stroke in a population with varying cardiovascular disease risk profiles. Stroke 2018, 2415–2420. [Google Scholar] [CrossRef]
- Beaudart, C.; Buckinx, F.; Rabenda, V.; Gillain, S.; Cavalier, E.; Slomian, J.; Petermans, J.; Reginster, J.Y.; Bruyere, O. The effects of vitamin d on skeletal muscle strength, muscle mass, and muscle power: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345. [Google Scholar] [CrossRef]
- Bolland, M.J.; Grey, A.; Avenell, A. Effects of vitamin d supplementation on musculoskeletal health: A systematic review, meta-analysis, and trial sequential analysis. Lancet Diabetes Endocrinol. 2018, 6, 847–858. [Google Scholar] [CrossRef]
- De Spiegeleer, A.; Beckwee, D.; Bautmans, I.; Petrovic, M.; the Sarcopenia Guidelines Development group of the Belgian Society of Gerontology and Geriatrics. Pharmacological interventions to improve muscle mass, muscle strength and physical performance in older people: An umbrella review of systematic reviews and meta-analyses. Drugs Aging 2018, 35, 719–734. [Google Scholar] [CrossRef] [PubMed]
- Basaria, S.; Coviello, A.D.; Travison, T.G.; Storer, T.W.; Farwell, W.R.; Jette, A.M.; Eder, R.; Tennstedt, S.; Ulloor, J.; Zhang, A.; et al. Adverse events associated with testosterone administration. N. Engl. J. Med. 2010, 363, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Socas, L.; Zumbado, M.; Perez-Luzardo, O.; Ramos, A.; Perez, C.; Hernandez, J.R.; Boada, L.D. Hepatocellular adenomas associated with anabolic androgenic steroid abuse in bodybuilders: A report of two cases and a review of the literature. Br. J. Sports Med. 2005, 39, e27. [Google Scholar] [CrossRef]
- O’Connell, M.D.; Roberts, S.A.; Srinivas-Shankar, U.; Tajar, A.; Connolly, M.J.; Adams, J.E.; Oldham, J.A.; Wu, F.C. Do the effects of testosterone on muscle strength, physical function, body composition, and quality of life persist six months after treatment in intermediate-frail and frail elderly men? J. Clin. Endocrinol. Metab. 2011, 96, 454–458. [Google Scholar] [CrossRef]
- Edaravone Acute Infarction Study Group. Effect of a novel free radical scavenger, edaravone (mci-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc. Dis. 2003, 15, 222–229. [Google Scholar] [CrossRef]
- Enomoto, M.; Endo, A.; Yatsushige, H.; Fushimi, K.; Otomo, Y. Clinical effects of early edaravone use in acute ischemic stroke patients treated by endovascular reperfusion therapy. Stroke 2019, 50, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Writing, G.; Edaravone, A.L.S.S.G. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: A randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017, 16, 505–512. [Google Scholar] [CrossRef]
Studies | Population | Intervention/Hypothesis | Outcomes | Results | Major Limitations | Quality Score | |
---|---|---|---|---|---|---|---|
Unimodal RCT | Ha et al. 2010 [28] | Post-stroke INT = 58/CO = 66 | Individual nutritional support | Body weight at 3 months, QoL, handgrip | Significant reduction of patients with weight loss, improvement of QoL, increase handgrip strength | High dropout rate, single center, no evaluation of impact of rehabilitation | 19/28 |
Rabadi et al. 2008 [31] | Post-stroke with ≥2.5% weight loss INT = 51/CO = 51 | Intensive nutritional supplement | FIM, length of stay, 2-/6-minute timed walk | Significant increase in motor-FIM gain, increased gain in walking performance, increased proportion of return to home | Single center, no placebo, no monitoring of dietary intake | 22/28 | |
Garbagnati et al. 2009 [32] | Post ischemic stroke INT = 16/20/18CO = 18 | Supplement with antioxidants or omega-3 FA or both | BI, RMI, CNS | Trend toward lower mortality rate | Single center, high dropout rate, small sample size | 18/28 | |
Naritomi et al. 2010 [25] | Post-stroke with leg motor weakness INT = 21/CO = 20 | 10–14 days edaravone treatment | Femoral muscle volume, BRS, MWS | Significant decrease in muscle atrophy, improved leg function | Small sample size, lack of placebo group, open label | 20/28 | |
Okamoto et al. 2011 [30] | Hemiplegic stroke patients INT = 15/CO = 11 | 6-weeks treatment with anabolic steroid | CSA of the bilateral thigh muscles, Motor-FIM, ADL score | Significant increase in bilateral thigh CSA | Small sample size | 16/28 | |
Multimodal RCT | Yoshimura et al. 2019 [29] | Post-stroke, sarcopenic, INT = 21/CO = 23 | 8-weeks administration of leucin-enriched amino acids + low intensity resistance training | FIM, SMI, handgrip | Significant improvement of motor FIM, SMI and handgrip | Small sample size, single center, association with exercise | 24/28 |
Batchelor et al. 2012 [24] | Post-stroke, high fall risk INT = 57/CO = 75 | 12-months fall prevention program (including calcium/ vitamin D supplementation | Fall rates, leg strength, FIM, gait speed, balance, fall risk | No significant difference | Subjects not blinded | 22/28 | |
Cohort studies | Kokura et al. 2018 [26] | Post-stroke, rehabilitation prescribed N = 192 | Impact of energy intake during first week | FIM, complications | Energy intake during week 1 significantly affects motor outcomes | Retrospective, high exclusion rate, energy intake not monitored after week 1 | 22/28 |
James et al. 2005 [27] | Moderate and severe stroke N = 919 | Impact of tube feeding | FIM | Greater functional improvement in tube-fed severe stroke survivors | Observational, no causal effect is demonstrated | 17/28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lathuilière, A.; Mareschal, J.; Graf, C.E. How to Prevent Loss of Muscle Mass and Strength among Older People in Neuro-Rehabilitation? Nutrients 2019, 11, 881. https://doi.org/10.3390/nu11040881
Lathuilière A, Mareschal J, Graf CE. How to Prevent Loss of Muscle Mass and Strength among Older People in Neuro-Rehabilitation? Nutrients. 2019; 11(4):881. https://doi.org/10.3390/nu11040881
Chicago/Turabian StyleLathuilière, Aurélien, Julie Mareschal, and Christophe E. Graf. 2019. "How to Prevent Loss of Muscle Mass and Strength among Older People in Neuro-Rehabilitation?" Nutrients 11, no. 4: 881. https://doi.org/10.3390/nu11040881