Next Article in Journal
Dietary Patterns in Relation to Components of Dyslipidemia and Fasting Plasma Glucose in Adults with Dyslipidemia and Elevated Fasting Plasma Glucose in Taiwan
Previous Article in Journal
Diet Supplemented with Antioxidant and Anti-Inflammatory Probiotics Improves Sperm Quality after Only One Spermatogenic Cycle in Zebrafish Model
Previous Article in Special Issue
Higher Maternal Diet Quality during Pregnancy and Lactation Is Associated with Lower Infant Weight-For-Length, Body Fat Percent, and Fat Mass in Early Postnatal Life
Article Menu

Export Article

Open AccessArticle
Nutrients 2019, 11(4), 844; https://doi.org/10.3390/nu11040844

A Slow-Digesting Carbohydrate Diet during Rat Pregnancy Protects Offspring from Non-Alcoholic Fatty Liver Disease Risk through the Modulation of the Carbohydrate-Response Element and Sterol Regulatory Element Binding Proteins

1
Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain
2
Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain
3
OWL Metabolomics, Parque Tecnológico de Bizkaia, 48160 Deiro, Spain
*
Author to whom correspondence should be addressed.
Received: 12 February 2019 / Revised: 11 April 2019 / Accepted: 11 April 2019 / Published: 14 April 2019
  |  
PDF [2283 KB, uploaded 14 April 2019]
  |  

Abstract

High-fat (HF) and rapid digestive (RD) carbohydrate diets during pregnancy promote excessive adipogenesis in offspring. This effect can be corrected by diets with similar glycemic loads, but low rates of carbohydrate digestion. However, the effects of these diets on metabolic programming in the livers of offspring, and the liver metabolism contributions to adipogenesis, remain to be addressed. In this study, pregnant insulin-resistant rats were fed high-fat diets with similar glycemic loads but different rates of carbohydrate digestion, High Fat-Rapid Digestive (HF–RD) diet or High Fat-Slow Digestive (HF–SD) diet. Offspring were fed a standard diet for 10 weeks, and the impact of these diets on the metabolic and signaling pathways involved in liver fat synthesis and storage of offspring were analyzed, including liver lipidomics, glycogen and carbohydrate and lipid metabolism key enzymes and signaling pathways. Livers from animals whose mothers were fed an HF–RD diet showed higher saturated triacylglycerol deposits with lower carbon numbers and double bond contents compared with the HF–SD group. Moreover, the HF–RD group exhibited enhanced glucose transporter 2, pyruvate kinase (PK), acetyl coenzyme A carboxylase (ACC) and fatty acid (FA) synthase expression, and a decrease in pyruvate carboxylase (PyC) expression leading to an altered liver lipid profile. These parameters were normalized in the HF–SD group. The changes in lipogenic enzyme expression were parallel to changes in AktPKB phosphorylation status and nuclear expression in carbohydrate-response element and sterol regulatory element binding proteins. In conclusion, an HF–RD diet during pregnancy translates to changes in liver signaling and metabolic pathways in offspring, enhancing liver lipid storage and synthesis, and therefore non-alcoholic fatty liver disease (NAFLD) risk. These changes can be corrected by feeding an HF–SD diet during pregnancy. View Full-Text
Keywords: early programming; hepatic lipogenesis; insulin-resistant pregnancy; metabolic flexibility; non-alcoholic fatty liver disease; slow digesting carbohydrates early programming; hepatic lipogenesis; insulin-resistant pregnancy; metabolic flexibility; non-alcoholic fatty liver disease; slow digesting carbohydrates
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Salto, R.; Manzano, M.; Girón, M.D.; Cano, A.; Castro, A.; Vílchez, J.D.; Cabrera, E.; López-Pedrosa, J.M. A Slow-Digesting Carbohydrate Diet during Rat Pregnancy Protects Offspring from Non-Alcoholic Fatty Liver Disease Risk through the Modulation of the Carbohydrate-Response Element and Sterol Regulatory Element Binding Proteins. Nutrients 2019, 11, 844.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nutrients EISSN 2072-6643 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top